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We will consider the existence of multiple positive periodic solutions for a class of abstract
difference equations by using the well-known fixed point theorem (due to Krasnoselskii).

In the past several years, the existence of periodic solutions for first-order functional
differential equations

y′(t) = −a(t)y(t) + f
(
t, y(t − τ(t))

)
(1)

has been extensively investigated (see [1–3], and the references therein). In [4–6], the
existence of periodic positive solutions for difference equations

xn+1 = anxn + λhnf
(
xn−τ(n)

)
(2)

has been considered. To the best of our knowledge, however, little has been done for the
abstract difference equations (see [7–9]). In this note, we will consider this problem. To this
end, let X be a real Banach space and let K ⊂ X be a cone, then a Banach space X with a
partial ordering ≤ induced by a coneK is called an ordered Banach space. On the other hand,
we will denote the identity operator defined on X by I.

In [7–9], the authors considered the existence of periodic solutions for the abstract
equation

xn+1 = Anxn + Fn(xn). (3)
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In this note, we will consider the equation

xn+1 = Anxn + λFn

(
xn−τ(n)

)
, n ∈ Z, (4)

where {An}n∈Z is a T -periodic sequence of bounded linear operator defined onX and satisfies

(
∏T−1

k=0A
−1
k

− I)
−1
An(
∏T−1

k=0A
−1
k
−I) = An for n ∈ Z, (

∏T−1
k=0A

−1
k
−I)x ∈ K and (

∏T−1
k=0A

−1
k

− I)
−1
x ∈

K for any x ∈ K, Akx ∈ K and A−1
k x ∈ K for any x ∈ K (k = 0, 1, . . . , T − 1), {τ(n)}n∈Z is

an integer valued T -periodic sequence, and {Fn}n∈Z is a T -periodic sequence of bounded
functions from X to K, and λ is a positive constant.

If (4) has a T -periodic solution in X, then we have

n∏

k=0

A−1
k xn+1 −

n−1∏

k=0

A−1
k xn =

n∏

k=0

A−1
k

(
λFn

(
xn−τ(n)

))
. (5)

Summing the above equation from n to n + T − 1, we have

n−1∏

k=0

A−1
k

(
n+T−1∏

k=n

A−1
k − I

)

xn =
n+T−1∑

s=n

s∏

k=0

A−1
k

(
λFs

(
xs−τ(s)

))
. (6)

That is,

xn = λ
n+T−1∑

s=n
G(n, s)Fs

(
xs−τ(s)

)
, n ∈ Z, (7)

where

G(n, s) =

(
T−1∏

k=0

A−1
k − I

)−1 s∏

k=n

A−1
k . (8)

If (7) has a T -periodic solution in X, then we have

xn+1 − xn =

(
T−1∏

k=0

A−1
k − I

)−1 n+T∑

s=n+1

s∏

k=n+1

A−1
k

(
λFs

(
xs−τ(s)

))

−
(

T−1∏

k=0

A−1
k − I

)−1n+T−1∑

s=n

s∏

k=n

A−1
k

(
λFs

(
xs−τ(s)

))
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=

⎛

⎝
(

T−1∏

k=0

A−1
k − I

)−1
An

(
T−1∏

k=0

A−1
k − I

)

− I

⎞

⎠
n+T−1∑

s=n
G(n, s)

(
λFs

(
xs−τ(s)

))

+

(
T−1∏

k=0

A−1
k − I

)−1( n+T∏

k=n+1

A−1
k − I

)
(
λFn

(
xn−τ(n)

))

= Anxn − xn + λFn

(
xn−τ(n)

)
.

(9)

This equation is equivalent to (4). Thus, we have the following result.

Theorem 1. Assume that A0, A1, . . . , AT−1 and (
∏T−1

k=0A
−1
k

− I) are invertible and

A−1
n+1A

−1
n+2 · · ·A

−1
n+T = A−1

0 A−1
1 · · ·A−1

T−1 (n ∈ Z). Then {xn}n∈Z (xn ∈ X) is a T -periodic
solution of (4) if and only if it is a T -periodic solution of (7).

We now assume that 0 < N ≤ ‖G(n, s)‖ ≤ M < +∞ for n ∈ Z and n ≤ s ≤ n + T − 1 and
that σ = N/M. To obtain our main results, we firstly give a lemma. The proof of that lemma
can be found in [10].

Lemma 1. Let E be a Banach space, and let P ⊂ E be a cone. AssumeΩ1,Ω2 are bounded open subsets
of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that T : P ∩ (Ω2 \Ω1) → P is a completely continuous
operator such that

(1) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ � ‖u‖ for u ∈ P ∩ ∂Ω2 or that

(2) ‖Tu‖ � ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

For the sake of convenience, the conditions needed for our criteria are listed as follows.

(H1) Fn ∈ C(X,X), and there exists {uk} ⊂ X with ‖uk‖ → 0 such that Fn(uk) > θ
(uk � θ) for n = 1, 2, . . . , T and k = 1, 2, . . . .

(H2) Fn ∈ C(X,X) and Fn(u) > θ for u > θ and n = 1, 2, . . . , T .

(L1) lim‖u‖→ 0‖Fn(u)‖/‖u‖ = ∞ for n = 1, 2, . . . , T .

(L2) lim‖u‖→∞‖Fn(u)‖/‖u‖ = ∞ for n = 1, 2, . . . , T .

(L3) lim‖u‖→ 0‖Fn(u)‖/‖u‖ = 0 for n = 1, 2, . . . , T .

(L4) lim‖u‖→∞‖Fn(u)‖/‖u‖ = 0 for n = 1, 2, . . . , T .

(L5) lim‖u‖→ 0‖Fn(u)‖/‖u‖ = l for n = 1, 2, . . . , T and 0 < l < ∞.

(L6) lim‖u‖→∞‖Fn(u)‖/‖u‖ = L for n = 1, 2, . . . , T and 0 < L < ∞.

Now let Ŷ be the set of all T -periodic sequences in X, endowed with the usual linear
structure and the norm

‖u‖ = max
0≤n≤T−1

‖un‖. (10)
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Then Ŷ is a Banach space with cone

Ω =
{
u = {un} ∈ Ŷ : un � θ, ‖un‖ � σ‖u‖, n ∈ Z

}
. (11)

Define a mapping H : Ŷ → Ŷ by

(Hu)n = λ
n+T−1∑

s=n
G(n, s)

(
Fs

(
us−τ(s)

))
, n ∈ Z. (12)

Then it is easily seen that H is completely continuous on (bounded) subset of Ω, and for
u ∈ Ω,

‖(Hu)n‖ ≤ λ
n+T−1∑

s=n
‖G(n, s)‖ · ∥∥Fs

(
us−τ(s)

)∥∥

≤ λM
n+T−1∑

s=n

∥∥Fs

(
us−τ(s)

)∥∥

(13)

so that

‖(Hu)n‖ � λN
n+T−1∑

s=n

∥∥Fs

(
us−τ(s)

)∥∥ � σ‖Hu‖ (14)

That is, HΩ is contained in Ω.

Lemma 2. Assume that there exist two positive numbers a and b such that a/= b,

max
0≤‖x‖≤a,0≤n≤T−1

‖Fn(x)‖ ≤ a

λA
, (15)

min
σb≤‖x‖≤b, 0≤n≤T−1

‖Fn(x)‖ ≥ b

λB
, (16)

where

A = max
0≤n≤T−1

n+T−1∑

s=n
‖G(n, s)‖, (17)

B = min
0≤n≤T−1

n+T−1∑

s=n
‖G(n, s)‖. (18)

Then there exists u ∈ Ω which is a fixed point of H and satisfiesmin{a, b} ≤ ‖u‖ ≤ max{a, b}.
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Proof. Let Ωξ = {w ∈ Ω | ‖w‖ < ξ}. Assume that a < b, then, for any u ∈ Ω which satisfies
‖u‖ = a, in view of (15), we have

‖(Hu)n‖ ≤
{

λ
n+T−1∑

s=n
‖G(n, s)‖

}

· a

λA
≤ λA · a

λA
= a. (19)

That is, ‖Hu‖ ≤ ‖u‖ for u ∈ ∂Ωa. For any u ∈ Ω which satisfies ‖u‖ = b, we have

‖(Hu)n‖ �
{

λ
n+T−1∑

s=n
‖G(n, s)‖

}

· b

λB
� λB · b

λB
= b. (20)

That is, we have ‖Hu‖ � ‖u‖ for u ∈ ∂Ωb. In view of Theorem 1, there exists u ∈ Ω, which
satisfies a ≤ ‖u‖ ≤ b such that Hu = u. If a > b, (19) is replaced by ‖(Hu)n‖ � b in view of
(16) and (20) is replaced by ‖(Hu)n‖ ≤ a in view of (15). The same conclusion is proved. The
proof is complete.

Theorem 2. Suppose (H1), (L1), and (L2) hold. Then for any λ ∈ (0, λ∗), (4) has at least two positive
periodic solutions, where

λ∗ =
1
A
sup
r>0

r

max0≤‖u‖≤r,0≤n≤T−1‖Fn(u)‖ . (21)

Proof. In view of (H1), we can let q(r) = r/(Amax0≤‖u‖≤r,0≤n≤T−1‖Fn(u)‖). By (L1) and (L2),
we see further that limr→ 0q(r) = limr→∞q(r) = 0. Thus, there exists r0 > 0 such that q(r0) =
maxr>0q(r) = λ∗. For any λ ∈ (0, λ∗), by the intermediate value theorem, there exist a1 ∈
(0, r0) and a2 ∈ (r0,∞) such that q(a1) = q(a2) = λ. Thus, we have ‖Fn(u)‖ ≤ a1/(λA)
for ‖u‖ ∈ [0, a1] and n = 0, 1, 2, . . . , T − 1, and ‖Fn(u)‖ ≤ a2/(λA) for ‖u‖ ∈ [0, a2] and
n = 0, 1, 2, . . . , T − 1. On the other hand, in view of (L1) and (L2), we see that there exist
b1 ∈ (0, a1) and b2 ∈ (a2,∞) such that ‖Fn(u)‖/‖u‖ � 1/(λσB) for ‖u‖ ∈ (0, b1] ∪ [b2σ,∞).
That is, ‖Fn(u)‖ � b1/(λB) for ‖u‖ ∈ [b1σ, b1] and ‖Fn(u)‖ � b2/(λB) for ‖u‖ ∈ [b2σ, b2]). An
application of Lemma 2 leads to two distinct solutions of (4).

Theorem 3. Suppose (H2), (L3), and (L4) hold. Then for any λ > λ∗∗, (4) has at least two positive
periodic solutions, where

λ∗∗ =
1
B
inf
r>0

r

minσr≤‖u‖≤r,0≤n≤T−1‖Fn(u)‖ , (22)

and B is defined by (18).

Proof. Let p(r) = r/(Bminσr≤‖u‖≤r,0≤n≤T−1‖Fn(u)‖). Clearly, p ∈ C((0,∞),(0,∞)). From (L3)
and (L4), we see that limr→ 0p(r) = limr→∞p(r) = ∞. Thus, there exists r0 > 0 such that
p(r0) = minr>0p(r) = λ∗∗. For any λ > λ∗∗, there exist b1 ∈ (0, r0) and b2 ∈ (r0,∞) such that
p(b1) = p(b2) = λ. Thus we have ‖Fn(u)‖ � b1/(λB) for ‖u‖ ∈ [σb1, b1] and n = 0, 1, . . . , T − 1,
and ‖Fn(u)‖ � b2/(λB) for ‖u‖ ∈ [σb2, b2] and n = 0, 1, . . . , T−1. On the other hand, in view of
(L3), we see that there exists a1 ∈ (0, b1) such that ‖Fn(u)‖/‖u‖ ≤ 1/(λA) for ‖u‖ ∈ (0, a1] and
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n = 0, 1, . . . , T − 1. Thus we have ‖Fn(u)‖ ≤ a1/(λA) for 0 ≤ ‖u‖ ≤ a1 and n = 0, 1, . . . , T − 1.
In view of (L4), we see that there exists a ∈ (b2,∞) such that ‖Fn(u)‖/‖u‖ ≤ 1/(λA) for
‖u‖ ∈ (a,∞) and n = 0, 1, . . . , T −1. Let δ = max0≤‖u‖≤a,0≤n≤T−1‖Fn(u)‖. Then we have ‖Fn(u)‖ ≤
a2/(λA) for ‖u‖ ∈ [0, a2] and n = 0, 1, . . . , T − 1, where a2 > a and a2 � λδA. An application
of Lemma 2 leads to two distinct solutions of (4).

Theorem 4. Assume that (H2), (L5), and (L6) hold. Then, for each λ satisfying

1
σBL

< λ <
1
Al

(23)

or

1
σBl

< λ <
1
AL

, (24)

equation (4) has a positive periodic solution.

Proof. Suppose (23) holds. Let ε > 0 such that

1
σB(L − ε)

≤ λ ≤ 1
A(l + ε)

. (25)

Note that l > 0, then there exists H1 > 0 such that ‖Fn(u)‖ ≤ (l + ε)‖u‖ for 0 < ‖u‖ ≤ H1 and
n = 0, 1, . . . , T − 1. So, for u ∈ Ωwith ‖u‖ = H1, we have

‖(Hu)n‖ ≤ λ(l + ε)
n+T−1∑

s=n
‖G(n, s)‖ · ∥∥us−τ(s)

∥∥

≤ λ(l + ε)‖u‖
n+T−1∑

s=n
‖G(n, s)‖

≤ λA(l + ε)‖u‖ ≤ ‖u‖.

(26)

Next, since L > 0, there exists a H2 > 0 such that ‖Fn(u)‖ � (L − ε)‖u‖ for ‖u‖ � H2 and
n = 0, 1, . . . , T − 1. Let H2 = max{2H1,H2}. Then for u ∈ Ω with ‖u‖ = H2,

‖(Hu)n‖ � λ(L − ε)
n+T−1∑

s=n
‖G(n, s)‖ · ∥∥us−τ(s)

∥∥

� λ(L − ε)σ‖u‖
n+T−1∑

s=n
‖G(n, s)‖

� λ(L − ε)σB‖u‖ � ‖u‖.

(27)

In view of Lemma 1, we see that (4) has a positive periodic solution.
The other case is similarly proved.
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Our Theorems 1–4 generalize the main results from [5, 6].
If T = 2, X is a Hilbert space, A0, A1, and A−1

0 A−1
1 − I are invertible self-conjugate

operator defined on X, A0A1, (A−1
0 A−1

1 − I)A0, (A−1
0 A−1

1 − I)A1 are self-conjugate operator
defined on X, then A0, A1 satisfy conditions of this paper.

As an example, let both {λn} and {λ′n} be real bounded sequence, {μn} and {μ′
n} are

also real bounded sequence, where

μn =

⎧
⎨

⎩

1
λn

, λn /= 0,

0, λn = 0,
μ′
n =

⎧
⎨

⎩

1
λ′n

, λ′n /= 0,

0, λ′n = 0.
(28)

{en} is complete orthonormal set of space l2 : en = {0, . . . , 0,
(n)
1 , 0, . . . 0} (n = 1, 2, . . .). Let

A0x =
∞∑

n=1

ξnλnen, A1x =
∞∑

n=1

ξnλ
′
nen (29)

for any x =
∑∞

n=1 ξnen, then A0 and A1 are both self-conjugate operator, and satisfy all of
above conditions.
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