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We consider the van der Pol equation with discrete and distributed delays. Linear stability
of this equation is investigated by analyzing the transcendental characteristic equation of its
linearized equation. It is found that this equation undergoes a sequence of Hopf bifurcations by
choosing the discrete time delay as a bifurcation parameter. In addition, the properties of Hopf
bifurcation were analyzed in detail by applying the center manifold theorem and the normal form
theory. Finally, some numerical simulations are performed to illustrate and verify the theoretical
analysis.

1. Introduction

Since its introduction in 1927, the van der Pol equation [1] has served as a basic model of
self-excited oscillations in physics, electronics, biology, neurology and other disciplines [2–
15]. The intensively studied van der Pol equation is governed by the following second-order
nonlinear damped oscillatory system:

ẋ(t) = y(t) − f(x(t)),

ẏ(t) = −x(t),
(1.1)

where f(x) = ax + bx3, a and b are real constants.



2 Discrete Dynamics in Nature and Society

In 1999, Murakami [16] introduced a discrete time delay into system (1.1), and ob-
tained the following pair of delay differential equations

ẋ(t) = y(t − τ) − f(x(t − τ)),

ẏ(t) = −x(t − τ).
(1.2)

By using the center manifold theorem, he [16] found that periodic solutions existed in system
(1.2). The stability of bifurcating periodic solutions was discussed in detail by Yu and Cao
[17].

It is well known that dynamical systems with distributed delay are more general than
those with discrete delay. So Liao et al. [18] proposed the following van der Pol equation with
distributed delay:

ẋ(t) =
∫∞

0
F(t − s)y(s)ds − f

[∫∞
0
F(t − s)x(s)ds

]
,

ẏ(t) = −
∫∞

0
F(t − s)x(s)ds.

(1.3)

The existence of Hopf bifurcation and the stability of the bifurcating periodic solutions of
system (1.3) were analyzed in [18–25] for the weak and strong kernels, respectively.

In [26], Liao considered the following system with two discrete time delays:

ẋ(t) = y(t − τ2) − f(x(t − τ1)),

ẏ(t) = −x(t − τ1).
(1.4)

By choosing one of the delays as a bifurcation parameter, system (1.4) was found to undergo
a sequence of Hopf bifurcations. The author had also found that resonant codimension two
bifurcation occurred in this system.

In this paper, we consider the following van der Pol equation with discrete and dis-
tributed time delays:

ẋ(t) =
∫ t
−∞

F(t − s)y(s)ds − f(x(t − τ)),

ẏ(t) = −x(t − τ),

(1.5)

with initial conditions x(θ1) = ϕ1(θ1), y(θ2) = ϕ2(θ2), (−τ ≤ θ1 ≤ 0, −∞ < θ2 ≤ 0), τ ≥ 0,
where ϕ1(θ1) and ϕ2(θ2) are bounded and are continuous functions. The weight function
F(s) is a nonnegative bounded function, which describes the influence of the past states on
the current dynamics. It is assumed that the presence of the distributed time delay does not
affect the system equilibrium. Hence, O(0, 0) is the unique equilibrium of system (1.5).
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We normalize the kernel in the following way:

∫∞
0
F(s)ds = 1. (1.6)

Usually, the following form:

F(s) =
αp+1spe−αs

p!
, p = 0, 1, 2, . . . , (1.7)

is taken as the kernel. The kernel is called “weak” when p = 0 and “strong” when p = 1,
respectively. The analysis of weak and strong kernels is similar, so we only consider the weak
kernel in this paper, that is,

F(s) = αe−αs, α > 0, (1.8)

where α reflects the mean delay of the weak kernel.
The purpose of this paper is to discuss the stability and bifurcation of system (1.5),

which is an extension of the aforementioned systems. By taking the discrete delay τ as the
bifurcation parameter, we will show that the equilibrium of system (1.5) loses its stability
and Hopf bifurcation occurs when τ passes through a certain critical value.

The remainder of this paper is organized as follows. In Section 2, the linear stability of
system (1.5) is discussed and some sufficient conditions for the existence of Hopf bifurcations
are derived. The properties of Hopf bifurcation are analyzed in detail by using the center
manifold theorem and the normal form theory in Section 3. In Section 4, some numerical
simulations are performed to illustrate and verify the theoretical analysis. Finally, conclusions
are drawn in Section 5.

2. Linear Stability and Existence of Hopf Bifurcation

In this section, we discuss the linear stability of the equilibriumO(0, 0) of system (1.5) and the
existence of Hopf bifurcations. For analysis convenience, we define the following variable:

z(t) =
∫ t
−∞

αe−α(t−s)y(s)ds. (2.1)

Then by the linear chain trick technique, system (1.5) can be transformed into the following
system with only discrete time delay:

ẋ(t) = z(t) − f(x(t − τ)),

ẏ(t) = −x(t − τ),

ż(t) = αy(t) − αz(t).

(2.2)

It is obvious that system (2.2) has a unique equilibrium O(0, 0, 0).
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The linearization of system (2.2) at the equilibrium O(0, 0, 0) is

ẋ(t) = z(t) − ax(t − τ),

ẏ(t) = −x(t − τ),

ż(t) = αy(t) − αz(t).

(2.3)

The associated characteristic equation of (2.3) is

det

⎛
⎜⎜⎝
λ + ae−λτ 0 −1

e−λτ λ 0

0 −α λ + α

⎞
⎟⎟⎠ = 0, (2.4)

which is equivalent to

λ3 + αλ2 +
(
aλ2 + aαλ + α

)
e−λτ = 0. (2.5)

In the following, we investigate the distribution of roots of (2.5) and obtain the
conditions under which system (2.2) undergoes Hopf bifurcation.

We know that iω (ω > 0) is a root of (2.5) if and only if ω satisfies

−ω3i − αω2 +
(
−aω2 + aαωi + α

)
(cosωτ − i sinωτ) = 0. (2.6)

Separating the real and imaginary parts, yields

αω2 =
(
−aω2 + α

)
cosωτ + aαω sinωτ,

−ω3 =
(
−aω2 + α

)
sinωτ − aαω cosωτ.

(2.7)

Taking square on both sides of the equations in system (2.7) and adding them up yield

ω6 +
(
α2 − a2

)
ω4 +

(
2aα − a2α2

)
ω2 − α2 = 0. (2.8)

Let z = ω2, p = α2 − a2, q = 2aα − a2α2, and r = −α2. Then (2.8) becomes

z3 + pz2 + qz + r = 0. (2.9)

Denote

h(z) = z3 + pz2 + qz + r. (2.10)
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Since α > 0, then r = −α2 < 0, and limz→∞h(z) = ∞, we can conclude that (2.9) has at least
one positive root.

Without loss of generality, we assume that (2.9) has three positive roots, defined by z1,
z2, and z3, respectively. Then (2.8) has three positive roots

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3. (2.11)

From (2.7), we have that

cosωτ =
α2ω2

(aω2 − α)2 + a2α2ω2
. (2.12)

Thus, if we denote

τ
(j)
k =

1
ωk

⎧⎨
⎩cos−1

⎛
⎝ α2ω2

k(
aω2

k
− α

)2 + a2α2ω2
k

⎞
⎠ + 2jπ

⎫⎬
⎭, (2.13)

where k = 1, 2, 3, and j = 0, 1, . . ., then ±iωk is a pair of purely imaginary roots of (2.5) with
τ
(j)
k

. Define

τ0 = τ (0)
k0

= min
k∈{1,2,3}

{
τ
(0)
k

}
, ω0 = ωk0 . (2.14)

In order to further investigate (2.5), we need to introduce a result proposed by Ruan
and Wei [27], which is stated as follows.

Lemma 2.1 (see [27]). Consider the exponential polynomial

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n

+
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm ,

(2.15)

where τi ≥ 0 (i = 1, 2, . . . , m) and p
(i)
j (i = 0, 1, . . . , m; j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of the zeros of P(λ, e−λτ1 , . . . , e−λτm) on the right half plane
can change only if a zero appears on or crosses the imaginary axis.

By applying Lemma 2.1, one can easily obtain the following result on the distribution
of roots of (2.5).

Lemma 2.2. For the third-degree transcendental (2.5), if r < 0, then all roots with positive real parts
of (2.5) have the same sum to those of the polynomial (2.5) for τ ∈ [0, τ0).
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Let

λ(τ) = ξ(τ) + iω(τ) (2.16)

be the root of (2.5) near τ = τ (j)k , satisfying

ξ
(
τ
(j)
k

)
= 0, ω

(
τ
(j)
k

)
= ωk. (2.17)

Then the following transversality condition holds.

Lemma 2.3. Suppose that zk = w2
k
and h′(zk)/= 0, where h(z) is defined by (2.10); then

d
(

Re λ
(
τ
(j)
k

))
dτ /= 0, (2.18)

and the sign of d(Re λ(τ (j)
k
))/dτ is consistent with that of h′(zk).

Proof. The proof is similar to those in [28–32], so we omit it here.
When τ = 0, (2.5) becomes

λ3 + (a + α)λ2 + aαλ + α = 0. (2.19)

According to the Routh-Hurwitz criterion, if the following conditions:

a + α > 0, a(a + α) > 1, (2.20)

hold, then all roots of (2.19) have negative real parts, which means that the equilibrium
O(0, 0, 0) of system (2.19) is stable.

By applying Lemmas 2.2 and 2.3 to (2.5), we have the following theorem.

Theorem 2.4. Let τ (j)
k
,ω0, τ0 and be defined by (2.13) and (2.14), respectively. Suppose that a+α > 0

and a(a + α) > 1. Then one has the following.

(i) If r < 0, then the equilibrium O(0, 0, 0) of system (2.2) is asymptotically stable for τ ∈
[0, τ0).

(ii) If r < 0 and h′(zk)/= 0, then system (2.2) undergoes a Hopf bifurcation at its equilibrium

O(0, 0, 0) when τ = τ (j)
k
.

3. The Properties of Hopf Bifurcation

In the previous section, we obtain some conditions for Hopf bifurcations to occur at the

critical value τ (j)k . In this section, we analyze the properties of the Hopf bifurcation by virtue
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of the method proposed by Hassard et al. [33], namely, to determine the direction of Hopf
bifurcation and the stability of bifurcating periodic solutions bifurcating from the equilibrium
O(0, 0, 0) for system (2.2) by applying the normal form theory and the center manifold
theorem.

For analysis convenience, let t = sτ , x1(s) = x(sτ), y1(s) = y(sτ), z1(s) = z(sτ), and

τ = τ (j)
k

+ μ, μ ∈ R. Denote t = s; then system (2.2) is transformed into the following form:

ẋ1(t) =
(
τ
(j)
k + μ

)(
z1(t) − f(x1(t − 1))

)
,

ẏ1(t) =
(
τ
(j)
k + μ

)
(−x1(t − 1)),

ż1(t) =
(
τ
(j)
k

+ μ
)(
αy1(t) − αz1(t)

)
,

(3.1)

where f(x1(t − 1)) = ax1(t − 1) + bx3
1(t − 1).

Its linear part is

ẋ1(t) =
(
τ
(j)
k + μ

)
(z1(t) − ax1(t − 1)),

ẏ1(t) =
(
τ
(j)
k

+ μ
)
(−x1(t − 1)),

ż1(t) =
(
τ
(j)
k

+ μ
)(
αy1(t) − αz1(t)

)
,

(3.2)

and the nonlinear part is as follows:

f
(
μ, xt

)
=
(
τ
(j)
k + μ

)
⎛
⎜⎜⎝
−bx3

1(t − 1)

0

0

⎞
⎟⎟⎠. (3.3)

Denote Ck[−1, 0] = {φ|φ : [−1, 0] → R3, each component of φ has k-order continuous deriva-
tive}. For φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C0[−1, 0], we define

Lμφ =
(
τ
(j)
k + μ

)
⎛
⎜⎜⎝

0 0 1

0 0 0

0 α −α

⎞
⎟⎟⎠φ(0) +

(
τ
(j)
k + μ

)
⎛
⎜⎜⎝
−a 0 0

−1 0 0

0 0 0

⎞
⎟⎟⎠φ(−1), (3.4)

where Lμ is a one-parameter family of bounded linear operators in C0[−1, 0] → R3. By the
Riesz representation theorem, there exists a 3 × 3 matrix whose components are bounded
variation functions η(θ, μ) in [−1, 0] → R3 such that

Lμφ =
∫0

−1
dη

(
θ, μ

)
φ(θ). (3.5)
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In fact, we can choose

η
(
θ, μ

)
=
(
τ
(j)
k + μ

)
⎛
⎜⎜⎝

0 0 1

0 0 0

0 α −α

⎞
⎟⎟⎠δ(θ) −

(
τ
(j)
k + μ

)
⎛
⎜⎜⎝
−a 0 0

−1 0 0

0 0 0

⎞
⎟⎟⎠δ(θ + 1), (3.6)

where δ is the Dirac delta function, which is defined by δ(θ) =
{

0, θ /= 0,
1, θ=0.

For φ ∈ C1([−1, 0], R3), define

A
(
μ
)
φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη

(
μ, s

)
φ(s), θ = 0,

R
(
μ
)
φ =

⎧⎨
⎩

0, θ ∈ [−1, 0),

f
(
μ, φ

)
, θ = 0.

(3.7)

Then, we can transform system (2.2) into an operator equation as the following form:

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (3.8)

where xt(θ) = (x1(t + θ), y1(t + θ), z1(t + θ))T for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
dψ(s)

ds
, s ∈ (0, 1],

∫0

−1
ψ(−t)dη(t, 0), s = 0

(3.9)

and a bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. By the discussion in Section 2,
we know that ±iωkτ

(j)
k are eigenvalues of A(0), and they are also eigenvalues of A∗.
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Suppose that q(θ) = (1, β, γ)Teiθωkτ
(j)
k is the eigenvector of A(0) corresponding to

iτ
(j)
k
ωk; then A(0)q(θ) = iτ (j)

k
ωkq(θ). It follows from the definition of A(0) and (3.5) and (3.6)

that

τ
(j)
k

⎛
⎜⎜⎝

0 0 1

0 0 0

0 α −α

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

β

γ

⎞
⎟⎟⎠ + τ (j)

k

⎛
⎜⎜⎝
−a 0 0

−1 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

e−iωkτ
(j)
k

βe−iωkτ
(j)
k

γe−iωkτ
(j)
k

⎞
⎟⎟⎟⎟⎠ = iωkτ

(j)
k

⎛
⎜⎜⎝

1

β

γ

⎞
⎟⎟⎠. (3.11)

Thus, we can easily obtain

β =
(α + iωk)

(
iωk + ae−iωkτ

(j)
k

)
α

, γ = iωk + ae−iωkτ
(j)
k . (3.12)

On the other hand, suppose that q∗(s) = B(1, β∗, γ ∗)Teisωkτ
(j)
k is the eigenvector of A∗ corre-

sponding to −iωkτ
(j)
k

. By the definition of A∗ and (3.5) and (3.6), we have

τ
(j)
k

⎛
⎜⎜⎝

0 0 0

0 0 α

1 0 −α

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

β∗

γ ∗

⎞
⎟⎟⎠ + τ (j)k

⎛
⎜⎜⎝
−a −1 0

0 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

eiωkτ
(j)
k

β∗eiωkτ
(j)
k

γ ∗eiωkτ
(j)
k

⎞
⎟⎟⎟⎟⎠ = −iωkτ

(j)
k

⎛
⎜⎜⎝

1

β∗

γ ∗

⎞
⎟⎟⎠. (3.13)

Therefore, we have

β∗ =
α

iωk(iωk − α)
, γ ∗ =

1
α − iωk

. (3.14)

In order to assure 〈q∗(s), q(θ)〉 = 1, we need to determine the value of B. From (3.10), we
have that

〈
q∗(s), q(θ)

〉
= q∗(0)q(0) −

∫0

−1

∫θ
ξ=0

q∗(ξ − θ)dη(θ)q(ξ)dξ

= B
(

1, β∗, γ ∗
)(

1, β, γ
)T −

∫0

−1

∫θ
ξ=0
B
(

1, β∗, γ ∗
)
e−i(ξ−θ)ωkτ

(j)
k dη(θ)

(
1, β, γ

)T
eiξωkτ

(j)
k dξ

= B

{
1 + ββ∗ + γγ ∗ −

∫0

−1

(
1, β∗, γ ∗

)
θeiθωkτ

(j)
k dη(θ)

(
1, β, γ

)T}

= B
(

1 + ββ∗ + γγ ∗ − τ (j)
k

(
a + β

)
e−iωkτ

(j)
k

)
.

(3.15)
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Thus, we can choose B as

B =
1

1 + ββ∗ + γγ ∗ − τ (j)
k

(
a + β

)
eiωkτ

(j)
k

. (3.16)

Similarly, we can get 〈q∗(s), q(θ)〉 = 0.
Using the same notation as in Hassard et al. [33], we compute the coordinates to

describe the center manifold C0 at μ = 0. Let xt be the solution of (3.8) when μ = 0.
Define

z(t) =
〈
q∗, xt

〉
, W(t, θ) = xt(θ) − 2 Re

{
z(t)q(θ)

}
. (3.17)

On the center manifold C0 we have that

W(t, θ) =W(z, z, θ), (3.18)

where

W(z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · ·, (3.19)

in which z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗,
respectively. Note that W is real if xt is real. We consider only real solutions.

For the solution xt ∈ C0 of (3.8), since μ = 0, we have that

ż(t) = iτ (j)k
ωkz +

〈
q∗(θ), f

(
0,W(z, z, θ) + 2 Re

{
zq(θ)

})〉

= iτ (j)k ωkz + q
∗(0)f

(
0,W(z, z, 0) + 2 Re

{
zq(0)

})

= iτ (j)k ωkz + q
∗(0)f0(z, z).

(3.20)

We rewrite this equation as

ż(t) = iτ (j)k
ωkz(t) + g(z, z), (3.21)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·. (3.22)

Noting that xt(θ) = W(t, θ) + zq(θ) + z q(θ) and q(θ) = (1, β, γ)Teiθωkτk , we have that

x1(−1) = z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+O

(
|(z, z)|3

)
. (3.23)
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According to (3.20) and (3.21), we know that

g(z, z) = q∗(0)f(z, z) = τ (j)k
B
(

1, β∗, γ ∗
)
⎛
⎜⎜⎝
−bx3

1(t − 1)

0

0

⎞
⎟⎟⎠, (3.24)

where

x1(t + θ) =W (1)(t, θ) + z(t)q(1)(θ) + z(t)q(1)(θ). (3.25)

From (3.20) and (3.24), we have that

g(z, z) = −τ (j)k bBx3
1(t − 1)

= −τ (j)
k
bB

[
W (1)(t, θ) + z(t)q(1)(θ) + z(t)q(1)(θ)

]3

= −τ (j)k bB

[
W

(1)
20 (−1)

z2

2
+W (1)

11 (−1)zz +W (1)
02 (−1)

z2

2
+ z(t)q(1)(−1) + z(t)q(1)(−1)

]3

.

(3.26)

Comparing the coefficients in (3.26) with those in (3.22), we have that

g20 = 0,

g11 = 0,

g02 = 0,

g21 = −6τ (j)k bB
(
q(1)(−1)

)2
q(1)(−1).

(3.27)

Thus, we can calculate the following values:

c1(0) =
i

2τ (j)
k
ωk

(
g11g20 − 2

∣∣g11
∣∣2 −

∣∣g02
∣∣2

3

)
+
g21

2
,

μ2 = − Re{c1(0)}
Re
{
λ′
(
τ
(j)
k

)} ,

β2 = 2 Re{c1(0)},

t2 = −
Im{c1(0)} + μ2 Im

{
λ′
(
τ
(j)
k

)}

ωkτ
(j)
k

,

(3.28)
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Figure 1: Phase portrait and waveform portraits of system (2.2) with τ = 0.37.

which we need to investigate the properties of Hopf bifurcation. According to [33], we know
that μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ >

τ
(j)
k (τ < τ (j)k ); β2 determines the stability of the bifurcating periodic solutions: the bifurcating

periodic solutions are stable (unstable) if β2 < 0 (β2 > 0); t2 determines the period of the
bifurcating periodic solutions: the period increases (decreases) if t2 > 0 (t2 < 0).

4. A Numerical Example

In this section, we use the formulae obtained in Sections 2 and 3 to verify the existence of
a Hopf bifurcation and calculate the Hopf bifurcation value and the direction of the Hopf
bifurcation of system (2.2) with α = 1, a = 0.9, and b = 2.

By the results in Section 2, we can determine that

z1 = 0.6506, ω0 = 0.8066, τ0 = 0.4628. (4.1)
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Figure 2: Phase portrait and waveform portraits of system (2.2) with τ = 0.5.

It follows from (3.28) that

c1(0) = −1.2260 − 0.4739i, μ2 = 5.8875,

β2 = −2.452, t2 = −1.9408.
(4.2)

In light of Theorem 2.4, the equilibrium O(0, 0, 0) of system (2.2) is stable when τ < τ0.
This is illustrated in Figure 1 with τ = 0.37. Since μ2 > 0, when τ passes through the critical
value τ0 = 0.4628, the equilibrium O(0, 0, 0) loses its stability and a Hopf bifurcation occurs,
that is, periodic solutions bifurcate from the equilibrium O(0, 0, 0). The individual periodic
orbits are stable since β2 < 0. Figure 2 shows that there are stable limit cycles for system (2.2)
with τ = 0.5. Since t2 < 0, the period of the periodic solutions decreases as τ increases. For
τ = 0.55, the phase portrait and the waveform portraits are shown in Figure 3. We can tell
from Figures 2 and 3 that the period of τ = 0.55 is slightly smaller than that of τ = 0.5.
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Figure 3: Phase portrait and waveform portraits of system (2.2) with τ = 0.55.

5. Conclusions

The van der Pol equation with discrete and distributed delays is investigated in this paper.
Sufficient conditions on the linear stability of this van der Pol equation have been obtained by
analyzing the associated transcendental characteristic equation. By choosing the discrete time
delay as a bifurcation parameter, we have shown that this equation undergoes a sequence
of Hopf bifurcations. In addition, formulae for determining the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions are derived. Simulation results have verified
and demonstrated the correctness of the theoretical analysis.
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