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We consider two of the technological changes on the macroeconomic level. The first type is
due to changes of addresses of mutual deliveries between producers and the second type is due
to technological progress.
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1. MODELS OF TECHNOLOGICAL
STRUCTURE

Peculiarities of dynamics of technological structure of
economics play a very impotent role in explanation of
such phenomena as economic cycles, inflation. Now
the V. Leontiev scheme is the main method in

description of technological structure and this scheme
is widely used in models of inter-industry balance.
Primarily in models of inter-industry balance
scientists described pure industries in every of which
existence of only one technology was allowed. In
what follows for description of structural variations in
industrial system there was need in considering of
pure industries with several technologies, but
intensities of technologies use were restricted to

production capacities. However, such a generalization
turned out to be too narrow for modeling of evolution
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of technological structure. For example, L.V.
Kantorovich and his school considered technologies
and capacities differentiated with respect to time of
creation. The model of pure industries needs which
have, in general, continual set of technologies. Such a

model was given in the H.S. Houthakker and the
L. Johansen works Houthakker, 1955-1956; Johan-
sen, 1972) and this model was a natural expression of
the Leontiev scheme.

1.1. The Houthakker-Johansen Model

We consider a model of pure industry producing
homogeneous outputs and using n kinds of production
factors of current use (PFCU). Suppose, that in

industry there are different technological production
processes every of which requires input of n kinds of
PFCU in given proportions. Then every technology is



292 A.A. SHANANIN

given by a vector x (xl, ...,xn) of coefficients of
PFCU input per unit production output. Intensities
of technologies use are restricted by available

capacities in industry. Suppose that when building
up capacities there is selection of technology by which
this capacity is functioning. Then at any moment of
time, the capacities of industry turn out to be
distributed according to technologies. Denote by/x the
corresponding non-negative measure in R_ {x
(X1,...,Xn)Xj 0, j 1,..., n}. In order to load
capacities completely it is necessary to provide
industry with a vector of PFCU L--(L1,...,Ln),
where

Li | xild,(dx).
dR

Let (/, ln) be a vector of PFCU going into

disposal of industry. If li < Li then for lack of
/-component of PFCU, it is impossible to load all
capacities. Denote by u(x) a coefficient of capacity
load corresponding to technology x.

We consider a problem of optimal distribution of
resources one on purpose of maximization of industry
output:

u(x)tx(dx)---*max
.+ u(x)

xu(x)lx(dx) <- 1,

The question about correspondence between
production functions and capacities distribution

according to technologies arise in Houthakker
(1955-1956) where capacities distributions corre-

sponding to the production functions of Cobb-
Douglas type were obtained. In the L. Johansen work
(1972) there are another examples and necessary
conditions which the production functions corre-

sponding to capacities distribution according to

technologies should satisfy. Hildenbrandt (1981)
used zonoid theory for characterization of production
functions of the same class. However, in such a way a

characterization suitable for testing was not obtained.
In Shananin (1984), it is supposed along with

production function (1) to consider profit function

II(p,po) that is connected with (1) by Legender
transform

II(p,po) sup[p0(/) pl],
l>_O

1
(1) --- inf[H(p,po) + pl]

pOp>_o

(1.2)

where P0 > 0 is the price of output;
p (pl, ...,pn) -> 0--prices of PFCU used by indus-

try; H(p,po)--summary profit of the industry. Profit
function and capacities distribution turn out to be
connected with integral transform of Radon type:

(1.3)
f

1-l(p,po) I (po px)+ t(dx),
dR

0 u(x) 1. (1.1) where

It follows from interpretation of duality theorem
which is standard for mathematical economics that
optimal mechanisms of resources distribution in
problem (1.1) are market mechanisms. The corre-

sponding exact statements are usually called the
generalized Neuman-Pirson lemma (see, for ex-

ample, Shananin, 1984).
The production function (1) is called function that

associates to the vector 1-> 0 maximum value of
functional in problem (1.1). In such a way defined
production function posses the main properties
postulated in neo-classical theory.

Po px,
(Po px)+ O,

if Po -px >-- O,

if Po -px < 0

From the mathematical point of view the problem is
reduced to the inversion problem of Radon transform
by incomplete data.

1.2. The Aggregation Procedure

Now we will explain why this problem is interesting
for understanding the application frontiers of Leontiev
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scheme for description of technological structure of
economics.
The models of inter-industry balance based on

Leontiev scheme find applications for the state

regulation of economics. It is very impotent to

analyze the main hypothesis of the schemem
existence of capacities distribution according to

technologies. It is not obvious that this hypothesis is
valid. The fact is that nomenclature of final product
produced in industrial countries consists of 107-109
names, but in macro economic models there are

approximately 101-102 pure industries. Consequently,
outputs of pure industries and their production functions
are defined with help of aggregation procedures. It is

typical for generally accepted aggregation procedures
that they are multi-step. That is descriptions obtained as
a result of aggregation are subject to aggregation again
on the next stage. So natural demand of aggregation
procedures is universality principal of description--as a
result of aggregation we should obtain the description of
the same type that describes the original elements. Test
of the main hypothesis is reduced to the question about
existence of capacities distribution according to

technologies generating aggregated production function.
Now we shall analyze this problem on the example

of aggregation of model for inter-industry balance.
We consider system of rn pure industries, producing
final products X= (XI ...,Xm). And suppose that
demand functions for these final products satisfy
integrability conditions and to these functions there
corresponds product index o(X) (positive homo-
geneous utility function satisfying natural demands)
and price index qo(q) connected with o(X) by
transforms

qo(q) inf
qX qX

qt0(X) inf
{x>-olqro(X)}XIto(XO {q>-Olqo(q)} qo(q)

where q (ql,..., qm) >- 0ma price vector for final
product (see Shananin, 1986 and Shananin, Petzov,
1997). We describe every j-industry with help of
production function j(xJ, P) constructed according
to model from sections 1.1 or 1.2;
X (X,..., X_l, X}+I,... xJm)-a vector of costs
of output of the rest industries by j-th industry;

(l,...,/Jn)a vector of primary resources spent
by j-th industry; s (sl, ...,Sn) >- Oa price vector

for primary resources.

We consider a problem of optimal distribution
of primary resources l-(l,...,ln)>-0 between
industries:

qo(X)--’max

j(Xj, j) EX X >- O,
ij

(j 1, ...,m),

X0 > O,j <-- 1,
j--1

X O, ...,X O, O, ...,1 >-- O. (1.4)

Under usual restrictions (productivity and so on) it
follows from standard economic interpretation of
duality theory that equilibrium market mechanisms
(that is market mechanisms under which demand for
end products is equal to supply) are optimal
mechanisms of resources distribution (see Shananin,
1986).
Function which correspond optimal value of

functional in the problem (1.4) with the vector of
primary resources 1-> 0 is called aggregated pro-
duction function a(1).

In accordance with universality principle it is

required to verify whether it is possible to generate
according to the model from the section 1.1

aggregated production function attA(1) from some

capacities distribution according to technologies.
To study this question we consider aggregated

function of profit HZ(s,qo). In Shananin (1986) it is

proved that summary profit of system of industries is

expressed through profit functions of primary
industries by formula

/___m \
HA(s, qo)= min [’-" (s, q)]. (1.5)

q>-Olq(q)>-q
j=

Besides, functions xItA(1) and 1-lA(s,qo) are

connected with the Legendre transforms in Eq.
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(1.2). So the problem is reduced to the problem of
inversion of the profit operator in Eq. (1.3).

Let us consider a finite measures /xJA)--
e-A(x’+’"+Xn)txj, j 1,2. It implies from Eq. (1.8)
that @l(p)= qb2(P), p F, where

1.3. The Inversion of Profit Operator As the
Inversion of the Radon Transform by
Incomplete Data

We shall consider now the following important
questions about transform in Eq. (1.3):

1. Is the measure /x(dx) uniquely reconstructed
through functions 171(19, Po), (t9, Po) Rn+ R+ 9.

2. What are necessary and sufficient conditions for
the given function H(p,po) to be the transform in

Eq. (1.3) of the nonnegafive measure/x(dx), x

R% ?

The following statement give positive answer to

the question (1) at least for the case when measure

/x with support in R_ has not more than
exponential growth at infinity. This means that
for someA>0

e Alxl p,(dx) < oo. (1.6)

cI)j(p) ] e-PXJA)(dx).

The functions qj(p) are analytically extended to

the tube domain R + iR C C and coincide there.+
(A)So the Fourier transform/z]A) and/x2 also coincides.

Consequently
Let us consider a class of nonnegative measure with

support in R exponentially decreasing at infinity, i.e.+
for some e > 0

eelxl (dx) <

The effective answer to the question (2) can be

given in terms of the Laplace transform

021-1(13

Theorem. (Henkin G.M., Shananin A.A. 1990) Let
the measures t2,1 and tz2 with supports in Rn+ have not

more than exponential growth at infinity and satisfy
the equality

JR (PO px)+tz,(dx) Ilc (Po px)+tz2(dx) (1.7)

for every p F and po > O, where 1" is some open
cone in R+. Then I tx2.

This theorem is rather simple consequence of the
classical properties of the Laplace transform. Indeed,
it follows from Eqs. (1.6) and (1.7) that

J e-pxlzl (dX) J e-pXtz2(dx) (1.8)

for every p F, Ipl > A.

Theorem. (Henkin G.M., Shananin A.A. 1990) A

function II(p,po), (P,P0) Rn+ R+, can be rep-
resented in the form (1.3)for a nonnegative
exponentially decreasing measure tz with support in

Rn+ iff
i) II(p,po) is a homogeneous of the first

order convex function on Rn+ R+
ii) for a fixed p R+ the measure

2It(p, PO /OP) exponentially decreases
as Po ---,oo and limU(p, P0)

Po "-+

=p lrn+o( H(p, po))YOpo) 0;

iii) the function @(p)

f e-((2H (p, ’))/0z2) dr is bounded,
completely monotone function on R+.

The proof of this theorem is based on the following
classical result of S. Bernstein (n 1) and V. Gilbert

(n > 1). A function @(p),p R_ can be represented
as Laplace transform of nonnegative finite measure
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with support in R_ iff q/(p is completely monotone
on R_, i.e. t/) C(R+)N C(intR_) and for any
p intR_ and k (kl, ...,kn)

(-1)11 oll
Op’ ...OlJn

Let us remark here that the aggregated profit
functions of the form (1.5) satisfy automatically to the
condition (i) and (ii) of the theorem but not satisfy in
general to the condition (iii).

Example. We much upon two examples of appli-
cations of results giving characterization of a profit

functions.
1. We consider the production function of the CES

o 1-p-e/p wheretype" (11,12)--([3117p -Jr- /o2’2

ill>0, f12>0, p-->-l, pC0, 0<y--<l.
Formula (1.2) allows computing the correspond-
ing profit function II(pl,P2,Po). It implies from
theorem that some efficiency distribution of
technologies corresponds to the function qt(ll,12)
iff p > -1 and O < 3/< 1.

2. We consider the profitfunction

H(p,P0) m.ax/-/j(p, p0), (1.9)

wherefunctions Hj(p, po) are generated by various

capacity distribution of technologies tzj(dx).
Suppose that the following expansion Rn+ UjKj
takes place, where Kj {plFlfp,po) (p,po),
lI(p,po) > H/(p,p0)for #j} is open cone. It

follows from uniqueness theorem that for the

function H(p,po) there does not exist capacity
distribution over technologies, which generates it.

In fact inside cone Kj only efficiency distribution
over technologies ij(dx may correspond to the

function H(p,po). If structure ofprices changes in
such a way that vectorp comes overfrom one cone

to another then capacity distribution over technol-
ogies changes step-wise.

For example, consider a system of two industries.
The output of the first industry in the final product and

the expenses for the unit of output production are Xo
units of the second industry product, Xl units of first

primary resource, x2 units of second primary resource.

Suppose the total capacity of the first industry equals
ko. The second industry utilizes the same primary
resources as the first one. Let yl (y,y21) and y2
(y2, y22) be two technologies of the second industry and
/z(dz) kl 6(z y) + kz6(z y2) be its capacity
distribution over technologies. Denote by Po the
price of the first industry product, P and P2 be the

prices of the first and the second primary resources, P3
be the price of the second industry production. It
follows from Eq. (1.5) that the aggregated profit
function has the form

/-/(P ,p2,po) min{ko(Po p3xo plXl p2x2)+
p3>O

+ k(p3 PYl P2Y)+ + k2(P3

PlY P2Y)+

Let us assume that y > yl yl > y, k + k2 > xoko2

Then

/-/(P, P0) max k0
x0 +

+ min( k2xo- ,ko)(Po-p(x+xoy2))+,
man( klxo- ,ko)(Po-p(x+xoy))+
+ ko x--- +

where x (Xl,X2), p (Pl,P2). It follows that for
py2 <_ py

/-/(P,P0) | (P0 PZ)+tzl(dz),
JR
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where

/l(dZ) ko (Z (X -k- x0yl))+
+

+ min (k, ko)6(z-(x+xoy2))
and for py2 <_ py

1-l(p,po) | (t9o pz)+tx2(dz),
JR

where

/z2(dz) min (k ,k0)6(z-(x+xoyl))
d-d- (kl)t(z-(x+xoy2)).ko-o

+

Since/xl(dz) - 2(dz) the passage of the primary
resources price structure over the line py2= pyl
results in changes of aggregated capacity distribution
over technologies. In this example due to changes of
structure of prices jump of aggregated capacity
distribution over technologies takes place because of
changes of addresses of mutual deliveries between
industries but not due to physical conversion of
capacities.

correspond to certain level of efficiency. Efficiency
may be defined as profit or added value per unit of
capacity. It is assumed that each firm wants to increase
its level of efficiency. Let this level be a discrete
variable n, which may take any nonnegative integer
value n 0, 1, Denote by Fn(t) the fraction of the
firms, which have efficiency level n or less at time t.

Then, for every real nonnegative sequence F
{Fn(t), n 0, 1, is a distribution function and
the model describes its evolution in time. It is assumed
that this evolution satisfies the following rules:

The efficiency can only improve in time.
The firms cannot jump over levels: if a firm has a

level n then it may transit to the level n + 1 only.
The speed of transition is a sum of two components:
innovation and imitation components.

This goes in accordance with idea developed by
famous economist J. Schumpeter who divided the
mechanism of technological changes into innovation,
i.e. creation of new technologies by a firm itself, and
imitation, i.e. adoption oftechnologies created by other
firms. The fraction of firms going over from level n to
the level n + 1 per unit of time due to imitation is

proportion with coefficient /3 to the share of more
efficient firms Fn(t) Fn- (t), and due to innovation is
constant c. Summing up we get the following infinite
system of ordinary differential equations:

2. MODEL DESCRIBING PROPAGATION OF
NEW TECHNOLOGIES

dFn(t)
dt

(Fn- (t) Fn(t)) + [3(1 Fn(t))(Fn- (t)

Fn(t))-- -(ce +/3(1 Fn(t))

Describing how new technologies are transferred
between firms is an old economic problem since
economists have realized that in our age technological
progress is the major force of economic development.
An interesting mathematical model describing propa-
gation new technologies in an industry has been
proposed by Henkin and Polterovich, 1988; 1991.

x (F(t) F_ (t)), c,/3 > 0 (2.1)

under initial conditions

Fo(t)=--O, 0<Fn(0)--<F+I(0)< 1, n<N- 1,

Fn(O) 1, n --> N, (2.2)

2.1. Henkin-Polterovich’s Model

Consider an industry, which contains a large number
of firms. According to this model each firm

which contain only finite number N of variables
different from one.

Henkin and Polterovich proved crucial theorem
about behavior of system Eqs. (2.1) and (2.2). Let us
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denote

B(t) H 1 +--(1--Fk(t))
k=l

* e-(n-c(t+r)))-IF (t,a) (1 +

where c (/3/ln(a + /a)), " (lnA//3).

Theorem. (Henkin G.M., Polterovich V.M, 1988).
Let Fn, 1 <-- n <-- oo be a solution of the problem (2.1)
and (2.2). If we define A B(O) then the following
estimation is valid

IFn(t)-F*(t,Z)l<--Ae-t, 1--<n<c, t-->T

where A, y, T are constants depending on , r, B(O),
N.

This theorem asserted that all solution to the Cauchy
problem (2.1) and (2.2) asymptotically assume a shape
of the well known logistic distribution and propagate
with speed c. The result agrees with many empirical
works. However, some empirical facts cannot be
described by the Henkin-Polterovich’s model. For
example, there exist industries with several techno-
logical hierarchies and less effective hierarchies,
practically speaking, do not adopt the achievements
of more advanced ones. G.M. Henkin and V.M.
Polterovich proposed a modification of the Eq. (2.1)

dEn(t)
q(Fn(t))(Fn(t) Fn- (t)),

dt

where q(Fn) is nonlinear function. For non-monotomic
function q(Fn) G.M. Henkin and V.M. Polterovich
states that in numerical investigations several techno-
logical hierarchies may exist. We consider another
modification more close to initial suggestions of J.
Schumpeter.

efficiency level. Assuming that, the imitation

component becomes fl(Fn F+1)(Fn Fn- 1) and
we come to following system

dF(t)
dt

-( + (Fn+1(0 Fn(t))(Fn(t)

F- (t))). (2.3)

the boundary and initial condition are the same.

Numerical solution (see figures in Appendix A)
to the new Cauchy problem (2.3) and (2.2) show
that in the long run the distribution curve does not

become similar to logistic distribution and depends
on initial condition. If one considers densities
rather than distribution functions, one can see

several maxima of different increasing heights.
These maxima move along axis n independently of
each other and gradually dissipate in contrast to

the presence of only one maximum in the
Henkin-Polterovich’s model. To explain analyti-
cally such a behavior we considered Eq. (2.3)
when ce-- 0, that is when technologies are

propagated due to imitation process only. Taking
into account the initial conditions, we have a finite

system. All variables from N + 1 are identically
equal to one.
A change of variables

"r-- t, Cn(t)- FN+l-n(t) FN-n(t)

leads to system

dcn-- c(cn+ c-), n 2,...,N- 1,

dcN
CNCN_I,

cn(O)-- yn > O, n-- 1,...,N (2.4)

2.2. Modification of Henkin-Polterovich’s Model

We have assumed that the imitation process has
"local" nature. It means that firms are able to imitate

only technologies of the firms from the next higher

known as finite Langmuir’s chain. Note that
Langmuir’s chain is a high-order nonlinear system
with quadratic non-linearity. Such systems may
exhibit very sophisticated behavior in the long
runmthere may be odd attractors, limit cycles--
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and one hardly succeeds in their complete
analytical investigation. Nevertheless, in the case
of finite Langmuir’s chain it turned out to be
possible.

2.3. Investigation of Langumuir’s Chain

The stable stationary solutions of Eq. (2.4) have the
following structure

(Yl,0,y2,0, ...,y,0) if N 2k,

Eq. (2.4) can be calculated analytically from the
following formula proved by J. Moser

Using the information about initial conditions,
c1(0), ...,cN(O) we can calculate from Eq. (2.6) the
values of constants m0, ...,mN, A0, ...AN. Then at

every moment of time we can calculate the values
Cl(t), CN(t). However, the formula (2.6) can not be
used for determination the asymptotic of

cl(t), ...,CN(t) when t---,oo. Nevertheless, the follow-
ing theorem about the asymptotic behavior of these
variable can be proved.

(yl,0,y2,0, ...,y,0,y+) if N 2k + 1

The necessary condition for stability is

Y >-- Y2 Y(--> Y+) --> 0.

J. Moser proved that if Cl (t), Cn(t) the solution of
Eq. (2.4) then the eigenvalues of Jacobi matrix

L(t)

o 4-(t)

4- t) o o
4-(t) o

0

x/cN(t)
/N(t)

0

(2.5)

do not depend from and are different from each
other. More over if N is even then eigenvalues of
Jacobi matrix in Eq. (2.5) have the structure -)t <
-A2 < < --AN+I/2 < AN+I,/2 < ...A2 < 11 and if
N is odd then eigenvalues have the structure - <

Langmuir’s chain is a discrete version of
Korteweg-de Vries equation. The solution for

Z--

N mne.
n=0 z-’n

C,(t) N

c2(t Zmne?"t (2.6)
Z--

Z n=0

c(t)
Z

Theorem. (Tashlitckay Y.M., Shananin A.A.).
Solutions to the Cauchy problem (2.4)for the
Langmuir’s finite chain converges, as t---.oo, to a

fixed point, which is determined uniquely by initial
data. Moreover, thefollowing relations determine the
character of convergence

Ac2k-l(t) A2 + O(e-Vt), c2k(t) O(e(+l-’)t),
k 1,...,n- 1,

where v min{A A+lk 1,...n 1 > 0 and
n [N/2] + 1 is a number of different nonzero
eigenvalues of Jacobi matrix Eq. (2.5))t > A >
> A2n > 0 which is determined by initial data

Cl (0), ...CN(O).

The proof of this theorem is based on the theory of
rational approximations and orthogonal polynomials.
This theorem explains the results of numerical
calculations. For the model (2.3) and (2.2) a several
technological hierarchies in the industry should exist
when (1/,/3) (1/a).
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APPENDIX A

Figures A1-A6
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