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This paper studies a third-order conditional difference equation which is a generalization from the
literature. We investigate this equation by transforming it into a first-order system. Finally it is
proved that the equation has no period-two (or three) integer solutions. Besides, its all period-four
(and five) integer solutions are derived under appropriate rational parameters.

1. Introduction

As mentioned in [1], difference equations appear naturally as a discrete analogue and as
a numerical solution of differential and delay differential equations having applications
in various scientific branches, such as biology, ecology, physics, economy, technics, and
sociology. The stability, asymptotic behavior, and periodic property of solutions to difference
equations had been widely investigated, such as [2–14]. Recently, the study of max-type
difference equation attracted a considerable attention, for example, [7, 11, 15–25]. Although
max-type difference equations are relatively simple in form, it is unfortunately extremely
difficult to understand thoroughly the behavior of their solutions. The max operator arises
naturally in certain models in automatic control theory. On the other hand, there exists
another kind of difference equations called conditional difference equations, which also have
simple forms, but it is difficult to understand clearly the behavior of their solutions.

From [2, 5], we know that the following conditional difference equation

an =

⎧
⎨

⎩

an−1 + an−2
2

, if 2 | (an−1 + an−2),

an−1 + an−2, otherwise,
(1.1)
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with positive initial integers a0, a1, has the property that each positive integer solution (an)
is either stationary or unbounded.

Later, Ladas [26] gave the conjecture (also mentioned in [5]) that all solutions to the
conditional difference equation

an =

⎧
⎨

⎩

an−1 + an−2
3

, if 3 | (an−1 + an−2),

an−1 + an−2, otherwise,
(1.2)

are unbounded except for certain obvious periodic solutions, such as the solutions
1, 1, 2, 1, 1, 2, . . . or 7, 14, 7, 7, 14, 7, . . .. For such kind of conditional difference equations, any
solution which is not eventually periodic must be unbounded; hence, the only problem is to
classify the periodic solutions. However, this problem seems extremely difficult.

Equations such as (1.1) and (1.2) have many other generalizations, see [6, 26]. For
instance, Clark [3] studied periodic solutions to an = �can−1� − an−2 for various real c.

Greene and Niedzielski [5] considered a generalization of (1.1) and (1.2) and studied
the following conditional difference equation:

an =

⎧
⎨

⎩

r(an−1 + an−2), if r(an−1 + an−2) ∈ Z,

an−1 + an−2, otherwise,
(1.3)

where r is some fixed rational number. However, they pointed out that it was also very hard to
characterize the periodic solutions to (1.3). Hence, they addressed a different, easier question,
and then did some research.

Motivated by the above works, in this paper, we study the following conditional third-
order difference equation, which is another generalization of (1.1), (1.2), and (1.3):

yn =

⎧
⎨

⎩

r
(
yn−1 + yn−2 + yn−3

)
, if r

(
yn−1 + yn−2 + yn−3

) ∈ Z,

yn−1 + yn−2 + yn−3, otherwise,
(1.4)

where r is some appropriate rational number. We study this equation by transforming it into
a first-order system. It is eventually proved that the equation has no period-two (or three)
positive integer solutions. Besides, its all period-four (and five) positive integer solutions are
derived under appropriate rational parameters. The main results are presented in Section 4.

2. Auxiliary Results

For the convenience of investigation, higher-order difference equations are usually converted
into first- or lower-order difference equation systems. As we all know, second-order
difference equations can be transformed into first-order difference equation system. First, we
define a mapping F : Z

3 → Z
3 such that

F(x) =
⎧
⎨

⎩

Dx, if r
(
x + y + z

) ∈ Z,

Cx, otherwise,
(2.1)
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where x = (x, y, z)T ∈ Z
3, r is a rational parameter, and

D =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

r r r

⎞

⎟
⎟
⎠, C =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

1 1 1

⎞

⎟
⎟
⎠. (2.2)

Applying the defined mapping F(x), the third-order difference equation (1.4) can be
converted into a corresponding first-order difference equation system as follows. Let xn =
(xn, yn, zn)

T ∈ Z
3, n ∈ N0 and xn = Fn(x0), n ∈ N, then we have the following first-order

difference equation system:

xn+1 = F(xn) =
⎧
⎨

⎩

Dxn, if r
(
xn + yn + zn

) ∈ Z,

Cxn, otherwise,
(2.3)

where x0 = (y0, y1, y2)
T , y0, y1, y2 are initial integers in (1.4). Note that the condition r(xn +

yn + zn) ∈ Z can be replaced by the equivalent matrix product condition r((1, 1, 1)xn) ∈ Z.
For instance, when r = 1/5, then the periodic solution (1, 1, 1, 3, 1, 1, 1, 3, . . .) to (1.4)

corresponds to the following periodic solution to system (2.3):

⎛

⎜
⎜
⎝

1

1

1

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

1

1

3

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

1

3

1

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

3

1

1

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

1

1

1

⎞

⎟
⎟
⎠, . . .. (2.4)

Given an initial vector x0, each subsequent xn can be got from x0 via a formula xn = Lnx0,
where Ln is an appropriate product of n matrices, each of which is C or D. Hence, for the
above example, if x0 = (1, 1, 1)T , then x1 = Cx0, x2 = Dx1 = DCx0, x3 = D2Cx0, x4 = D3Cx0, and
so forth. Note that the matrices multiply x0 from right to left and that x4 = x0, so D3Cx0 = x0.
We have the following obvious result.

Lemma 2.1. If system (2.3) has a periodic solution with period k and x is a vector in that periodic
solution, then there exists a corresponding matrix L, which is a product of k matrices, each of which is
C or D, such that x is an eigenvector of L with eigenvalue 1.

The proof of Lemma 2.1 is simple; here we point out that the converse of Lemma 2.1
is not true. The problem is that the sum of the entries in some xi may be divisible by the
denominator of r at a time, when multiplication by C is called for.

Next, we present the following linear algebra facts, for example, [27, Chapter 7],
(similar results presented in [5]), followed by the form most convenient to us.

Lemma 2.2. (i) If v is an eigenvector with eigenvalue λ for a matrix L, then v is an eigenvector with
eigenvalue λk for Lk.

(ii) The characteristic polynomial for a 3 × 3 matrix L has the form

fL(λ) = det(λI − L) = λ3 − tr(L)λ2 + (det(L1,1) + det(L2,2) + det(L3,3))λ − det(L), (2.5)

where tr(L) is the trace of L.
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(iii) The characteristic polynomials for LM andML are identical for any n × n matrices L and
M. In particular, tr(LM) = tr(ML).

(iv) The trace is linear. That is, tr(αL + βM) = α tr(L) + β tr(M), for any n × n matrices L,M
and scalars α, β.

(v) Every matrix satisfies its characteristic polynomial. In particular, for a 3×3matrices L, one
has

L3 − tr(L)L2 + (det(L1,1) + det(L2,2) + det(L3,3))L − det(L)I = 0. (2.6)

Let the sequences (Hn)n≥0, (Jn)n≥0 be two solutions to the difference equation

yn = yn−1 + yn−2 + yn−3, n ≥ 3 (2.7)

with initial values H0 = H1 = 0, H2 = 1 and J0 = J2 = 1, J1 = 0, respectively.
Then, we get the following result about the matrix C in (2.2).

Lemma 2.3. For the matrix C in (2.2), one has

Cn =

⎛

⎜
⎜
⎝

Hn−1 Jn−1 Hn

Hn Jn Hn+1

Hn+1 Jn+1 Hn+2

⎞

⎟
⎟
⎠, (2.8)

for n ∈ N.

Proof. This result can be proved by induction. By (2.2) and the definitions of the sequences
(Hn)n≥0, (Jn)n≥0, we have

C =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

1 1 1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

H0 J0 H1

H1 J1 H2

H2 J2 H3

⎞

⎟
⎟
⎠. (2.9)

Therefore, (2.8) holds for n = 1. Now, we assume that (2.8) holds for n = ω, ω ∈ N. In the
following, it suffices to prove that (2.8) holds for n = ω + 1. By (2.2) and the associative law
of matrix multiplication, we have

Cω+1 = CCω =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

1 1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Hω−1 Jω−1 Hω

Hω Jω Hω+1

Hω+1 Jω+1 Hω+2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

Hω Jω Hω+1

Hω+1 Jω+1 Hω+2

Hω+2 Jω+2 Hω+3

⎞

⎟
⎟
⎠.

(2.10)

Therefore, (2.8) holds for k = ω + 1. The proof is complete.
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Given a 3 × 3 matrix L = N1N2 · · ·Nk, k ∈ N, where each Nj is either C or D, by
Lemma 2.2 we define the following polynomial:

PL(r) = −det(I − L) = −1 + tr(L) + det(L) − (det(L1,1) + det(L2,2) + det(L3,3)), (2.11)

where I is the identity matrix, and seek L for which PL(r) has rational zeros.

3. Some Other Properties

In this section, several properties of PL(r) defined in (2.11) are derived. They are used to
derive restrictions on values of r that allow periodic solutions to (1.4).

Lemma 3.1. For the polynomial PL(r) in (2.11), if PL(r) = 0, then PLk(r) = 0, for each k ∈ N.

Proof. SincePLk(r) = −det(I−Lk) = −det(I−L)det(Lk−1+Lk−1+· · ·+I), thenPLk(r) = PL(r)q(r)
for some polynomial

q(r) = det
(
Lk−1 + Lk−1 + · · · + I

)
, (3.1)

and the result follows.

Lemma 3.2. If C =
( 0 1 0

0 0 1
1 1 1

)
,E =

( 0 1 0
0 0 1
x x x

)
, then tr(Cn1ECn2E · · ·CnkE) is a polynomial in x of degree

k with nonnegative integer coefficients, with leading coefficient
∏k

j=1Hnj+3, where nj ∈ N.

Proof. By Lemma 2.3, we get that

CnE =

⎛

⎜
⎜
⎝

xHn xHn +Hn−1 xHn + Jn−1

xHn+1 xHn+1 +Hn xHn+1 + Jn

xHn+2 xHn+2 +Hn+1 xHn+2 + Jn+1

⎞

⎟
⎟
⎠

= x

⎛

⎜
⎜
⎝

Hn Hn Hn

Hn+1 Hn+1 Hn+1

Hn+2 Hn+2 Hn+2

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0 Hn−1 Jn−1

0 Hn Jn

0 Hn+1 Jn+1

⎞

⎟
⎟
⎠

= x(Hn,Hn+1,Hn+2)T1 + Fn,

(3.2)

where 1 represents the vector (1, 1, 1), and

Fn =

⎛

⎜
⎜
⎝

0 Hn−1 Jn−1

0 Hn Jn

0 Hn+1 Jn+1

⎞

⎟
⎟
⎠. (3.3)
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Hence,

Cn1ECn2E · · ·CnkE

=
(
x(Hn1 ,Hn1+1,Hn1+2)

T1 + Fn1

)
· · ·

(
x(Hnk ,Hnk+1,Hnk+2)

T1 + Fnk

)

= xk(Hn1 ,Hn1+1,Hn1+2)
T1(Hn2 ,Hn2+1,Hn2+2)

T1 · · · (Hnk ,Hnk+1,Hnk+2)
T1

+ · · · + Fn1Fn2 · · · Fnk

= xk
k∏

j=1

(
Hnj ,Hnj+1,Hnj+2

)T
1 + · · · +

k∏

j=1

Fnj .

(3.4)

To obtain the leading coefficient, we may induct on the simple calculation

(
(a, b, c)T1

)((
d, e, f

)T1
)
=
(
d + e + f

)(
(a, b, c)T1

)
(3.5)

to show that the trace of the product is the product of the traces, such as the following. Easily,
the trace of each individual matrix is Hnj+3, j = 1, 2, . . . , k. By (2.7) and (3.5), we have that

k∏

j=1

(
Hnj ,Hnj+1,Hnj+2

)T
1

= (Hnk +Hnk+1 +Hnk+2)
k−1∏

j=1

(
Hnj ,Hnj+1,Hnj+2

)T
1

= Hnk+3

k−1∏

j=1

(
Hnj ,Hnj+1,Hnj+2

)T
1 = · · ·

= Hnk+3Hnk−1+3 · · ·Hn2+3(Hn1 ,Hn1+1,Hn1+2)
T1

=
k∏

j=2

Hnj+3(Hn1 ,Hn1+1,Hn1+2)
T1.

(3.6)

Thus the leading coefficient is

k∏

j=2

Hnj+3(Hn1 +Hn1+1 +Hn1+2) =
k∏

j=1

Hnj+3. (3.7)

The proof is complete.

4. Periodic Solutions

In this section, we prove that (1.4) has no periodic solution with prime period two or three
and derive all periodic solutions to (1.4)with prime period four and five.
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Table 1

L2 PL2(r) Roots of PL2(r) = 0
D2 3r2 + 2r − 1 1/3, −1
DC 4r 0
CD 4r 0
C2 4 \

Theorem 4.1. Suppose that r is a rational number and r /∈ Z, then (1.4) has no periodic solutions
with prime period two.

Proof. Suppose that x ∈ Z
3 be a vector of a period-two solution to system (2.3), then, for some

matrix L2, we have x = L2x; here the matrix L2 has four possible cases C2, CD, DC and D2.
Take L2 = D2, for example, through some calculations, we get that

D2 =

⎛

⎜
⎜
⎝

0 0 1

r r r

r2 r(r + 1) r(r + 1)

⎞

⎟
⎟
⎠,

PD2(r) = 3r2 + 2r − 1.

(4.1)

By solving the equation PD2(r) = 3r2 + 2r − 1 = 0, we get two real roots r1 = 1/3 and
r2 = −1. Through similar calculations, we can get Table 1.

The only value of r which may lead to period-two solutions to system (2.3) is r = 1/3
since r /∈ Z. Hence, by solving the following matrix equation (with r = 1/3)

(
D2 − I

)
x = 0, (4.2)

we get its all integer solutions x = (t, t, t)T , t ∈ Z. Obviously, the solutions are equilibrium
points which contradicts the assumption. The proof is complete.

Theorem 4.2. Suppose that r is a rational number and r /∈ Z, then (1.4) has no periodic solutions
with prime period three.

Proof. Assume that x ∈ Z
3 be a vector of a period-three solution to system (2.3), then we get

x = L3xwhere L3 is a matrix product of three matrices, each of which is C or D.
Obviously, L3 has eight possible cases which can be divided into four categories such

as three Cs, two Cs and oneD, one C and twoDs, and threeDs. By (2.2) and through certain
calculations, the matrices C2D, CDC, DC2 are similar, and; thus, they generate the same
polynomials PL3(r), so do the matrices CD2, DCD, D2C.
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Table 2

L3 PL3(r) Roots of PL3(r) = 0
D3 3r − 1 1/3
1D2Cs r + 1 −1
1C2Ds 2r 0
C3 2 \

Table 3

L4 PL4(r) Roots of PL4(r) = 0
D4 3r4 + 6r2 + 8r3 − 1 13, −1(triple)
3Ds1C 5r3 + 9r2 + 3r − 1 15, −1(double)
2Ds2Cs 8r2 + 8r −1(double)
1D3Cs 12r + 4 −1/3
C4 16 \

In the following, we take L3 = D3, for example. Through some calculations, we have

D3 =

⎛

⎜
⎜
⎝

r r r

r2 r(r + 1) r(r + 1)

r2(r + 1) r2(r + 2) r
(
r2 + 2r + 1

)

⎞

⎟
⎟
⎠,

PD3(r) = 3r − 1.

(4.3)

By solving the equation PD3(r) = 3r − 1 = 0, we get the only root r = 1/3. Through similar
calculations, we can obtain Table 2.

The only value of r which may lead to period-three solutions to system (2.3) is r = 1/3
since r /∈ Z. Hence, by solving the following matrix equation (with r = 1/3)

(
D3 − I

)
x = 0, (4.4)

we get its all integer solutions x = (t, t, t)T , t ∈ Z. Obviously, the solutions are equilibrium
points which contradicts the assumption. The proof is complete.

In the following, denote by S(k, r) the set of initial values (y0, y1, y2) which lead to
period-k solutions to (1.4) with the parameter r.

Theorem 4.3. Suppose that r is a rational number and r /∈ Z, then (1.4) has periodic solutions
with prime period four if and only if r = −1/3 or 1/5. Moreover, S(4,−1/3) = {(t, t, t), (−t, t, t),
(t,−t, t), (t, t,−t) | t ∈ Z, 3 � t}, and S(4, 1/5) = {(t, t, 3t), (t, 3t, t), (3t, t, t), (t, t, t) | t ∈ Z, 5 � t}.

Proof. Let x ∈ Z
3 be a vector of a period-four solution to system (2.3), then we get x = L4x,

where L4 is an appropriate product of four matrices, each of which is C orD. Through similar
calculation to those in Theorems 4.1 and 4.2, Table 3 is derived.

The only values of r which possibly lead to period-four solutions to system (2.3) are
r = 1/3,−1/3, or 1/5 because of r /∈ Z.
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Case 1 (r = 1/3). By solving the following matrix equation

(
D4 − I

)
x = 0, (4.5)

we get its all integer solutions x = (t, t, t)T , t ∈ Z. Obviously, the solutions are equilibrium
points.

Case 2 (r = −1/3). In this case, the matrix L4 has four possible cases C3D,C2DC,CDC2, and
DC3.

By solving the matrix equation

(
C3D − I

)
x = 0, (4.6)

we get its all integer solutions x = (t, t, t)T , t ∈ Z. On the condition of that 3 � t, then we can
verify that the initial vector x0 = (t, t, t)T leads to a period-four solution to system (2.3), such
as the following:

⎛

⎜
⎜
⎝

t

t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

t

−t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

−t
t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

−t
t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

t

t

⎞

⎟
⎟
⎠, . . . . (4.7)

Similarly, for the following three matrix equations

(
C2DC − I

)
x = 0,

(
CDC2 − I

)
x = 0,

(
DC3 − I

)
x = 0, (4.8)

we derive its all integer solutions x = (−t, t, t)T , x = (t,−t, t)T , x = (t, t,−t)T , t ∈ Z,
respectively.

Note that, on the condition 3 � t, the initial vectors x0 = (−t, t, t)T , (t,−t, t)T , or (t, t,−t)T
also lead to period-four solutions to system (2.3).

Case 3 (r = 1/5). In this case, the matrix L4 also has four possible cases CD3,DCD2,D2CD,
and D3C. By solving the matrix equation

(
CD3 − I

)
x = 0, (4.9)

we get its all integer solutions x = (t, t, 3t)T , t ∈ Z. On the condition of that 5 � t, then we can
verify that the initial vector x0 = (t, t, 3t)T leads to a period-four solution to system (2.3), such
as the following:

⎛

⎜
⎜
⎝

t

t

3t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

3t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

3t

t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

t

3t

⎞

⎟
⎟
⎠, . . .. (4.10)
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Figure 1: Equation (1.4). (a) r = −1/3. Initial values y0 = 8, y1 = 8, y2 = 8 (t = 8). (b) r = 1/5. Initial values
y0 = 7, y1 = 7, y2 = 21 (t = 7).

Table 4

L5 PL5(r) Rational roots of PL5(r) = 0
D5 3r5 + 5r4 + 10r3 + 5r2 − 1 1/3
4Ds1C 4r4 + 8r3 + 9r2 + 2r − 1 \
3Ds2Cs 6r3 + 10r2 + 7r − 1 \
2Ds3Cs 9r2 + 12r + 1 \
1D4Cs 15r + 7 −7/15
C5 22 \

Obviously, on the condition 5 � t, the initial vectors x0 = (t, 3t, t)T , (3t, t, t)T , or (t, t, t)T (which
are integer solutions to appropriate matrix equations corresponding to DCD2, D2CD, D3C,
resp.) also lead to period-four solutions to system (2.3). The proof is complete.

To illustrate the results, we give two orbits (see the following Figure 1) of period-
four integer solutions to (1.4) of the particular cases r = −1/3, t = 8 and r = 1/5, t = 7 in
Theorem 4.3.

Theorem 4.4. Suppose that r is a rational number and r /∈ Z, then (1.4) has periodic
solutions with prime period five if and only if r = −7/15. Moreover, S(5,−7/15) =
{(5t, t, 9t), (t, 9t,−7t), (9t,−7t, 3t), (−7t, 3t, 5t), (3t, 5t, t) | t ∈ Z, 3 � t, 5 � t}.

Proof. Let x ∈ Z
3 be a vector of a period-five solution to system (2.3), then we get x = L5x

where L5 is an appropriate product of five matrices, each of which is C orD. Through similar
calculation to those in Theorems 4.1 and 4.2, Table 4 is obtained.

Apparently, the only values of r which possibly lead to period-three solutions to
system (2.3) are r = 1/3 or −7/15 because of r /∈ Z.

Case 1 (r = 1/3). By solving the matrix equation(
D5 − I

)
x = 0, (4.11)

we get its all integer solutions x = (t, t, t)T , t ∈ Z. Obviously, the solutions are equilibrium
points.
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Figure 2: Equation (1.4) r = −7/15. (a): Initial values y0 = 10, y1 = 2, y2 = 18 (t = 2); (b): Initial values
y0 = 55, y1 = 11, y2 = 99 (t = 11).

Case 2 (r = −7/15). In this case, the matrix L5 also has five possible cases C4D,
C3DC,C2DC2,CDC3, and DC4. Solve the matrix equation

(
C4D − I

)
x = 0, (4.12)

we get its all integer solutions x = (5t, t, 9t)T , t ∈ Z. On the conditions that 3 � t, 5 � t, then we
can verify that the initial vector x0 = (5t, t, 9t)T leads to a period-four solution to system (2.3),
such as the following:

⎛

⎜
⎜
⎝

5t

t

9t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

t

9t

−7t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

9t

−7t
3t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

−7t
3t

5t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

3t

5t

t

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

5t

t

9t

⎞

⎟
⎟
⎠, . . .. (4.13)

Obviously, on the conditions 3 � t, 5 � t, the initial vectors x0 = (t, 9t,−7t)T , (9t,−7t, 3t)T ,
(−7t, 3t, 5t)T , or (3t, 5t, t)T (which are integer solutions to appropriate matrix equations
corresponding to DC4, CDC3, C2DC2, and C3DC, resp.) also lead to period-four solutions
to system (2.3). The proof is complete.

To illustrate the results, we give two orbits (see Figure 2) of period-five integer
solutions to (1.4) of the particular cases t = 2, 11 in Theorem 4.4.
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[11] W. P. Liu, X. F. Yang, S. Stević, and B. D. Iričanin, “Part-metric and its applications to cyclic discrete
dynamic systems,” Abstract and Applied Analysis, vol. 2011, Article ID 534974, 16 pages, 2011.
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[19] S. Stević, “Global stability of a difference equation with maximum,” Applied Mathematics and
Computation, vol. 210, no. 2, pp. 525–529, 2009.
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