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The aim of this paper is to investigate the global asymptotic stability and the periodic character for
the rational difference equation xn+1 = αxn−1/(β + γΠk

i=lx
pi
n−2i), n = 0, 1, 2, . . ., where the parameters

α, β, γ, pl, pl+1, . . . , pk are nonnegative real numbers, and l, k are nonnegative integers such that
l ≤ k.

1. Introduction

Difference equations have always played an important role in the construction and analysis
of mathematical models of biology, ecology, physics, economic process, and so forth.

The study of nonlinear rational difference equations of higher order is of paramount
importance, since we still know so little about such equations.

Amleh et al. [1] investigated the third-order rational difference equation

xn+1 =
a + bxn−1
A + Bxn−2

, n = 0, 1, 2, . . . , (1.1)

where a, b,A, B are nonnegative real numbers and the initial conditions are nonnegative real
numbers.

Ahmed [2] studied the global asymptotic behavior and the periodic character of solu-
tions of the third-order rational difference equation

xn+1 =
bxn−1

A + Bxpnx
q

n−2
, n = 0, 1, 2, . . . , (1.2)
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where the parameters b,A, B, p, q are nonnegative real numbers, and the initial conditions
x−2, x−1, x0 are arbitrary nonnegative real numbers.

For other related results, see [3] and also [4–15].
In this paper, the global asymptotic behavior and the periodic character of solutions of

the rational difference equation

xn+1 =
αxn−1

β + γΠk
i=lx

pi
n−2i

, n = 0, 1, 2, . . . , (1.3)

where the parameters α, β, γ, pl, pl+1, . . . , pk are nonnegative real numbers, l, k are nonnegative
integers such that l ≤ k, and the initial conditions x−2k, x−2k+1, . . . , x0 are arbitrary nonnegative
real numbers such that

β + γ
k∏

i=l

x
pi
n−2i > 0, ∀n ≥ 0, (1.4)

will be investigated.
Let I be an interval of real numbers, and let f : I2k+1 → I be a continuously differen-

tiable function. Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−2k), n = 0, 1, 2, . . . , (1.5)

with x−2k, x−2k+1, . . . , x0 ∈ I. Let x be the equilibrium point of (1.5). The linearized equation
of (1.5) about x is

yn+1 = c1yn + c2yn−1 + · · · + c2k+1yn−2k, n = 0, 1, 2, . . . , (1.6)

where

c1 =
∂f

∂xn
(x, x, . . . , x), c2 =

∂f

∂xn−1
(x, x, . . . , x), . . . , c2k+1 =

∂f

∂xn−2k
(x, x, . . . , x).

(1.7)

The characteristic equation of (1.5) is

λ2k+1 − c1λ2k − c2λ2k−1 − · · · − c2k+1 = 0. (1.8)

Definition 1.1. Let x be an equilibrium point of (1.5).

(i) The equilibrium point x of (1.5) is called locally stable if, for every ε > 0, there exists
δ > 0 such that, for all x−2k, x−2k+1, . . . , x0 ∈ I with |x−2k−x|+|x−2k+1−x|+· · ·+|x0−x| <
δ, we have |xn − x| < ε for all n ≥ −2k.

(ii) The equilibrium point x of (1.5) is called locally asymptotically stable if it is locally
stable, and if there exists γ > 0 such that for all x−2k, x−2k+1, . . . , x0 ∈ I with |x−2k −
x| + |x−2k+1 − x| + · · · + |x0 − x| < γ , we have limn→∞xn = x.
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(iii) The equilibrium point x of (1.5) is called global attractor if, for every x−2k,
x−2k+1, . . . , x0 ∈ I, we have limn→∞xn = x.

(iv) The equilibrium point x of (1.5) is called globally asymptotically stable if it is locally
stable and global attractor.

(v) The equilibrium point x of (1.5) is called unstable if it is not stable.

(vi) The equilibrium point x of (1.5) is called source or repeller if there exists r > 0 such
that, for all x−2k, x−2k+1, . . . , x0 ∈ I with 0 < |x−2k−x|+|x−2k+1−x|+· · ·+|x0−x| < r, there
existsN ≥ 1 such that |xN − x| ≥ r. Clearly, a repeller is an unstable equilibrium.

Theorem A (linearized stability theorem). The following statements are true.

(1) If all roots of (1.8) have modulus less than one, then the equilibrium point x of (1.5) is
locally asymptotically stable.

(2) If at least one of the roots of (1.8) has modulus greater than one, then the equilibrium point
x of (1.5) is unstable.

The equilibrium point x of (1.5) is called a “saddle point” if (1.8) has roots both inside and
outside the unit disk.

2. The Special Cases αβγΣk
i=lpi = 0

In this section, we examine the character of solutions of (1.3) when one or more of the
parameters in (1.3) are zero.

There are four such equations; namely,

xn+1 = 0, n = 0, 1, 2, . . . , (2.1)

xn+1 =
α

β
xn−1, n = 0, 1, 2, . . . , (2.2)

xn+1 =
α

β + γ
xn−1, n = 0, 1, 2, . . . , (2.3)

xn+1 =
αxn−1

γΠk
i=lx

pi
n−2i

, n = 0, 1, 2, . . . . (2.4)

Equation (2.1) is trivial, (2.2) and (2.3) are linear, and (2.4) is a non-linear difference
equation; the change of variables xn = eyn reduces it to a linear difference equation.
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3. A General Oscillation Result

The change of variables xn = (β/γ)1/Σ
k
i=lpiyn reduces (1.3) to the difference equation

yn+1 =
ryn−1

1 + Πk
i=ly

pi
n−2i

, n = 0, 1, 2, . . . , (3.1)

where r = α/β > 0.
Note that y1 = 0 is always an equilibrium point. When r > 1, (3.1) also possesses the

unique positive equilibrium y2 = (r − 1)1/Σ
k
i=lpi .

Theorem B (see [8]). Assume that F ∈ C([0,∞)2k+1 → [0,∞)) is nonincreasing in the odd
arguments, and nondecreasing in the even arguments. Let x be an equilibrium point of the difference
equation

xn+1 = F(xn, xn−1, . . . , xn−2k), n = 0, 1, 2, . . . , (3.2)

and let {xn}∞n=−2k be a solution of (3.2) such that either

x−2k, x−2k+2, . . . , x0 ≥ x, x−2k+1, x−2k+3, . . . , x−1 < x, (3.3)

or

x−2k, x−2k+2, . . . , x0 < x, x−2k+1, x−2k+3, . . . , x−1 ≥ x. (3.4)

Then {xn}∞n=−2k oscillates about x with semicycles of length one.

Corollary 3.1. Assume that r > 1; let {yn}∞n=−2k be a solution of (3.1) such that either

y−2k, y−2k+2, . . . , y0 ≥ y2 = (r − 1)1/Σ
k
i=lpi ,

y−2k+1, y−2k+3, . . . , y−1 < y2 = (r − 1)1/Σ
k
i=lpi ,

(3.5)

or

y−2k, y−2k+2, . . . , y0 < y2 = (r − 1)1/Σ
k
i=lpi

y−2k+1, y−2k+3, . . . , y−1 ≥ y2 = (r − 1)1/Σ
k
i=lpi .

(3.6)

Then {yn}∞n=−2k oscillates about the positive equilibrium point y2 = (r − 1)1/Σ
k
i=lpi with semicycles of

length one.

Proof. The proof follows immediately from Theorem B.
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4. The Dynamics of (3.1)

In this section, we investigate the dynamics of (3.1)with nonnegative initial conditions.

Theorem 4.1. For (3.1), we have the following results.

(i) Assume that r < 1, then the zero equilibrium point is locally asymptotically stable.

(ii) Assume that r > 1, then the zero equilibrium point is saddle point.

(iii) The positive equilibrium point y2 is unstable.

Proof. The linearized equation associated with (3.1) about y1 = 0 has the form

zn+1 − rzn−1 = 0, n = 0, 1, 2, . . . , (4.1)

so, the characteristic equation of (3.1) about y1 = 0 is

λ2k+1 − rλ2k−1 = 0, (4.2)

then the proof of (i) and (ii) follows immediately from Theorem A.
The linearized equation of (3.1) about y2 = (r − 1)1/Σ

k
i=lpi is

zn+1 − zn−1 +
k∑

i=l

pi

(
1 − 1

r

)
zn−2i = 0, n = 0, 1, 2, . . . , (4.3)

so, the characteristic equation of (3.1) about y2 = (r − 1)1/Σ
k
i=lpi is

λ2k+1 − λ2k−1 +
k∑

i=l

pi

(
1 − 1

r

)
λ2k−2i = 0. (4.4)

Set

f(λ) = λ2k+1 − λ2k−1 +
k∑

i=l

pi

(
1 − 1

r

)
λ2k−2i, (4.5)

then f(−1) = ((Σk
i=lpi)(r − 1))/r > 0, and limλ→−∞f(λ) = −∞ so f(λ) has at least a root in

(−∞,−1). Then the proof of (iii) follows.

Theorem 4.2. Assume r < 1. Then the zero equilibrium point of (3.1) is globally asymptotically
stable.

Proof. We know by Theorem 4.1 that the equilibrium point y1 = 0 is locally asymptotically
stable of (3.1), and so it suffices to show that y1 = 0 is a global atractor of (3.1) as follows:

0 ≤ yn+1 =
ryn−1

1 + Πk
i=ly

pi
n−2i

≤ ryn−1, (4.6)
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since r < 1, then

lim
n→∞

yn = 0. (4.7)

The next theorem shows that (3.1) has a prime-period two solutions when r = 1.

Theorem 4.3. For (3.1), we have the following results.
(a) Equation (3.1) possesses the prime-period two solutions

. . . , φ, 0, φ, 0, φ, . . . (4.8)

with φ > 0, when r = 1.
(b) Assume that r = 1, then every solution of (3.1) converges to a period (not neces-

sarily prime) two solutions (4.8)with φ ≥ 0.

Proof. (a) Let

. . . , φ, ψ, φ, ψ, . . . (4.9)

be period two solutions of (3.1). Then

φ =
rφ

1 + ψΣk
i=lpi

, ψ =
rψ

1 + φΣk
i=lpi

. (4.10)

If φ/= 0 and ψ /= 0, then φ = ψ = (r − 1)1/Σ
k
i=lpi , which is impossible. Hence, ψ = 0 which implies

that (r − 1)φ = 0, so r = 1.
(b) Assume that r = 1, and let {yn}∞n=−2k be a solution of (3.1), then

yn+1 − yn−1 =
−yn−1Πk

i=ly
pi
n−2i

1 + Πk
i=ly

pi
n−2i

≤ 0. (4.11)

So the even terms of this solution decrease to a limit (say Φ ≥ 0), and the odd terms decrease
to a limit (say Ψ ≥ 0). Thus,

Φ =
Φ

1 + ΨΣk
i=lpi

, Ψ =
Ψ

1 + ΦΣk
i=lpi

, (4.12)

which implies that

ΦΨΣk
i=lpi = 0, ΨΦΣk

i=lpi = 0. (4.13)

This completes the proof.
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The next theorem shows that when r > 1, (3.1) possesses unbounded solutions.

Theorem 4.4. Assume r > 1. Then (3.1) possesses unbounded solutions. In particular, every
solution of (3.1) which oscillates about the equilibrium y2 = (r − 1)1/Σ

k
i=lpi with semicycles of

length one is unbounded.

Proof. we will prove that every solution {yn}∞n=−2k of (3.1)which oscillates with semicycles of
length one is unbounded (see corollary 3.1).

Assume that {yn}∞n=−2k is a solution of (3.1) such that

y2n+1 < y2 = (r − 1)1/Σ
k
i=lpi , y2n > y2 = (r − 1)1/Σ

k
i=lpi , n ≥ −k. (4.14)

Then

y2n+2 =
ry2n

1 + Πk
i=ly

pi
2n+1−2i

>
ry2n

1 + y
Σk
i=lpi

2

= y2n,

y2n+3 =
ry2n+1

1 + Πk
i=ly

pi
2n+2−2i

<
ry2n+1

1 + y
Σk
i=lpi

2

= y2n+1.
(4.15)

From which it follows that

lim
n→∞

y2n = ∞, lim
n→∞

y2n+1 = 0, (4.16)

which completes the proof.
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