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We consider the rate of mean convergence of derivatives by Lagrange interpolation operators
based on the Chebyshev nodes. Some estimates of error of the derivatives approximation in terms
of the error of best approximation by polynomials are derived. Our results are sharp.

1. Introduction and Main Results

Mean convergence of Lagrange interpolation based on the zeros of orthogonal polynomials
(and possibly some additional points) has been studied for at least 70 years. There is a vast
literature on this topic. The authors of [1-3] considered the simultaneous approximation by
the Hermite interpolation operators, and we will consider the simultaneous approximation
by Lagrange interpolation operators based on the zeros of Chebyshev polynomials. The
relevant results can be found in [4-6]. We introduce these results below.

Let

N
w(x) :H|x—yk|rk(|x|§1;—1:y1 <ypp<-<yn=LTe>-1Lk=1,...,N) (1.1)
k=1

be a so-called generalized Jacobi weight (w € GJ), and let

“1<x1<x<---<x,<1 (1.2)

be the zeros of the nth orthogonal polynomial p,(w) associated with the weight-function
w € GJ. Let L, (w, f) denote the Lagrange interpolating polynomial which interpolates f at
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the zeros of p,(w). By using Markov-Bernstein type inequalities in L, metric, J. Szabados and

A. K. Varma [5] reduced the weighted mean convergence of derivatives Lg) (w, f, x) to the
weighted mean convergence of L, (w, f, x) and obtained the following. If LP means functional
space equipped with L, norm and

w(x)l/P—l/Z

w(x) € GJ, —(1 ez

err, (*)
then, for £ (x) € C[-1,1], we have

[ @-10u] (1-2) ewars B (7) zren. a3
-1

Here and in the following, the constant C, (may be different in the same expression) is
independent of n and f but depends on r, and E, (-) denotes the error of the best polynomial
approximation of degree n of the corresponding function in the L., metric.

Mastroianni and Nevai [4] get sharper estimates in terms of modulus of continuity
instead of the best approximation. It improves some old results. But its proof also needs
weighted Markov-Bernstein type inequality in L metric and the idea of additional points. For
the weight functions not satisfying (x), it is not possible to discuss by their method. To deal
with these case, Du and Xu [7] consider the most important special case w(x) = 1/v1 - x2.
Let

1
x, k=1,...,n, (1.4)

tx = tx, = COS

be the zeros of T, (x) = cosnb, x = cos 6, the nth degree Chebyshev polynomial of the first
kind. If f € C[-1,1], then the well-known Lagrange interpolation polynomial of f based on
{tk}r_, is given by (see [8])

La(f,x) = D0 f (t) i (x), (15)
k=1

where

(1)1 - BT (x)
O (x) = ro—— , k=1,...,n (1.6)
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Du and Xu [7] obtained the following.

Theorem A. Let L, (f, x) be as defined as above. Then, for f € C%_l 1y, Wwe have

CE,»(f"), a>g—1,
1 a 1/p p
<f |f/G0) = L (f, %) [P (1= %) dx> < CUnm' PEwa(f), =51, (1.7)
-1
Cri @ 2DE,,(f), -1<a<b-1,

and the estimation for =1 < a < (p/2) — 1 is sharp.

We notice that although the sharp estimate is obtained, the upper bound is not E,,_> (")
for -1 < a < (p/2) — 1. Now we will give a Lagrange interpolation to improve their results.
Let

k
xk:xkn:cos—”, k=1,...,n, (1.8)
n+1

be the zeros of U, (x) = sin(n +1)0/ sin 6, x = cos 0, the nth degree Chebyshev polynomial of
the second kind. If f € C[-1, 1], then the well-known Lagrange interpolation polynomial of
f based on {xx};_; U {xo =1,x,41 = -1} is given by (see [9])

n+1
Quea(fox) = D f (xi) i (%), (1.9)
k=0
where
_ I+ x)Uy(x) _ (=DM(x - D)Ux(x)
@o(x) = T2+l Pns1(x) = 2+ 1) ,
BT (1.10)
S A . ) L1 S

(n+1)(x—xx)

Firstly, we obtain the following.

Z"heorem 1.1. Let Qu(f, x) be as defined as above, 0 < p < +o0,a > 1. Then, for f € C%—l,l]’ we
ave

1 a 1/
(L |f'(x) = Qu(f,x) |’”<1 - xZ) dx> ' < CEqa(f'). (1.11)

By Theorem A and Theorem 1.1, we know that Q.. (f, x) have better convergence rate
than L, (f, x) in the case -1 < a < (p/2) — 1. But for continuous function approximation, we
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noticed that Q, have the same approximation order with L,, thatis, if 0 < p < +oo,a > -1,
then, for f € C_1,}, from Holder inequality [8, 9], it follows that

1 u 1/p
<f1 £ () = Lu (£ (1- ) dx> < CEwa(f),

(1.12)

1 “ 1/p
( [ 1rw-arr(-+) dx) <CE ().

For high derivatives approximation, how the cases are? Secondly, we will consider
second derivative approximation by L, and Q, and obtain the following.

Theorem 1.2. Let Q,(f,x) and L, (f, x) be as defined as above. Then, for f € C%_Ll], we have

CE.3(f"), a>P
2
1 ’X 1/p
<f | f"(x) - ii(f,x)|”(1—x2> dx) <3 Cnn)PE,5(f"), azg
-1

| Cn-CePE, 5 (f7), ~1<a< P,

( " _

) . Uy CE,-5(f"), a>p-1,
<L |£'(0) - Ly (f,x) P (1-+7) dx> <{Cnm)"PE,5(f"), a=p-1,
(Cn>CaDIPE, ("), -l<a<p-1,

and the estimation for -1 < a < (p/2) —1or (-1 < a < p —1) is sharp.

From Theorem 1.2, we know that for the second derivative approximation, Q, have
better approximation orders than L, in the case -1 <a <p - 1.

Using the same way as in the proof of Theorem 1.2, we can consider the r order
derivatives approximation for » > 3, but the computation is more complicated, and we omit
the detail.

2. Some Lemmas

We introduce some lemmas which are the main tools in our proof.

Lemma 2.1 (see [10, p. 519]). If f € C[_, ,,, then there exists an algebraic polynomial p,(x) of
degree at most n such that

V1-x2

n

|f<f>(x) - p,(j’(x)| < c[ ]”-EH (f<f>), i=01,...,r 2.1)
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In the past, the error estimate depended on the Markov-Bernstein type inequalities in
L, metric. In this paper, we will use the inequality in L., metric.

Lemma 2.2 (see [7, p. 50]). Let ¢ (x) be as defined by (1.10), & > —1. Then, for any fixed p > 0,

1
(.
To prove our results, we need to build another polynomial integral inequality in L,
metric. For its proof, we introduce two lemmas.

P . 1/p
(1—f)dx> < Cmax|Ag|. (2.2)

1<k<n

Zn:Akq?k (x)

k=1

Lemma 2.3 (see [8, p. 914]). Let v1,vy, ..., vaN be distinct integers between 1 and n. Then, we have

! dx
€0, (X)y, (x) -+ - by (X) ———= =0, 2.3
[ (a2 23)
and it is well known that
> er(x) <2. (2:4)
k=1

Let xy, ..., x, be independent variables, s are positive integers, and

n 1/s
%:<Zﬁ>. (2.5)
k=1

By the mathematical induction we can obtain the following.

Lemma 2.4. If N is a positive integer, n > 2NN, then, the homogeneous symmetrical polynomial of
degree 2N

n 2N
BZN = <le> - (2N)' Z Xk ** Xkon s (26)
i=1

k] <k2<--~<k2N
can be represented as a homogeneous polynomial of degree 2N about V,. .., VoN:

Bon = Z Bty Vlt1 o Vztﬁf\l : (2.7)
1<2N-2t>0

Now we give the inequality in L, metric which plays a key role in our paper.

Lemma 2.5. Let & (x) be as defined by (2.1), a > —1. Then, for any fixed p > 0,

(I,

p " 1/p
<1 —x2> dx> < C max |Agl. (2.8)

1<k<n+1

zn:Akfk(x)

k=1
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Proof. Firstly, we will consider the special case p = 2N,a = —-1/2 by induction on N. For
N =1, by (2.3) and (2.4), we obtain

n n k-1
_ 2 2
fl ;Akek(x) \/ﬁ = éAk f, e (x)\/i +2;]21AkA f O (x)€; (x)ﬁ

< 2:rrmax|Ak|

< max|Ag|? j 232(x)

1<k<n 151 1<k<n
(2.9)
Suppose that for 0 < p <2(N - 1), we have
Al (x < Cpmax|Agl” (2.10)
Jl,;"")m Bl A
For p =2N,if n < 2N, then, (2.4) gives
11 n 2N
f > Al (x) < 7 (4N)? max|Ak|2N (2.11)
-1 k=1 — x2 <k<n
If n > 2N, then by Lemma 2.4, we know
2N
= (2N)! Z Akl "'Akzz\/elﬁ (%) "'ekzz\l (%)
ki <kpy<--<kyn
1 N 212
S B Vi) VY () (212)
H<2N-2,4>0
= L(x) + L(x),
where
n 1/s
Vi(x) = <ZA;€,§ (x)> ) (2.13)
k=1
From (2.3), it follows that
1
dx
Li(x =0. (2.14)
J‘l A= V1 - x?

From (2.4), we know that, for s > 2,

1/s
[Vs(x)| < maX|Ak|<Z|£k(x)| > < \/erg%IAkl. (2.15)

k=1
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By virtue of (2.12) and (2.15), we have

! 1
dx , t
L(x) < |B,... |f VA (x) - Vi (x)
-1 V1-x? t1S2NZ—2,t,-20 e —1| ! ' \/_73(
< 2N|Bt ot |max|Ak|2N‘t1 J' th( ) (216)
t1§21\fz—2,t,20 U gken | | \/7
2N-2
< Z 2N|Bt1"'tzN|<7r + Z C; >max|Ak|
1 <2N-2,t;>0 i-1 1<k<n
From (2.11), (2.12), (2.14), and (2.16), it follows that
1| n 2N dx o
Axt =G AT 217
L 2AR()| s < Cavimax| Al (217)

Now we consider the general case. For arbitrary p > 0 and a > -1, it is easy to see that
we can choose a positive integer N satisfying p/4N < 1and (a+(p/4N))/(1-(p/2N)) > -1.
By Holder inequality and (2.17), we can obtain

1 n P a
f 3 Arli(x) (1—x2> dx
-1 k=1
1| n 2N PN 1-(p/2N)
(a+(p/4N))/(1-(p/2N))
< J S Ali(x) _dx I (1-2%) v P
-1 k=1 V1 - x? -1

< Cpmax|Ag/P.
1<k<n

(2.18)
O

Remark 2.6. P. Erdos and E. Feldheim [8] give a proof for p = 2,4 and a = -1/2. We give a
mathematical induction proof for completion.

3. Proof of Theorem 1.1

We will consider Q42 (f, x) instead of Q,(f, x) for simplicity. For f € C! 11]7 ,let ppi1(x) be the
polynomial of degree at most n + 1 satisfying (2.1). It is easily checked that for-1<x<1,

f(x) - Qn+2(f/x) = f(x) _pn+1(x) + Qn+2<pn+1 - f/x)' (3~1)
From (3.1), we can conclude that

f1x) = Quia(f,%) = f1(%) = Paa () + Quuia (Pt = £,x) = 11 (x) + (%) (3.2)
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From (2.1), we can derive
1 a 1 a
f L ()P (1 - x2> dx < CEL(f) f (1 - x2> dx < CEL(f'). (3.3)
-1 -1
It is easy to see that I»(x) is a polynomial of degree at most n. Hence,

IZ(x) = Z(pn+1 (xk) - f(xk))(/’lk(x) = Ln+1 (121 .X')
k=1

(3.4)
Z [Z (Pn+l (xk) - f(xk))(l’lk (ts)]és (x).
s=1 | k=1
By a direct computation, we know
(_1)k+5+1 1-£ _1ykesHly
i (ts) = =+ Ch f . (3.5)
(4 Dt =207 (0 +1)4/1 - 2t - x0)
Combining (3.4) and (3.5), we derive
w1 |l = ( 1)k+s+1‘ /1 _ t%
L(x) = D[ D (pnea (i) = £( k))—2 Z5(x)
s=1 | k=1 +1)(ts — xx)
ntl | n (_1)k+s+1 (3~6)
+ D0 D (pnea (xi) = £ (1)) Z5(x)
s=1 | k=1 (n+1)\/1—t2(ts — xx)
= Ji(x) + J2(x).
We consider Ji(x) first. For an arbitrary 1 <s <n+1,
$ (e - £ ))(—1)"”+1 1-£| _CE, (f)ZV xy1-6
n+1\(Xk) — J (X <
g Pt T G b | & t-x) o)

(s Y

n? o1 (b —xx)” i3 (B — xx)
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Similar to [9, p. 71], we have

I _ (- w0 - Ut

i(l—xk)llfl(x) i (1- x2)u2(x)

o (o-x)? = (x-x)

By [9, p. 71], we know

(1 - x2>ll'n(x) = XU, (x) = (n+ 1) T (%),

(1 - x2>ll','l(x) = 3l (x) - n(n + 2) U (x).

Let x = t,, then by (3.8), (3.9), and (3.10), we obtain

Lo1-£ 212
Z = =n(n+2) - — <n(n+2)
je=1 (ts — xx

o1 -x2

> ko —n?+n

i1 (ts — xx)

From (3.7), (3.11), and (3.12), we obtain that for an arbitrary 1 <s <n+1,

n (_1)k+s+1‘ /1 _ t2
P (k) = f(xk))n—
k=1

(n+1) (ks — xx)° CES),

From (2.8) and (3.13), we can obtain

1 a 1/p
< [ ner(i-«) dx> < CE, (f).

Now we consider J,(x). Exchanging the summation order, we have

= el 1= Bt - )

n (_1\k _ —n+ _q\s+1
) = 3 0 e = 1) 31y, es<x)]

[ n+1

il( 1) (Pn+1 xk) f(xk)) Z(t tsTn+1(x) ]

(n+1)> A (ts —xi) (x — ) |

+ 2xU, (x)U’, (x) — nU>(x).

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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It is easy to know

nZHM n+1(x) (n+1)un(x)-

~ x- ts

Let x = x, then, we have

n+l 1

;xk_ts =0.

By (3.16), (3.17), and the identity

ETon(x)  _ xTwa(®) xTwn(x)
(s —x)(x—ts)  (x—x)(x—ts) (x—xx)(xx —ts)

we conclude that

E tTualx) (n+1) xU, (x)
Z(t—xk )(x—t5) X — Xk

From (3.15) and (3.19), it follows that

3 (D" (pan (i) = f(xk)) 2l (%)

n+1l X — XK

k=1

For an arbitrary 1 < k < n, by (3.20), (2.1), U}, (xx)| = (n+1)/(1 - xlz(),k =12,...

simple computation, we can obtain

(=D)* (pas (k) = f o)

n+1

[J2(xx)| = xx U, (xk)

< CEx(f)-

For k =0, by (2.1), U,(1) = n + 1 and a simple computation we obtain

[2(D)] =

i(_l)k(r’ml(xk)_f(xk)) CE, (f)” 1

From 2x /o < sin x < x, for all x € [0,0/2], we derive

n 1 Tn+1
< <Cnlnn.
Zm z;ﬁsinkar/Z(n+l) ; k

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

,n,and a

(3.21)

(3.22)

(3.23)
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Hence,

|J2(1)] < Cln nE,(f'). (3.24)
Similarly,

|J2(-1)| < Cln nE,(f"). (3.25)

The fact that J>(x) is an algebraic polynomial of degree at most n implies
J2(%) = Quea(J2, %) = Ja (1o (x) + Jo(=1)pne1 () + 3 Ja (i) pic (). (3.26)
k=1

Let x = cos 0. By (3.24) and a simple computation similar to [11, p. 204], we obtain that, for
p>0and a>-1,

! a  _ ClnPnEy(f) (7 |sinn6)’ ,
f_l |]2(1)(po(x)|’”<1 - x2> dx < 1) . sin”’z“’lede < CEL(f). (3.27)
Similarly,
1 a
f (=D ()| (1- ) dx < CEL(f). (3.28)
-1
By virtue of (2.2) and (3.21), we have
1 n P a
f Z]z(xk)(pk(x) <1 - x2> dx < CEL(f"). (3.29)
=1 [k=1
From (3.26), (3.27), (3.28), and (3.29), it follows that
1 u 1/p
< I T2 ()P (1 - x2> dx> < CE,(f)). (3.30)
-1

By (3.2), (3.3), (3.6), (3.14), and (3.30), we obtain the upper estimate.

4. Proof of Theorem 1.2

We consider Q,, first. We will consider Q,.2(f, x) instead of Q,(f, x) for simplicity. For f €
C%—l,l]’ let py+1(x) be the polynomial of degree at most n + 1 satisfying (2.1). From (3.1), it
follows that

f16) = Quaa(fr%) = f1(30) = Plua (%) + Qo (Pt = £,%) = Mi(x) + Ma(x). (41)
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From (2.1), we can derive

r M ()P (1 - xz)“dx <CE'_(f"). (42)
-1
Similar to (3.4),
n+l[ n
My(x) = D' [Z (Pns1(xk) = f(Xk))(p';i(ts)] Z5(x). (4.3)
s=1 Lk=1

By a direct computation, we get

(P” (t ) _ 2(_1)k+sﬂ 2(_1)k+sts . (Tl + 1)(_1)k+s+1
T 1o B VL-RGw
. (_1)k+s+1 ‘
(n+1)(1 =) (ks - x0)
Equations (4.3) and (4.4) yield
nel | n 2(_1)k+s 1- t§
S e
n+l | n 2(_1)k+sts
+ 270 [ 2 (P (i) = f(x0)) 2s(x)
s=1 [ k=1 (n+1)\/1 = £(ts — x)*
n+l| n ( n 1)(_1)k+s+1 (45)
+ 0 D (paa (i) - f(xk))n—] Z5(x)
s=1 | k=1 1—t2(ts — xx)
n+1 [ n (_1)k+s+1 ’
+ ; é(r’nu(xk) = f(xx)) (1= ) - xe) s(x)

= Nl(x) + NQ(.’X') + N3(.’X') + N4(x).
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We consider Ny (x) now. For an arbitrary 1 < s < n+1, from (2.1), (3.12), and >7_; |« (x) <2
(see [9]), it follows that

2(-1)F*\/1 - £ 3 CEnfl(f")i(l—xi)\/l—tg

Z(Pn+1(xk) flx k)) Dt -x)?| T 1) & - xf

ZCEmmfvﬁfl—%)wu%H (4.6)

n+1)® & -l

o CEra) $. (125D

(n+1)>

< CEnpa(f").

f It — xil”

From (2.8) and (4.6), we can obtain

1/p

<f |N1 () [P (1 - x2>“dx> < CE,(f"). 4.7)
-1

Now we consider Ny(x). From 2x/o < sinx < x, forall x € [0,a/2], it follows that

\/1-#2 > sin(r/2(n + 1)) > 1/(n +1). By (2.1) and (3.12), we have that, for an arbitrary
1<s<n+1,

n _1\k+s CE,_ " no1 = x?
3 (Pt (00) — (1)) ——2 D s ¢ CEnl) Tk < CEu(f).
k=1 (m+ D\/1 -2t —x0)?|  (m+1)%y/1 - 2k (s = xi)
(4.8)
From (2.8) and (4.8), we can obtain
1 R 1/p
<f N2 ()P (1 - x2> dx> < CE,1(f"). (4.9)
-1
For the N3(x), similar to (3.15), we have
n X n+1 n+1 x)
Ns() = S0 a0 = F0) | B2 05
p xx)(x —ts)
(4.10)
Uy (x)

(n+1)Z( D (e (k) = f (3 ))

For an arbitrary 1 < k < n, by (2.1) and a simple computation, we can obtain

IN3(xie)| = (n+ 1) | (a1 (xic) = f (xi)) - Uy (xic) | < CEpea (f7). (4.11)
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For k =0, (2.1) leads to

(1) (Pt (k) = £ (%K)

IN3(D)] = (n+1)*| ] - < CnE,(f"). (4.12)
k=1 k
Similarly,
N3(-1) < CnE,1(f"). (4.13)

Similar to (3.30), from (4.10), (4.11), (4.12), and (4.13), it follows that

p
En— " , F
1 N CEna(f") a> 5
(I |N3(x)|”<1—x2> dx) <3 C(n n)PE, 1 (f"), a:g

-1
Cnl-Ca/PE, | (F1), -1<a< g -1.

-1, (4.14)

For the Ny(x), similar to (3.15), we have

& ED (P () — f () [$E Ty (%)
Y (n+ 17 [Zl A= B)(t - x) (- m]' (419
It is easy to verify
Ts1(x) _ 1 Ts1(x) Ts1(x)
- B)(t—x)(x-£) x- [(1 “B) (-t (1-B)(t- xk)]' (110
For a# +1, itis easy to verify that
: . L ! (4.17)

A-2)(x-a) 20+a)(+x) 20-a)(l-x  (I-a)x-a)

From (4.17), (3.16) and

n+l 1 n+l

1
Zl+t =Zl—t = (n+1)% (4.18)
s=1 s s=1 5
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we obtain
nzﬂ Tri1(x) _ Tus1(x) nZ+1 _ Ty (x) nZH nzﬂ n+1(x)
SA-B)(x-t,) 20+0)S1+t;, 20-0S1-t, 1-x24
_ (41T (x) | (n+ DUn(x) (4.19)
1-x2 1-x2 7
nZH Tn+l (x) — (1’1 + 1)2kan+l (x)
S (1-12)(ts — xx) 1-x7 '
From (4.16), (4.19), (61), (3.9), and a direct computation, we get
"Z“ Tt (%) __ )’ A+ 2T (x) | (n+ DU (x)
L(1-2) (ks — xp) (x — t5) (1-x2)(1-x7) (1 - x2)(x - xx)
_(n+1)(1+ xxk)ll;l(x) (n+ 1D)xU,(x) N (n+1) U,(x)
- 1-x7 1-x7 (1-2x2)(x—xx)
(4.20)
From (4.15) and (4.20), we obtain
no(—1 k ot _ ) .
Moty = 32 D a0 = 100) [+ 20Uy () | 0l
p (n+1) 1-x7 1-x;
) (4.21)
L (D" (pr (xx) = f(x))  Un(x)
+ = Ny (x) + Ny (x).
2T el (edeemy TNe
For Ny (x), from (2.1), we can obtain
LI’ )|+ Uy (x .
(n+1)>2
By (3.9), Markov inequality, and ||U, (x)|| = 1 + 1, we obtain
, 2(n+1 ,
w ol < 2D, Ul < D). 423)
So for an arbitrary 0 < A <1,
1-A 1424 1424
U ()| < 2D 8n (4.24)

(1-x) 7 -t
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Let x = cos 0. From 2a+1 > -1, we can choose A such that0 < A <1and 2a+1-2p+2pA > -1.
Then by (4.24) and 2x/or < sinx < x, for all x € [0,2r/2], we can obtain

1 . 0 N
'[1 |lln(x)|p<l - x2) dx = 2J1 |Lln(x)|p<1 —x2> dx

ar/2(n+1)
< 23p+1 J' np(1+2A)Sin2a+1—2p+2pA9d9
0

ar /2
+ J. npsin1+2a2p6d6> (425)

a/2(n+1)
CnP, a>p-1,
<4 CnPlnn, a=p-1,

Cnr22 _l<acx p-1

From ||U,(x)||. = n + 1, it follows that

1 24
f ) U ()P (1 - xz) dx < CnP. (4.26)

From (4.22), (4.25), and (4.26), it follows that

1 a 1p CE, (f”)/ az> P 1,
U N4 (x) [P (1 - x2> dx> < 2 » (4.27)
-1 Cnl—(ZmZ)/;qEn_1 (f")r 1l<ac< E ~1.
For Ny (x), from (2.1) and a simple computation, we can obtain that, for 1 < k < n,
1
Ny (xx)| = —————— | (pus1 (xx) = f(xx)) - U, (xk) | < CEpa (f7). 428
[Nao (k)] (n+1)(1—xi)|(p 1(xx) = f(xx)) (i) | 1(f") (4.28)
Let x = 1. Then, from (3.10) and
T Ua(x)
= U (x), (4.29)
- X — X5
s=1
we obtain
L n(n+2)
= . 4,
Z 1- Xk 3 ( 30)
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From (2.1), it follows that

_ L (_1)k(Pn+l(xk) _f(xk)) CE"—l(f") -
INx2(1)] = é Q-0 (1-2) < n+17? &

Similarly,
IN4(-1)] < CE,oi (f").

Similar to (3.30), from (4.28), (4.31), and (4.32), we can obtain

1/p

(L |N4z(x)|”(1 _x2> dx> < CEupa(f").

1
< ~ "y
11_xk —CE" 1(f)

17

(4.31)

(4.32)

(4.33)

From (4.1), (42), (45), (47), (49), (4.14), (4.21), (4.27), and (4.33), we obtain the upper

estimate.
On the other hand, for p > 2a + 2, let f(x) = (1 - x*)U,(x). Then,

f1(x) = =2(n+2)(n + DTu(x) + gu(x),

here, g,-1(x) is a polynomial of degree at most n — 1. Hence,

E,i(f") =2(n+2)(n+1).

It is easy to verify that

Q2 (f,x) =0,
U, (x) + (n+1)xTy1(x)

F(x) = —(n+ 1) U, (x) + 1-x2

(4.34)

(4.35)

(4.36)
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Let x = cos0, then, ko + or)/2(n +1) < 0 < (2kor + 27r)/2(n + 1) implies that
Tyi1(x)U, (x) < 0. Therefore,

[ 1re-auor (-2 ac: [ 1w - P (-2 a

[(n+1)/2] «(kar+ar)/2(n+1) | o p
> nP f |511'1(” : 11)9| 4o
oo J2kr/2(n+1) sin”~**'0
Cn®Inn, a-= g 1, (4.37)
2
Cn~202, _l<a< g -1,
femnEr (), a=fen

CnP~22EP (f"), -l<a< g -1,

2

We consider L, in the following. For f € C[_, |

- let pp1(x) be the polynomial of degree
at most n — 1 satisfying (2.1). Then,
f'(x)=Ly(f,x) = f"(x) = py_1(x) + Ly (pn-1 - f,x) = Ki(x) + Ko (x). (4.38)

From (2.1), we can derive

1 a
f . |K7 ()P (1 - x2> dx < CEP_,(f"). (4.39)

n

If f € C[-1,1], then the well-known Lagrange interpolation polynomial of f based on {xx};_;
is given by

Ru(f,x) = ka(xk)d’k(x)/ (4.40)
=1

where

(-1 (1 - 22U, (x)

P Tr—— k=1,...,n (4.41)

Pi(x) =

Similar to (3.4), we have

n-1[ n
Ka(x) = Ryt (K, x) = 3. [Z (P (1) - f(tk))e;;<xs>]¢s (x). (4.42)

s=1 Lk=1
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By a direct computation, we obtain

e,,( ) n(_l)k+s /1 _ ti 2(_1)k+s+1 /1 _ ti
k\Xs) =

(1 —x2) (oxs — i) " n(xs - tx)°

From (4.42) and (4.43), it follows that

n(-1)**4/1-£

n-1 n
Ka(x) = Z Z(Pn—l(tk) - f(tk))m ¢s(x)
s=1 | k=1 s s

—1

+ D (pno1(te) = f(£))

s k=1 n(xs - tk)3

N

2(_1)k+s+1 1- tl2(
$s(x)

I
—_

= Al(x) + Az(x).

Exchanging the summation order, we have

L n-1
A1) = 3D (paa () - FEON1- 8 [ U—l(x)]

k=1 =1 (s — i) (x = xs)

For an arbitrary 1 <s <n -1,

U, (x) _ 1 Uy (.X') Uy (x)
(%5 = tr) (x = x5) N x_tk< Xs — bk ! X —Xg >

It is well known that

n-1
U,-1(x ,

Z 1( )=un_1(x)'
1 X — Xg

%

Let x = tx. Then, from (4.47) and (3.9), it follows that

nz_l 1 _ u’n,l(tk) _ tk
1 tk — X un—l(tk) 1- ti ’

S=

19

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Combining (4.47), (4.48), and (3.9), we obtain

N

= ! (un—l(x)+un—1(x)>

X -t \ x5 —tx X — X

Il
—_

S

1~ (x) + (1= )U_ (x)

x — tx 1- ti
(4.49)
Uy (x) + (x + U (%) .\ 1 —xUp(x) + (1-x)U (%)
- 1-£ x — b 1-£
_ U,1(x)+ (x+ tk)uln_l (x) B nT,(x)
1-£ (x-t)(1-£)
From (4.45) and (4.49), it follows that
i u,.- tu’
Ar(x) = 31 (s () — f (1) 2t O U ()
k=1 \V1-8
(4.50)
e 3D (aca () = £ (1) —2 ) = 4y (x) + Ara().
k=1 (x—te)\/1 -8
By (2.1), we have
|A11(x)| < CEn—S (f”) (lu;,;ll (x)l + |un(x)|) ) (4.51)
From (4.51), (4.25), and (4.26), it follows that
: ) p CE..s(f"), a>p-1,
<f |A11(x)|P(1 —x2> dx> <4 Cnn)'"PE,5(f"), a=p-1, (4.52)
-1
Cn*CD/PE, 5(f"), -l<a<p-1.
From (2.1) and |T (tx)| = n/4/1 - ti, it follows that, for 1 < k < n,
k+1 nT;l (tk "
|[An(t)] = [ (Pu-1(te) — f (tk))ﬁ < CE.5(f"). (4.53)
— tk
From (4.53), (2.8), and
A (x) = D\ Ana(t) ek (x), (4.54)

k=1
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we know

1/p

< f 1 |A12(x)|P(1-x2)“dx> < CE,5(f"). (4.55)
-1

We consider A (x) now. For an arbitrary 1 < s <n -1, by (2.1) and (2.4), we obtain

" 2~ 12 (1-2)*?
n-1(tk) — f(t < CE,5(f"
kz:;(l’ 1(te) = f(t)) ) (f )Zn3|xs—t B
(4.56)
= CEs(f") Y] (x0)| < CEas(f").
k=1
From (4.56), (4.44), and (4.41), we can obtain
|A2(xs)| < CEn3(f"), 1<s<n-1.
(4.57)
|[A2(D] < CnEns(f"),  1A2(-1)| < CnEns(f").
Similar to the proof of (3.30), by (4.57), (95), and
Ay(x) = D Ag(xs)ps(x), (4.58)
5=0
we can obtain
CE.1(f"), a>P -1,
1 a 1/p 2
<I [ Az (x)P (1 - x2> dx> << C(n n)"?PE, (f"), a= g -1, (4.59)
-1

Cn'-Ca/PE, | (f7), -1<a< g -1,

From (4.38), (4.39), (4.44), (4.50), (4. 52) (4.55), and (4.59), we can obtain the upper estimate.
On the other hand, let f(x) = T,,(x). Then, it is easy to see

L.(f,x) =0, (4.60)

f"(x) =4n(n —1)Ty—2(x) + gn-3(x), (4.61)
here, g,-3(x) is a polynomial of degree at most n — 3. Consequently, due to (4.61), we get

Ens(f") = 4n(n-1). (4.62)
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Let x = cos®. From (4.60), (4.62), (3.9), T;(x) = nU,_,(x), and the odevity of U] _,(x), it
follows that

24 P " a
[ e -t r (-2 ar =m0 [ eor (- 2) s

LB

8p 2p—-2a-1

k=1" (kor-a)/4/n |Sm6| (463)

CEZ_3(f”), a>p-1,
>4 ClnnEl (f"), a=p-1,
Cn?~22EP (f"), -l<a<p-1.
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