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An adaptive hybrid function projective synchronization (AHFPS) scheme between different
fractional-order chaotic systems with uncertain system parameter is addressed in this paper. In
this proposed scheme, the drive and response system could be synchronized up to a vector
function factor. This proposed scheme is different with the function projective synchronization
(FPS) scheme, in which the drive and response system could be synchronized up to a scaling
function factor. The adaptive controller and the parameter update law are gained. Two examples
are presented to demonstrate the effectiveness of the proposed scheme.

1. Introduction

In nonlinear science, chaos synchronization is a hot topic, which has attractedmuch attention
from scientists and engineers in the last few years [1–13]. Projective synchronization (PS)
first reported by Mainieri and Rehacek [14] has been extensively investigated in recent years
because it can obtain faster communication. Projective synchronization (PS) is characterized
that the drive and response system could be synchronized up to a scaling factor. This
proportional feature can be used to extend binary digital to M-nary digital communication
[14] for getting faster communication. Recently, a new type of projective synchronization
method [15–17], called function projective synchronization (FPS), is put forward. The drive
and response system could be synchronized up to a scaling function factor in function
projective synchronization (FPS). FPS could be used to get more security in application
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to secure communications, because the unpredictability of the scaling function in FPS can
additionally enhance the security of communication.

At present, the FPS mentioned so far involved mainly the integer-order chaotic sys-
tems, and the parameters are exactly known in advance. But in many practical situations,
many fractional-order systems yet exhibit chaotic behavior. The parameters of these
fractional-order systems in social science and biological science cannot be known entirely.
To the best of our knowledge, there are few results about the FPS for fractional-order
chaotic systems with uncertain system parameter and there are few results about the
FPS for a vector function factor. Motivated by the above discussion, an adaptive hybrid
function projective synchronization (AHFPS) scheme between different fractional-order
chaotic systems with uncertain system parameters is investigated in this paper. The drive
and response system could be synchronized up to a vector function factor in this proposed
scheme. This technique is applied to achieve the AHFPS between different fractional-order
Lorenz systems with one uncertain system parameter, and the AHFPS between the fractional-
order Lorenz system with one uncertain system parameter and the fractional-order Chen
system. The numerical simulations demonstrate the validity and feasibility of the proposed
method.

The organization of this paper is as follows. In Section 2, the definition of the AHFPS
is given and the AHFPS scheme between different fractional-order chaotic systems with
uncertain system parameter is presented. In Section 3, two examples are used to verify the
effectiveness of the proposed scheme. The conclusion is finally drawn in Section 4.

2. The Fractional Derivatives and AHFPS Scheme

The Caputo definition of the fractional derivative, which is sometimes called smooth frac-
tional derivative, is described as

Dqf(t) =
1

Γ
(
m − q)

∫ t

0

f (m)(τ)

(t − τ)q+1−m
dτ, m − 1 < q < m, (2.1)

where Dq denotes the Caputo definition of the fractional derivative, m is the smallest
integer larger than q, f (m)(t) is the m-order derivative in the usual sense, Γ(·) is the gamma
function.

The fractional-order chaotic drive and response systems can be described as follows,
respectively:

Dqdx = D(x), (2.2)

Dqrz = R
(
z, β
)
, (2.3)

where qd and qr are fractional orders satisfying 0 < qd < 1, 0 < qr < 1, and qr may be
different with qd. x ∈ Rn and z ∈ Rn are the state vectors of the drive system (2.2) and
response system (2.3), respectively. β is the system parameter. D,R : Rn → Rn may be
different continuous nonlinear vector functions.
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If parameter β in system (2.3) is unknown, a parameter update law is designed, and a
controller ψ is added to the original system (2.3), we obtain the controlled response system
(2.4) with parameter update laws (2.5)

Dqrz = R
(
z, β̃
)
+ ψ, (2.4)

Dqr β̃ = p
(
x, z, β̃

)
, (2.5)

where β̃ is unknown parameter. Controller ψ is an n × 1 real matrix to be designed, and
p(x, z, β̃) is a real scalar function to be designed.

Definition 2.1. For the drive system (2.2) and controlled response system (2.4)with parameter
update laws (2.5), it is said to be adaptive hybrid function projective synchronization
(AHFPS) if there exist a controller ψ and a real scalar function p(x, z, β̃) such that

lim
t→+∞

‖e‖ = lim
t→+∞

‖z −K(x)x‖ = 0, lim
t→+∞

∥∥eβ
∥∥ = lim

t→+∞

∥
∥∥β̃ − β0

∥
∥∥ = 0, (2.6)

where ‖ · ‖ is the Euclidean norm and β0 is the “true” value of the “unknown” parameter
β̃. K(x) is an n × n real matrix, and matrix elements kij(x) (i, j = 1, 2, . . . , n) are continuous
bounded functions. ei = zi −

∑n
j=1 kijxj and eβ = β̃ − β0 are called the AHFPS error.

Remark 2.2. If K(x) = kI and k ∈ R is a constant, then the AHFPS problem will be reduced
to adaptive projective synchronization (APS), where I is an n × n identity matrix. If
K(x) = diag(k1, k2, . . . , kn) and ki ∈ R are constant, then the adaptive modified projective
synchronization (AMPS) will appear. And if K(x) = K, and K is a constant matrix, then
the adaptive hybrid projective synchronization (AHPS) will appear. If K(x) = diag(k1(x),
k2(x), . . . , kn(x)) and ki(x) (i = 1, 2, . . . n) are continuous bounded functions, then the
adaptive function projective synchronization (AFPS) will appear, that is, the AFPS is also
the special case of the proposed scheme.

Remark 2.3. Based on the idea of tracking control, in order to achieve the goal of limt→+∞‖e‖ =
limt→+∞‖z − K(x)x‖ = 0, we can let K(x)x be a reference signal. Then, AHFPS between
fractional-order chaotic system (2.2) and fractional-order chaotic system (2.4) belongs to the
problem of tracking control, that is, the output signal z in system (2.4) follows the reference
signal K(x)x ultimately.

In the next, we will discuss how to choose a controller ψ and a parameter update laws.
First, the “true” value of the “unknown” parameter β̃ is chosen as β0, and we define a

compensation controller ψ1(x) ∈ Rn for response system (2.4),

ψ1(x) = Dqr (K(x)x) − R(K(x)x, β0
)
, (2.7)

and choose controller ψ as

ψ = ψ1(x) + ψ2, (2.8)

where ψ2 is an n × 1 vector function which will be designed later.
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According to the controller (2.8) and the compensation controller (2.7), the response
system (2.4) can be depicted as

Dqrz = R
(
z, β̃
)
+Dqr (K(x)x) − R(K(x)x, β0

)
+ ψ2. (2.9)

Using e = y −K(x)x, one has

Dqr e = R
(
z, β̃
)
− R(K(x)x, β0

)
+ ψ2. (2.10)

In generally, we can get

R
(
z, β̃
)
− R(K(x)x, β0

)
= ξ1
(
x, z, β0

)
(
e

eβ

)

. (2.11)

where ξ1(x, z, β0) is an n × (n + 1) real matrix and
( e
eβ

)
= (e1, e2, . . . , en, eβ)T is an (n + 1) × 1

real matrix.
Second, we define vector function ψ2 as

ψ2 = ξ2
(
x, z, β0

)
(
e

eβ

)

, (2.12)

where ξ2(x, z, β0) is an n × (n + 1) real matrix to be designed.
From (2.10), (2.11), and (2.12), we have

Dqr e =
[
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)]
(
e

eβ

)

. (2.13)

Finally, let the parameter update law be

Dqr β̃ = p
(
x, z, β̃

)
= τ

(
e

eβ

)

, (2.14)

where τ is an 1 × (n + 1) real matrix to be designed later. Because the Caputo derivative of a
constant is zero, (2.14) can be rewritten as

Dqr
(
β̃ − β0

)
= Dqr eβ = τ

(
e

eβ

)

. (2.15)

According to (2.13) and (2.15), we have

(
Dqr e

Dqr eβ

)

=

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)(
e

eβ

)

, (2.16)

where
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)
is an (n + 1) × (n + 1) real matrix.
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By (2.16), we know that the AHFPS between fractional-order system (2.2) with
controlled response fractional-order system (2.4) and the uncertain parameter β̃ could be
identified, and transformed into the following problem: choose suitable n× (n+1) real matrix
ξ2(x, z, β0) and 1 × (n + 1) real matrix τ such that system (2.16) is asymptotically convergent
to zero.

Remark 2.4. According to the above, K(x)x may be an arbitrary given reference signal,
therefore the AHFPS between fractional-order chaotic systems and integer-order chaotic
systems belongs to this class of problems if we choose the reference signal K(x)x as being
the output of one of the integer-order chaotic systems.

Theorem 2.5. If real matrix ξ2(x, z, β0) and τ in system (2.16) are selected such that

P

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

+

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)H

P = −Q, (2.17)

where P is a real symmetric positive definite matrix,Q is a real symmetric positive semidefinite matrix,
andH stands for conjugate transpose of a matrix, then

lim
t→+∞

‖e‖ = lim
t→+∞

‖z −K(x)x‖ = 0, lim
t→+∞

∥
∥eβ
∥
∥ = lim

t→+∞

∥∥∥β̃ − β0
∥∥∥ = 0. (2.18)

Proof. Assume that λ is one of the eigenvalues of matrix
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)
and the correspond-

ing nonzero eigenvector is Ψ, that is,

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

Ψ = λΨ. (2.19)

Multiplying the above equation left by ΨHP , we get

ΨHP

((
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

Ψ

)

= ΨHP(λΨ). (2.20)

By a similar argument, we also can obtain

⎛

⎝ΨH

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)H
⎞

⎠PΨ =
(
λΨH
)
PΨ. (2.21)

According to (2.20) and (2.21), we can obtain

λ + λ =

{
ΨH

[
P
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)
+
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)H
P

]
Ψ
}

ΨHPΨ
. (2.22)
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Since P
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)
+
(
ξ1(x,z,β0)+ξ2(x,z,β0)

τ

)H
P = −Q and P , Q are real symmetric positive

definite matrix and real symmetric positive semidefinite matrix, respectively, then

ΨHQΨ ≥ 0, ΨHPΨ > 0,

λ + λ = −Ψ
HQΨ

ΨHPΨ
≤ 0.

(2.23)

So, we can obtain

∣∣arg λ
∣∣ ≥ π

2
>
qrπ

2
. (2.24)

According to the stability theory of fractional-order systems [18], the equilibrium point
in (2.16) is asymptotically stable.

Therefore,

lim
t→+∞

‖e‖ = lim
t→+∞

‖z −K(x)x‖ = 0, lim
t→+∞

∥∥eβ
∥∥ = lim

t→+∞

∥∥
∥β̃ − β0

∥∥
∥ = 0. (2.25)

The proof is completed.

This theorem indicates that system (2.16) can asymptotically converge to zero. It
implies that the AHFPS between drive system (2.2) and controlled response system (2.4)
with uncertain parameter β̃ will be obtained.

3. Applications

In this section, to illustrate the effectiveness of the proposed synchronization scheme,
the AHFPS between different fractional-order Lorenz systems with one uncertain system
parameter and the AHFPS between the fractional-order Lorenz system with one uncertain
system parameter and the fractional-order Chen system are considered and the numerical
simulations are performed.

First, we introduce the numerical solution of fractional differential equations in [19].
All the numerical simulation of fractional-order system in this paper is based on [19].
Consider the following fractional-order system:

dq1x

dtq1
= f
(
x, y
)
,

dq2y

dtq2
= g
(
x, y
)
,

0 < q1, q2 < 1, (3.1)
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with initial condition (x0, y0). Now, set h = T/N, tn = nh (n = 0, 1, 2 . . . ,N). The previous
system can be discretized as follows:

xn+1 = x0 +
hq1

Γ
(
q1 + 2

)

⎡

⎣f
(
x
p

n+1, y
p

n+1

)
+

n∑

j=0

α1,j,n+1f
(
xj , yj

)
⎤

⎦,

yn+1 = y0 +
hq2

Γ
(
q2 + 2

)

⎡

⎣g
(
x
p

n+1, y
p

n+1

)
+

n∑

j=0

α2,j,n+1g
(
xj, yj

)
⎤

⎦,

(3.2)

where

x
p

n+1 = x0 +
1

Γ
(
q1
)

n∑

j=0

b1,j,n+1f
(
xj , yj

)
,

y
p

n+1 = y0 +
1

Γ
(
q2
)

n∑

j=0

b2,j,n+1g
(
xj , yj

)
,

(3.3)

and, for i = 1, 2,

αi,j,n+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nqi+1 − (n − qi
)
(n + 1)qi , j = 0,

(
n − j + 2

)qi+1 +
(
n − j)qi+1 − 2

(
n − j + 1

)qi+1, 1 ≤ j ≤ n,
1, j = n + 1,

bi,j,n+1 =
hqi

qi

[(
n − j + 1

)qi − (n − j)qi], 0 ≤ j ≤ n.

(3.4)

The error of this approximation is described as follows:

|x(tn) − xn| = o(hp1), p1 = min
(
2, 1 + q1

)
,
∣∣y(tn) − yn

∣∣ = o(hp2), p2 = min
(
2, 1 + q2

)
.

(3.5)

3.1. The AHFPS between the Fractional-Order Lorenz Chaotic System with
Different Fractional Order

The famous Lorenz system [20], the first chaotic attractor model in a 3D autonomous system,
is described as follows:

Dqr z1 = σ(z2 − z1),
Dqr z2 = βz1 − z1z3 − z2,
Dqr z2 = z1z2 − γz3.

(3.6)
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Figure 1: Chaotic attractors of the fractional-order Lorenz system (3.6) for qr = 0.998.

where system parameters (σ, β, γ) = (10, 28, 8/3). I. Grigorenko and E. Grigorenko [20] point-
ed out that fractional-order Lorenz system (3.6) exhibits chaotic behavior for fractional order
qr ≥ 0.993. The chaotic attractor for qr = 0.998 is shown in Figure 1.

If fractional-order q in fractional-order Lorenz system is 0.995, we can rewrite the
fractional-order Lorenz system as

Dqdx1 = σ(x2 − x1),
Dqdx2 = βx1 − x1x3 − x2,
Dqdx2 = x1x2 − γx3,

(3.7)

where qd = 0.995. Now, let the fractional-order Lorenz system (3.7) be drive system and
parameter β unknown in fractional-order Lorenz system (3.6). The fractional-order system
(3.6) with uncertain parameters β̃ is described by

Dqrz1 = 10(z2 − z1),

Dqr z2 = β̃z1 − z1z3 − z2,

Dqr z3 = z1z2 − 8z3
3
.

(3.8)

According to the above, we can get the controlled response system (3.9)with uncertain
parameter β̃, and parameter update laws (3.10):

⎛

⎜⎜
⎝

Dqr z1

Dqr z2

Dqr z3

⎞

⎟⎟
⎠ =

⎛

⎜
⎜⎜⎜
⎝

10(z2 − z1)
β̃z1 − z1z3 − z2
z1z2 − 8z3

3

⎞

⎟
⎟⎟⎟
⎠

+ ψ, (3.9)

Dqr β̃ = p
(
x, z, β̃

)
= τ

(
e

eβ

)

. (3.10)
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According to the above, we can obtain

ξ1
(
x, z, β0

)
=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

−10 10 0 0

β0 − z3 −1 −
3∑

j=1

k1j(x)xj z1

z2
3∑

j=1

k1j(x)xj −8/3 0

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

. (3.11)

Now, the parameter update laws and real matrix ξ2(x, z, β0) are chosen as

Dqr β̃ = p
(
x, z, β̃

)
= τ

(
e

eβ

)

= −z1e2, ξ2
(
x, z, β0

)
=

⎛

⎜⎜
⎝

0 z3 − β0 − 10 −z2 0

0 0 0 0

0 0 0 0

⎞

⎟⎟
⎠.

(3.12)

Therefore,

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

=

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

−10 z3 − β0 −z2 0

β0 − z3 −1 −
3∑

j=1

k1j(x)xj z1

z2
3∑

j=1

k1j(x)xj −8
3

0

0 −z1 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

. (3.13)

Choosing real symmetric positive definite matrix P = diag(1, 1, 1, 1), we can get

P

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

+

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)H

P = diag
(
−20,−2,−16

3
, 0
)
.

(3.14)

Choosing real symmetric positive semidefinite matrixQ = diag(20, 2, 16/3 , 0), we can
obtain

P

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

+

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)H

P = −Q. (3.15)
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So, the AHFPS between fractional-order Lorenz system (3.7) and controlled response
system (3.9) with uncertain parameters β̃ can be achieved. For example, choose

K(x) =

⎛

⎜⎜
⎝

x1 + x3 0.5 1

2 1 + 0.1x1x2 −1
−0.5 −2 1 + x2

⎞

⎟⎟
⎠. (3.16)

The corresponding numerical result is shown in Figure 2, in which the initial conditions are
x(0) = (0, 1, 2)T , z(0) = (5.5, 0, 4)T , β̃(0) = 31, and ep = eβ and the “true” value of the
“unknown” parameter is chosen as β0 = 28, respectively.

3.2. The AHFPS between the Fractional-Order Lorenz Chaotic System and
the Fractional Order Chen Chaotic System

Chen and Ueta introduced another chaotic system, called Chen chaotic system, which is
similar but not topologically equivalent to the Lorenz system. Chen chaotic system [21] is
given by

dx1
dt

= a(x2 − x1),

dx2
dt

= (c − a)x1 − x1x3 + cx2,

dx3
dt

= x1x2 − bx3,

(3.17)

where (a, b, c) = (35, 3, 28). Its corresponding fractional-order system is described as follows,

Dqdx1 = a(x2 − x1),

Dqdx2 = (c − a)x1 − x1x3 + cx2,

Dqdx3 = x1x2 − bx3,

(3.18)

Tavazoei and Haeri [22] pointed out that fractional-order Chen system exhibits chaotic
behavior for fractional order qd ≥ 0.83. When qd = 0.95, the chaotic attractor is shown in
Figure 3.

Now, let the fractional-order Chen system (3.18) be drive system and fractional-order
Lorenz system (3.6)with unknown parameter β as response system. According to the above,
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Figure 2: Time evolution of the AHFPS error.
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Figure 3: Chaotic attractors of the fractional-order Chen system (3.18) for qd = 0.95.
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we can get the controlled response system with uncertain parameter β̃ (3.9), and parameter
update laws (3.10). Similar to the above, we can obtain

ξ1
(
x, z, β0

)
=

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

−10 10 0 0

β0 − z3 −1 −
3∑

j=1

k1j(x)xj z1

z2
3∑

j=1

k1j(x)xj −8
3

0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎠

. (3.19)

The parameter update laws and real matrix ξ2(x, z, β0) are chosen as

Dqr β̃ = −z1e2, ξ2
(
x, z, β0

)
=

⎛

⎜⎜
⎝

0 z3 − β0 − 10 −z2 0

0 0 0 0

0 0 0 0

⎞

⎟⎟
⎠. (3.20)

If we choose real symmetric positive definite matrix P = diag(1, 1, 1, 1) and real
symmetric positive semidefinite matrix Q = diag(20, 2, 16/3, 0), we can get

P

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)

+

(
ξ1
(
x, z, β0

)
+ ξ2
(
x, z, β0

)

τ

)H

P = −Q. (3.21)

So, the AHFPS between the fractional-order Chen system (3.18) and controlled re-
sponse system (3.9) with uncertain parameters β̃ can be achieved. For example, choose

K(x) =

⎛

⎜⎜
⎝

1 + 0.1x1x2 0.5 1

2 x1 + x3 −1
−0.5 −2 x2 + x1

⎞

⎟⎟
⎠. (3.22)

The corresponding numerical result is shown in Figure 4, in which the initial conditions are
x(0) = (0, 1, 2), z(0) = (5.5, 1, 2), and β̃(0) = 43, and the “true” value of the “unknown”
parameter is chosen as β0 = 40, respectively. The chaotic attractor of the fractional-order
Lorenz system (3.6) with (σ, α, β) = (10, 40, 8/3) for qr = 0.998 is shown in Figure 5.

According to the numerical results in Figures 2 and 4, we can obtain that the errors are
indeed close to zero. This means that the adaptive hybrid function projective synchronization
(AHFPS) between different chaotic systems can be achieved finally.

4. Conclusion

In this paper, an adaptive hybrid function projective synchronization (AHFPS) scheme
between different fractional-order chaotic systems with uncertain system parameter is ad-
dressed. The drive and response system could be synchronized up to a vector function factor
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Figure 4: Time evolution of the AHFPS error.
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Figure 5: Chaotic attractors of the fractional-order Lorenz system (3.6) with (σ, α, β) = (10, 40, 8/3) for
qr = 0.998.

in this proposed scheme. This is different with the function projective synchronization (FPS)
scheme, in which the drive and response system could be synchronized up to a scaling
function factor. Based on the stability theory of fractional-order system, an adaptive controller
and the parameter update law are obtained. The AHFPS between different fractional-
order Lorenz chaotic system with uncertain system parameter and the AHFPS between
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the fractional-order Lorenz chaotic systems with uncertain system parameter and the frac-
tional-order Chen chaotic system are discussed. The numerical simulations demonstrate the
validity and feasibility of the proposed scheme.
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