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By applying minimax methods in critical point theory, we prove the existence of periodic solutions
for the following discrete Hamiltonian systems Δ2u(t − 1) + ∇F(t, u(t)) = 0, where t ∈ Z, u ∈ R

N ,
F : Z × R

N → R, F(t, x) is continuously differentiable in x for every t ∈ Z and is T -periodic in t; T
is a positive integer.

1. Introduction

Consider the following discrete Hamiltonian system:

Δ2u(t − 1) +∇F(t, u(t)) = 0, t ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δu(t) = u(t + 1) − u(t), Δ2u(t) =
Δ(Δu(t)), t ∈ Z, u ∈ R

N, F : Z ×R
N → R, and F(t, x) is continuously differentiable in x for

every t ∈ Z and is T -periodic in t; T is a positive integer.
Difference equations usually describe evolution of certain phenomena over the course

of time. For example, if a certain population has discrete generations, the size of the (t + 1) th
generation x(t+1) is a function of the tth generation x(t). In fact, difference equations provide
a natural description of many discrete models in real world. Since discrete models exist in
various fields of science and technology such as statistics, computer science, electrical circuit
analysis, biology, neural network, optimal control, and so on, it is of practical importance to
investigate the solutions of difference equations. For more details about difference equations,
we refer the readers to the books [1–3].
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In some recent papers [4–15], the authors studied the existence of periodic solutions
and subharmonic solutions of difference equations by applying critical point theory. These
papers show that the critical point theory is an effective method to the study of periodic
solutions for difference equations. In 2007, Xue and Tang [11] investigated the existence of
periodic solutions for (1.1) and obtained the main result.

Theorem A (see [11]). Suppose that F satisfies the following conditions:

(F1) there exists a positive constant T such that F(t + T, x) = F(t, x) for all (t, x) ∈ Z × R
N ;

(F2) there are constants L1 > 0, L2 > 0, and 0 ≤ α < 1 such that

|∇F(t, x)| ≤ L1|x|α + L2, ∀(t, x) ∈ Z[1, T] × R
N, (1.2)

where Z[a, b] := ∩[a, b] for every a, b ∈ Z with a ≤ b;

(F3) |x|−2α ∑T
t=1 F(t, x) → +∞ as |x| → +∞ for all t ∈ Z[1, T].

Then problem (1.1) has at least one periodic solution with period T .

Let

F(t, x) = f(t)|x|7/4 +
(

sin
2πt
T

+ 1
)

|x|3/2 + (h(t), x), (1.3)

where f : Z[1, T] → R, f(t + T) = f(t), h : Z[1, T] → R
N , and h(t + T) = h(t). It is easy to see

that

|∇F(t, x)| ≤ 7
4
∣
∣f(t)

∣
∣|x|3/4 + 3

2

∣
∣
∣
∣sin

2πt
T

+ 1
∣
∣
∣
∣|x|1/2 + |h(t)|

≤ 7
4
(∣
∣f(t)

∣
∣ + ε

)|x|3/4 + a(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R
N,

(1.4)

where ε > 0 and a(ε) is a positive constant and is dependent on ε. The above inequality shows
that there are functions not satisfying condition (F2). If we let

∑T
t=1 f(t) = 0, α = 3/4, T = 2,

then we have

|x|−2α
T∑

t=1

F(t, x) = 2 +
(
h(1) + h(2), |x|−3/2x

)
. (1.5)

But the above equality does not satisfy (F3). This example shows that it is valuable to further
improve conditions (F2) and (F3).

Before stating our main results, we first introduce some preliminaries.

2. Preliminaries

Let

HT =
{
u : Z −→ R

N | u(t + T) = u(t), t ∈ Z

}
. (2.1)
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HT can be equipped with the inner product

〈u, v〉 =
T∑

t=1

(u(t), v(t)), ∀u, v ∈ HT, (2.2)

by which the norm on HT can be reduced by

‖u‖ =

(
T∑

t=1

|u(t)|2
)1/2

, ∀u ∈ HT, (2.3)

where (·, ·) and | · | denote the usual inner product and the usual norm in R
N . It is easy to see

that (HT, 〈·, ·〉) is a finite-dimensional Hilbert space and linear homeomorphic to R
NT . For

any r > 1, define

‖u‖r =
(

T∑

t=1

|u(t)|r
)1/r

, ∀u ∈ HT. (2.4)

Obviously, ‖u‖ = ‖u‖2 and ‖u‖ is equivalent to ‖u‖r . Hence, there exist two positive constants
C1, C2, which are independent on r, such that

C1‖u‖r ≤ ‖u‖ ≤ C2‖u‖r , ∀u ∈ HT. (2.5)

If we define ‖u‖∞ = supt∈Z[1,T]|u(t)|, it is easy to see that for any r > 1,

‖u‖∞ ≤ ‖u‖r , ∀u ∈ HT. (2.6)

For any u ∈ HT , let

ϕ(u) = −1
2

T∑

t=1

|Δu(t)|2 +
T∑

t=1

[F(t, u(t)) − F(t, 0)]. (2.7)

We can compute the Fréchet derivative of (2.7) as

∂ϕ(u)
∂u(t)

= Δ2u(t − 1) +∇F(t, u(t)), t ∈ Z[1, T]. (2.8)

Hence, u is a critical point of ϕ on HT if and only if

Δ2u(t − 1) +∇F(t, u(t)) = 0, t ∈ Z[1, T], u ∈ R
N. (2.9)

So, the critical points of ϕ are classical solutions of (1.1). The following lemmas are useful in
our proof.



4 Discrete Dynamics in Nature and Society

Lemma 2.1 (see [11]). As a subspace of HT ,Nk is defined by

Nk :=
{
u ∈ HT | −Δ2u(t − 1) = λku(t)

}
, (2.10)

where λk = 2 − 2 cos kω, ω = 2π/T, k ∈ Z[0, [T/2]], [·] and denote the Gauss Function. Then
there hold

(i) Nk ⊥ Nj, k /= j, j ∈ Z[0, [T/2]];

(ii) HT = ⊕[T/2]
k=0 Nk.

Lemma 2.2 (see [11]). Define Hk := ⊕k
j=0Nj , H⊥

k := ⊕[T/2]
j=k+1Nj , k ∈ Z[0, [T/2] − 1]; then one has

T∑

t=1
|Δu(t)|2 ≤ λk‖u‖2, ∀u ∈ Hk; (2.11)

T∑

t=1
|Δu(t)|2 ≥ λk+1‖u‖2, ∀u ∈ H⊥

k . (2.12)

3. Main Results and Proofs

Theorem 3.1. Suppose that F satisfies (F1) and the following conditions

(F2)′ there are p, q : Z[1, T] → R
+, α ∈ [0, 1) such that

|∇F(t, x)| ≤ p(t)|x|α + q(t), ∀(t, x) ∈ Z[1, T] × R
N, (3.1)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b;

(F3)′ lim inf|x|→∞|x|−2α
∑T

t=1 F(t, x) > ((λ[T/2] + 2λ1)/2λ21)
∑T

t=1 p
2(t) for all t ∈ Z[1, T].

Then problem (1.1) has at least one periodic solution with period T .

Theorem 3.2. Suppose that F satisfies (F1) and (F2) with α = 1. Moreover, assume the following
conditions hold:

T∑

t=1

p(t) < λ1, (3.2)

and

(F4) lim inf|x|→∞|x|−2
∑T

t=1 F(t, x) > ((λ[T/2]+λ
1/2
1 +

∑T
t=1 p(t)+λ

1/2
1 (λ1−

∑T
t=1 p(t)))/2λ1(λ1−∑T

t=1 p(t)))
∑T

t=1 p
2(t) for all t ∈ Z[1, T].

Then problem (1.1) has at least one periodic solution with period T .

Remark 3.3. It is easy to see that (F2)′ is more general than (F2) and (F3)′ is weaker than (F3).
Theorem 3.2 is a new result, which completes Theorem A when α = 1.
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For the sake of convenience, we denote

M1 =

(
T∑

t=1

p2(t)

)1/2

, M2 =
T∑

t=1

p(t), M3 =
T∑

t=1

q(t). (3.3)

Proof of Theorem 3.1. First we prove that ϕ satisfies the (PS) condition. Suppose that a
consequence {un} ⊂ HT is such that −C3 ≤ ϕ(un) ≤ C3, where C3 > 0 and ϕ′(un) → 0 as
n → ∞. Then for sufficiently large n,

−‖u‖ ≤ 〈
ϕ′(un), u

〉 ≤ ‖u‖. (3.4)

From Lemma 2.1, we can write u as u = u + ũ ∈ H0
⊕

H⊥
0 , where H0 = N0, and H⊥

0 =
⊕[T/2]

k=1 Nk. From (F3)′, we can choose a1 > 1/λ21 > 0 such that

lim inf
|x|→∞

|x|−2α
T∑

t=1

F(t, x) >
(
λ[T/2]a1

2
+
√
a1

)

M2
1. (3.5)

From (F2)′, (2.6), Hölder inequality, and Young inequality, we have

∣
∣
∣
∣
∣

T∑

t=1

(F(t, u(t)) − F(t, u))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

T∑

t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣
∣
∣
∣
∣

≤
T∑

t=1

∫1

0
|(∇F(t, u + sũ(t)), ũ(t))|ds

≤
T∑

t=1

∫1

0

(
p(t)|u + sũ(t)|α + q(t)

)|ũ(t)|ds

≤
T∑

t=1

p(t)
(|u|α + |ũ(t)|α)|ũ(t)| +

T∑

t=1

q(t)|ũ(t)|

≤ |u|α
(

T∑

t=1

p2(t)

)1/2( T∑

t=1

|ũ(t)|2
)1/2

+M2‖ũ‖α+1∞ +M3‖ũ‖∞

= M1|u|α‖ũ‖ +M2‖ũ‖α+1∞ +M3‖ũ‖∞

≤ 1
2
√
a1

‖ũ‖2 +
√
a1

2
M2

1|u|2α +M2‖ũ‖α+1 +M3‖ũ‖.

(3.6)

In a similar way, we have

T∑

t=1

(∇F(t, un(t)), ũn(t)) ≤ 1
2a1λ1

‖ũn‖2 + a1λ1
2

M2
1|un|2α +M2‖ũn‖α+1 +M3‖ũn‖. (3.7)
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Let un = un + ũn ∈ H0
⊕

H⊥
0 . From (2.12) and (3.7), we have

T∑

t=1

(Δun(t),Δũn(t)) =
T∑

t=1

(Δũn(t),Δũn(t)) ≥ λ1‖ũn‖2, (3.8)

T∑

t=1

(Δun(t),Δũn(t)) = −〈ϕ′(un), ũn

〉
+

T∑

t=1

(∇F(t, un(t)), ũn(t))

≤ ‖ũn‖ + 1
2a1λ1

‖ũn‖2 + a1λ1
2

M2
1|un|2α +M2‖ũn‖α+1 +M3‖ũn‖.

(3.9)

It follows from (3.8) and (3.9) that

λ1
2
‖ũn‖2 + C4 ≤ a1λ1

2
M2

1|un|2α, (3.10)

where C4 = mins∈[0,+∞){((a1λ
2
1−1)/2a1λ1)s2−M2s

α+1− (1+M3)s}. The fact that a1 > 1/λ21 > 0
implies that −∞ < C4 < 0. So it follows from (3.10) that

‖ũn‖2 ≤ a1M
2
1|un|2α − 2C4λ1, (3.11)

and so

‖ũn‖ ≤ √
a1M1|un|α + C5, (3.12)

where C5 > 0. It follows from the boundedness of ϕ(un), (2.11), (3.6), (3.11), and (3.12) that

C3 ≥ ϕ(u) = −1
2

T∑

t=1

|Δun(t)|2 +
T∑

t=1

[F(t, un(t)) − F(t, 0)]

= −1
2

T∑

t=1

|Δũn(t)|2 +
T∑

t=1

[F(t, un(t)) − F(t, un)] +
T∑

t=1

[F(t, un) − F(t, 0)]

≥ −1
2
λ[T/2]‖ũn‖ − 1

2
√
a1

‖ũn‖2 −
√
a1

2
M2

1|un|2α −M2‖ũn‖α+1 −M3‖ũn‖

+
T∑

t=1

[F(t, un) − F(t, 0)]
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≥ −
(
1
2
λ[T/2] +

1
2
√
a1

)(
a1M

2
1|un|2α − 2C4λ1

)
+

T∑

t=1

[F(t, un) − F(t, 0)]

−
√
a1

2
M2

1|un|2α −M2
(√

a1M1|un|α + C5
)α+1 −M3

(√
a1M1|un|α + C5

)

≥
(

−1
2
λ[T/2]a1M

2
1 −

√
a1M

2
1

)

|un|2α + λ[T/2]C4λ1 +
C4λ1√
a1

−M2

(
2α
(√

a1M1
)α+1|un|α(α+1) + 2αCα+1

5

)
−M1M3

√
a1|un|α −M3C5

+
T∑

t=1

[F(t, un) − F(t, 0)]

= |un|2α
[

|un|−2α
T∑

t=1

F(t, un) −
(
1
2
λ[T/2]a1 +

√
a1

)

M2
1 −M1M3

√
a1|un|−α

−M22α
(√

a1M1
)α+1|un|α(α−1)

]

+ λ[T/2]C4λ1 +
C4λ1√
a1

−M3C5

−M22αCα+1
5 −

T∑

t=1

F(t, 0).

(3.13)

Inequalities (3.5) and (3.13) imply that {un} is bounded. Hence, {ũn} is bounded by (3.12),
and then {un} is bounded. Since HT is finite dimensional, there exists a subsequence of {un}
convergent in HT . Thus, we conclude that (PS) condition is satisfied.

In order to use the saddle point theorem [16, Theorem 4.6], we only need to verify the
following conditions:

(I1) ϕ(x) → +∞ as |x| → ∞ in H0;

(I2) ϕ(u) → −∞ as ‖u‖ → ∞ in H⊥
0 .

In fact, from (F3)′, we have

T∑

t=1

F(t, x) −→ +∞ as |x| −→ ∞ in H0. (3.14)

For any x ∈ H0, since
∑T

t=1 |Δx|2 = 0, we have

ϕ(x) =
T∑

t=1

[F(t, x) − F(t, 0)]. (3.15)

It follows from (3.14) and the above inequality that

ϕ(x) −→ +∞ as |x| −→ ∞ in H0. (3.16)

Thus (I1) is easy to verify.
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Next, for all u ∈ H⊥
0 , from (F2)′ and (2.6), we have

∣
∣
∣
∣
∣

T∑

t=1

(F(t, u(t)) − F(t, 0))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

T∑

t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣
∣
∣
∣
∣

≤
T∑

t=1

p(t)|u(t)|α+1 +
T∑

t=1

q(t)|u(t)|

≤ M2‖u‖α+1∞ +M2‖u‖∞
≤ M2‖u‖α+1 +M2‖u‖.

(3.17)

By (2.7), (2.12), and (3.17), we obtain

ϕ(u) = −1
2

T∑

t=1

|Δu(t)|2 +
T∑

t=1

[F(t, u(t)) − F(t, 0)]

≤ −1
2
λ1‖u‖2 +M2‖u‖α+1 +M2‖u‖.

(3.18)

Since λ1 > 0 and α ∈ [0, 1), we have ϕ(u) → −∞ as ‖u‖ → ∞ inH⊥
0 . The proof of Theorem 3.1

is complete.

Proof of Theorem 3.2. By (3.2) and (F4), we can choose an a2 ∈ R such that

a2 >
1
λ1

> 0, (3.19)

lim inf
|x|→∞

|x|−2
T∑

t=1

F(t, x) >
[(

1
2
λ[T/2] +

1
2
√
a2

+
1
2
M2

)
a2

λ1 −M2
+
√
a2

2

]

M2
1. (3.20)

It follows from (F2)′ with α = 1, (2.6), Hölder inequality, and Young inequality that

∣
∣
∣
∣
∣

T∑

t=1

(F(t, u(t)) − F(t, u))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

T∑

t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣
∣
∣
∣
∣

≤
T∑

t=1

∫1

0
|(∇F(t, u + sũ(t)), ũ(t))|ds

≤
T∑

t=1

∫1

0
p(t)(|u| + s|ũ(t)|)|ũ(t)|ds +

T∑

t=1

∫1

0
q(t)|ũ(t)|ds

=
T∑

t=1

p(t)
(

|u| + 1
2
|ũ(t)|

)

|ũ(t)| +
T∑

t=1

q(t)|ũ(t)|
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≤ |u|
(

T∑

t=1

p2(t)

)1/2( T∑

t=1

|ũ(t)|2
)1/2

+
1
2
‖ũ‖2∞

T∑

t=1

p(t) + ‖ũ‖∞
T∑

t=1

q(t)

= M1|u|‖ũ‖ + M2

2
‖ũ‖2∞ +M3‖ũ‖∞

≤
(

1
2
√
a2

+
M2

2

)

‖ũ‖2 +
√
a2

2
M2

1|u|2 +M3‖ũ‖.

(3.21)

In a similar way, we have

T∑

t=1

(∇F(t, un(t)), ũn(t)) ≤
(

1
2a2

+
M2

2

)

‖ũn‖2 + a2

2
M2

1|un|2 +M3‖ũn‖. (3.22)

From (3.8) and (3.22), we have

λ1‖ũn‖2 ≤
T∑

t=1

(Δun(t),Δũn(t))

= −〈ϕ′(un), ũn

〉
+

T∑

t=1

(∇F(t, un(t)), ũn(t))

≤ ‖ũn‖ +
(

1
2a2

+
M2

2

)

‖ũn‖2 + a2

2
M2

1|un|2 +M3‖ũn‖.

(3.23)

It follow from (3.23) that

1
2
(λ1 −M2)‖ũn‖2 + C6 ≤ a2

2
M2

1|un|2, (3.24)

where C6 = mins∈[0,+∞){((λ1a2 − 1)/2a2)s2 − (1 +M3)s}. The fact that a2 > 1/λ1 > 0 implies
that −∞ < C6 < 0. So it follows from (3.24) that

‖ũn‖2 ≤ a2

λ1 −M2
M2

1|un|2 − 2C6

λ1 −M2
, (3.25)

and so

‖ũn‖ ≤
√

a2

λ1 −M2
M1|un| + C7, (3.26)
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where C7 > 0. It follows from the boundedness of ϕ(un), (2.11), (3.21), (3.25), and (3.26) that

C3 ≥ ϕ(u) = −1
2

T∑

t=1

|Δun(t)|2 +
T∑

t=1

[F(t, un(t)) − F(t, 0)]

= −1
2

T∑

t=1

|Δũn(t)|2 +
T∑

t=1

[F(t, un(t)) − F(t, un)] +
T∑

t=1

[F(t, un) − F(t, 0)]

≥ −1
2
λ[T/2]‖ũn‖2 −

(
1

2
√
a2

+
M2

2

)

‖ũn‖2 −
√
a2

2
M2

1|un|2 −M3‖ũn‖

+
T∑

t=1

[F(t, un) − F(t, 0)]

≥ −
(
1
2
λ[T/2] +

1
2
√
a2

+
M2

2

)(
a2

λ1 −M2
M2

1|un|2 − 2C6

λ1 −M2

)

−
√
a2

2
M2

1|un|2 −M3

(√
a2

λ1 −M2
M1|un| + C7

)

+
T∑

t=1

[F(t, un) − F(t, 0)]

= |un|2
[

|un|−2α
T∑

t=1

F(t, un) −
(
1
2
λ[T/2] +

1
2
√
a2

+
1
2
M2

)
a2

λ1 −M2
M2

1

−
√
a2

2
M2

1 −
√

a2

λ1 −M2
M1M3|un|−1

]

+
(

λ[T/2] +
1√
a2

+M2

)
C6

λ1 −M2

−M3C7 −
T∑

t=1

F(t, 0).

(3.27)

Inequalities (3.20) and (3.27) imply that {un} is bounded. Hence, {ũn} is bounded by (3.26),
and then {un} is bounded. Since HT is finite dimensional, there exists a subsequence of {un}
convergent in HT . Thus, we conclude that (PS) condition is satisfied.

In the following, we prove that ϕ satisfies (I1) and (I2). In fact, from (F4), we have

T∑

t=1

F(t, x) −→ +∞ as |x| −→ ∞ in H0. (3.28)

It follows from (3.27) and
∑T

t=1 |Δx|2 = 0 that

ϕ(x) =
T∑

t=1

[F(t, x) − F(t, 0)] −→ +∞ as |x| −→ ∞ in H0. (3.29)

Thus (I1) is easy to verify.
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Next, for all u ∈ H⊥
0 , from (F2)′ with α = 1 and (2.6), we have

∣
∣
∣
∣
∣

T∑

t=1

(F(t, u(t)) − F(t, 0))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

T∑

t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣
∣
∣
∣
∣

≤ 1
2

T∑

t=1

p(t)|u(t)|2 +
T∑

t=1

q(t)|u(t)|

≤ 1
2
M2‖u‖2∞ +M3‖u‖∞

≤ 1
2
M2‖u‖2 +M3‖u‖.

(3.30)

By (2.7), (2.12), and (3.30), we obtain

ϕ(u) = −1
2

T∑

t=1

|Δu(t)|2 +
T∑

t=1

[F(t, u(t)) − F(t, 0)]

≤ −1
2
λ1‖u‖2 + M2

2
‖u‖2 +M2‖u‖.

(3.31)

Since λ1 > M2, we have ϕ(u) → −∞ as ‖u‖ → ∞ in H⊥
0 . The proof of Theorem 3.2 is

complete.

4. Examples

In this section, we give two examples to illustrate our results.

Example 4.1. Let

F(t, x) = sin
2πt
T

|x|7/4 +
(

sin
2πt
T

+ 1
)

|x|3/2 + (h(t), x), (4.1)

where h : Z[1, T] → R
N and h(t + T) = h(t). It is easy to see that

|∇F(t, x)| ≤ 7
4

∣
∣
∣
∣sin

2πt
T

∣
∣
∣
∣|x|3/4 +

3
2

∣
∣
∣
∣sin

2πt
T

+ 1
∣
∣
∣
∣|x|1/2 + |h(t)|

≤ 7
4

(∣
∣
∣
∣sin

2πt
T

∣
∣
∣
∣ + ε

)

|x|3/4 + a(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R
N,

(4.2)

where ε > 0 and a(ε) is a positive constant and is dependent on ε. It is easy to see that F(t, x)
satisfies (F1). From (4.2), we can let p, q, and α be

p(t) =
7
4

(∣
∣
∣
∣sin

2πt
T

∣
∣
∣
∣ + ε

)

, q(t) = a(ε) + |h(t)|, α =
3
4
, (4.3)
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which shows that (F2)′ is satisfied. Moreover, if we let T = 2, then we have

lim inf
|x|→+∞

|x|−2α
T∑

t=1

F(t, x) = 2,

λ1 = λ[T/2] = 4,
λ[T/2] + 2λ1

2λ21

T∑

t=1

p2(t) =
147
128

T∑

t=1

(∣
∣
∣
∣sin

2πt
T

∣
∣
∣
∣ + ε

)2

=
147
128

ε2.

(4.4)

If we let ε2 < 256/147, then we obtain

lim inf
|x|→+∞

|x|−2α
T∑

t=1

F(t, x) = 2 >
147
128

ε2 =
λ[T/2] + 2λ1

2λ21

T∑

t=1

p2(t), (4.5)

which shows that (F3)’ holds. Then from Theorem 3.1, problem (1.1) has at least one periodic
solution with period T .

Example 4.2. Let

F(t, x) =
1
4

(

sin
2πt
T

+
1
2

)

|x|2 + sin
(
2πt
T

)

|x|3/2 + (h(t), x), (4.6)

where h : Z[1, T] → R
N and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 1
2

∣
∣
∣
∣sin

2πt
T

+
1
2

∣
∣
∣
∣|x| +

3
2

∣
∣
∣
∣sin

2πt
T

∣
∣
∣
∣|x|1/2 + |h(t)|

≤ 1
2

(∣
∣
∣
∣sin

2πt
T

+
1
2

∣
∣
∣
∣ + ε

)

|x| + b(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R
N,

(4.7)

where ε > 0 and b(ε) is a positive constant and is dependent on ε. The above shows that (F2)′

holds with α = 1 and

p(t) =
1
2

(∣
∣
∣
∣sin

2πt
T

+
1
2

∣
∣
∣
∣ + ε

)

, q(t) = b(ε) + |h(t)|. (4.8)

Let T = 2, then λ0 = 0, λ1 = λ[T/2] = 4. Observe that

|x|−2
T∑

t=1

F(t, x) = |x|−2
T∑

t=1

(
1
4

(

sin
2πt
T

+
1
2

)

|x|2 + sin
(
2πt
T

)

|x|3/2 + (h(t), x)
)

=
1
4
+

(
T∑

t=1

h(t), |x|−2x
)

.

(4.9)
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On the other hand, we have

T∑

t=1

p(t) =
T∑

t=1

1
2

(∣
∣
∣
∣sin

2πt
T

+
1
2

∣
∣
∣
∣ + ε

)

=
1
2
+ ε,

T∑

t=1

p2(t) =
T∑

t=1

1
4

(∣
∣
∣
∣sin

2πt
T

+
1
2

∣
∣
∣
∣ + ε

)2

=
1
2

(
1
2
+ ε

)2

.

(4.10)

We can choose ε sufficiently small such that
∑T

t=1 p(t) < 4 and

lim inf
|x|→+∞

|x|−2
T∑

t=1

F(t, x) =
1
4
>

27 − 2ε
16(7 − ε)

(
1
2
+ ε

)2

=
λ[T/2] + λ1/21 +

∑T
t=1 p(t) + λ1/21

(
λ1 −

∑T
t=1 p(t)

)

2λ1
(
λ1 −

∑T
t=1 p(t)

)
T∑

t=1

p2(t),

(4.11)

which shows that (F4) holds. Then from Theorem 3.2, problem (1.1) has at least one periodic
solution with period T .
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