
MODELING OF MULTIMASS SYSTEMS TORSIONALLY
DEFORMED WITH VARIABLE INERTIA

AMALIA PIELORZ AND MONIKA SKÓRA

Received 20 December 2005; Accepted 29 May 2006

Dynamic investigations of multimass discrete-continuous systems having variable mo-
ment of inertia are performed. The systems are torsionally deformed and consist of an
arbitrary number of elastic elements connected by rigid bodies. The problem is nonlinear
and it is linearized after appropriate transformations. It is shown that such problems can
be investigated using the wave approach. Some analytical considerations and numerical
calculations are done for a two-mass system with a special case of boundary conditions.
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1. Introduction

The torsional vibrations of the systems with variable inertia usually are discussed using
discrete models; see [1, 3, 6, 7]. In [1] a two-mass discrete-continuous system is consid-
ered and the forced response of variable inertia is studied. From the technical literature
it follows that variable inertia problems play an important role in dynamics of various
mechanism and machines undergone torsional deformations, [1, 3, 6, 7].

In the present paper the results of [1] are generalized to multimass systems and the
wave method is applied reducing appropriate problems for the solution of differential
equations with a retarded argument. The derived equations are the base for appropri-
ate numerical calculations. Some analytical considerations are presented for a two-mass
system, according to [1], with a special case of boundary conditions.

2. Governing equations for a multimass system

Consider the discrete-continuous model of a system which consists of a suitable number
of rigid bodies connected by means of shafts, Figure 2.1. The shafts are deformed tor-
sionally and their central axes, together with elements settled on them, coincide with the
main axis of the system. The x-axis is parallel to the main axis of the system, and its origin
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Figure 2.1. Discrete-continuous multimass torsional system.

coincides with the position of the left-hand end of the first shaft in an undisturbed state
at time instant t = 0.

The ith shaft, i= 1,2, . . . ,N , is characterized by length li, density ρ, shear modulus G,
and polar moment of inertia I0i. The ith rigid body of the model is characterized by the
mass moment of inertia Ji. The mass moment of inertia of the last rigid body depends on
the solution, that is, JN+1 = JN+1(θN ).

The rigid body J1 represents an electrical motor and is loaded by the motor torque
M1 =M0 +K(Ω0− ∂θ1/∂t), where M0 is the nominal torque, Ω0 is the nominal angular
velocity, and K is the slope of the motor characteristic. In further considerations it is
assumed that the motor operates at a constant angular velocity Ω0. The last rigid body
is loaded by an equivalent resistance torque equal to MN+1 =M0; see [1]. Damping in
the system is neglected. We are interested in a forced response resulting from the variable
inertia of (N + 1)th rigid body. For this reason, initial conditions are omitted.

Under the above assumptions, the determinations of displacements θi of the elastic
elements of the considered system are reduced to solving N classical wave equations

∂2θi
∂t2

− c2 ∂
2θi
∂x2

= 0, i= 1,2, . . . ,N , (2.1)

with the following boundary conditions:

∂θ1

∂t
=Ω0 for x = 0,

θi(x, t)= θi+1(x, t) for x =
i∑

k=1

lk, i= 1,2, . . . ,N − 1,

−Ji+1
∂2θi
∂t2

−GI0i
∂θi
∂x

+GI0,i+1
∂θi+1

∂x
= 0 for x =

i∑

k=1

lk, i= 1,2, . . . ,N − 1,

JN+1
∂2θN
∂t2

+
1
2
dJN+1

dθN

(
∂θN
∂t

)2

+GI0N
∂θN
∂x

=−MN+1 for x =
N∑

k=1

lk.

(2.2)

The condition in the cross-section x = l1 + l2 + ···+ lN can have various forms. The aim
of the paper, however, is to generalize some results given in [1], so this condition is taken
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in the form postulated in that paper. According to [1], this condition includes the non-
linear Eksergian equation.

The problem (2.1)-(2.2) is nonlinear. In order to obtain some effective solutions it
is linearized. In order to linearize the last boundary condition in (2.2), new unknown
functions are proposed:

θi(x, t)=Ω0t+αi(x, t), (2.3)

the variable mass moment of inertia JN+1(θN ) is expended in a Taylor series around Ω0t,
and second- and higher-order terms are neglected. Besides, the static deformations corre-
sponding to the nominal torque moment M0 appearing in the first and the last conditions
can be separated by introducing the following new transformations:

αi(x, t)= αid(x, t)− M0

GI0i

⎛
⎝x−

i∑

k=1

lk

⎞
⎠ . (2.4)

Then, after omitting the index d for convenience, the problem (2.1)-(2.2) is reduced to
solving N equations

∂2αi
∂t2

− c2 ∂
2αi
∂x2

= 0, i= 1,2, . . . ,N , (2.5)

with linear boundary conditions

∂α1

∂t
= 0 for x = 0,

αi(x, t)= αi+1(x, t) +
M0

GI0,i+1
li+1 for x =

i∑

k=1

lk, i= 1,2, . . . ,N − 1,

−Ji+1
∂2αi
∂t2

−GI0i
∂αi
∂x

+GI0,i+1
∂αi+1

∂x
= 0 for x =

i∑

k=1

lk, i= 1,2, . . . ,N − 1,

JN+1(t)
∂2αN
∂t2

+
dJN+1

dt
(t)

∂αN
∂t

+GI0N
∂αN
∂x

+
1
2
d2JN+1

dt2
(t)αN

=−1
2
dJN+1

dt
(t)Ω0 for x =

N∑

k=1

lk.

(2.6)

It is seen that though the first and the last conditions in (2.6) do not depend on M0, this
moment occurs in the relations for displacements in cross-sections where rigid bodies are
located. However, when angular velocities and strains are considered, no effect of M0 is
observed. The same takes place in the case of a two-mass system with N = 1. Moreover,
it is seen now that the last boundary condition has such a form that a direct effect of
variable inertia can be investigated.
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Upon the introduction of the following dimensionless quantities:

x̄ = x

l1
, t̄ = ct

l1
, ᾱi = αi

α0
,

Kr = I01ρl1
J0

, Ei = J0
Ji

, Ω̄0 = Ω0l1
α0c

,

M̄0 = M0l
2
1(

J0c2α0
) , J̄N+1(t̄)= JN+1(t)

J0
, l̄i = li

l1
, Bi = I0i

I01
,

(2.7)

the determination of angular displacements αi(x, t) is reduced to solving N equations

∂2αi
∂t2

− ∂2αi
∂x2

= 0, i= 1,2, . . . ,N , (2.8)

with the following boundary conditions:

∂α1

∂t
= 0 for x = 0,

αi(x, t)= αi+1(x, t) +Ci+1 for x =
i∑

k=1

lk, i= 1,2, . . . ,N − 1,

−∂2αi
∂t2

−KrBiEi+1
∂αi
∂x

+KrBi+1Ei+1
∂αi+1

∂x
= 0 for x =

i∑

k=1

lk, i= 1,2, . . . ,N − 1,

JN+1(t)
∂2αN
∂t2

+
dJN+1

dt
(t)

∂αN
∂t

+KrBN
∂αN
∂x

+
1
2
d2JN+1

dt2
(t)αN

=−1
2
dJN+1

dt
(t)Ω0 for x =

N∑

k=1

lk,

(2.9)

where α0 is a fixed angular displacement, Ci =M0(KrBi)−1li, and the bars denoting di-
mensionless quantities are omitted for convenience.

The solutions of (2.8), similarly to problems discussed in [2, 4, 5], are sought in the
form

αi(x, t)= fi

⎛
⎝t− x+ 2

i∑

k=1

lk −
N∑

k=1

lk

⎞
⎠+ gi

⎛
⎝t+ x−

N∑

k=1

lk

⎞
⎠ , i= 1,2, . . . ,N. (2.10)

The functions fi and gi represent here the waves, caused by variable inertia, propagating
in the ith shaft in the positive and negative directions of the x-axis, respectively. They are
continuous and equal to zero for negative arguments. In (2.10) it is taken into account
that the first disturbance appears in the ith element in the cross-section x0i = l1 + l2 +
···+ li at time instant t0i = li+1 + li+2 + ···+ lN .

Substituting the solution (2.10) into the boundary conditions (2.9) and denoting the
largest argument in each boundary condition separately by z, we obtain the following set
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of ordinary differential equations for unknown functions fi and gi:

f ′1 (z)=−g′1
(
z− 2l1

)
,

fi(z)= fi−1
(
z− 2li

)
+ gi−1

(
z− 2li

)− gi
(
z− 2li

)−Ci, i= 2,3, . . . ,N ,

rN1g
′′
N (z) + rN2g

′
N (z) + rN3gN (z)= F(z) + rN4 f

′′
N (z) + rN5 f

′
N (z) + rN6 fN (z),

g′′i (z) + ri1g
′
i (z)=− f ′′i (z) + ri2 f

′
i (z) + ri3g

′
i+1(z), i=N − 1,N − 2, . . . ,1,

(2.11)

where

rN1(z)= JN+1(z), rN2(z)= KrBN + J ′N+1(z), rN3(z)= J ′′N+1(z)
2

,

rN4(z)=−rN1(z), rN5(z)= KrBN − J ′N+1(z), rN6(z)=−rN3(z),

ri1 = KrEi+1
(
Bi +Bi+1

)
, ri2 = KrEi+1

(
Bi−Bi+1

)
,

ri3 = 2KrEi+1Bi+1, F(z)=− J ′N+1(z)Ω0

2
.

(2.12)

In (2.11) coefficients are variable. They are solved numerically with zero initial condi-
tions, similarly to equations derived in [2, 4, 5].

3. Analytical approach for N = 1

According to [1], the analytical approach can be used in the discussion of discrete-
continuous systems with variable inertia when N = 1. Then we have the single equation
of motion:

∂2α1

∂t2
− ∂2α1

∂x2
= 0, (3.1)

and two boundary conditions:

∂α1

∂t
= 0 for x = 0,

J2(t)
∂2α1

∂t2
+
dJ2
dt

(t)
∂α1

∂t
+Kr

∂α1

∂x
+

1
2
d2J2
dt2

(t)α1 =−1
2
dJ2
dt

(t)Ω0 for x = 1.

(3.2)

An arbitrary function J2(θ) can be expressed in the form of a Fourier series,

J2(θ)=
∞∑

m=0

(
am cosmθ + bm sinmθ

)
, (3.3)

where in our case θ =Ω0t.
Upon substituting it to the boundary conditions, using a method of a small parameter

ε= ac/a0, seeking the solution in the form

α1(x, t)= α10(x, t) + εα11(x, t) + ε2α12(x, t) + ··· , (3.4)
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and collecting the terms of like power of ε, we obtain equations of motion:

∂2α1i

∂t2
− ∂2α1i

∂x2
= 0, i= 0,1, . . . , (3.5)

with

∂α1i

∂t
= 0 for x = 0, i= 0,1, . . . , (3.6)

∂2α10

∂t2
+Kr

1
a0

∂α10

∂x
= 0 for x = 1, (3.7)

∂2α11

∂t2
+Kr

1
a0

∂α11

∂x
=− 1

ac

∂2α10

∂t2

∞∑

m=1

(
am cosmΩ0t+ bm sinmΩ0t

)

+
1
ac
Ω0

∂α10

∂t

∞∑

m=1

m
(
am sinmΩ0t− bm cosmΩ0t

)

+
1
2
Ω2

0
1
ac
α10

∞∑

m=1

m2(am cosmΩ0t+ bm sinmΩ0t
)

+
1

2ac
Ω2

0

∞∑

m=1

m
(
am sinmΩ0t− bm cosmΩ0t

)
for x = 1.

(3.8)

Analogously appropriate relations for α12,α13, . . . in x = 1 can be derived.
We are interested in a forced response, so α10(x, t) = 0, and the solution for α11, ac-

cording to (3.8), is sought in the form

α11(x, t)=
∞∑

m=1

(
A11m sinmΩ0t+B11m cosmΩ0t

)
sinmΩ0x. (3.9)

This solution satisfies the relation for x = 0, and from the relation for x = 1 the ampli-
tudes A11m and B11m are determined. They are equal correspondingly to

A11m = 1
2ac

· Ω0am

−βm sinβm +Kr
(
a0
)−1

cosβm
, (3.10)

B11m =− 1
2ac

· Ω0bm

−βm sinβm +Kr
(
a0
)−1

cosβm
, (3.11)

where βm =mΩ0. The above relations are the same as in [1] and they can be used, apart
from (2.11) with N = 1, in numerical calculations for the system with a single elastic
element. In multimass systems, (2.11) with a retarded argument and with variable coeffi-
cients are proposed to be applied.

4. Numerical results

In the beginning, numerical calculations are performed for a two-mass system using
(2.11) with N = 1 and Kr = 0.05. The mass moment of inertia of the rigid body 2 is
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Figure 4.1. Displacements in x = 1.

assumed in the form [1],

J2
(
Ω0t

)= a0 + a2 cos
(
2Ω0t

)
, (4.1)

where a0 = 1. According to the Fourier series (3.3), in formula (4.1) only two terms are
being taken into account, namely, with m= 0 and m= 2.

In Figures 4.1–4.4 numerical results for angular displacements and velocities in cross-
sections x = 1 and x = 0.5 for t < 4000.0 are plotted with a2 = 0.05 and Ω0 = 0.05 with
zero initial conditions. The diagrams show the results in transient and in the steady states.
It is seen that displacements as well as velocities are smaller in the cross-section x = 0.5.

Now, numerical and analytical results are compared in a steady state. For the mass
moment of inertia J2 expressed by (4.1) the approximate solution is α1(x, t) = εα11(x, t),
where according to (3.4) and (3.9)

α11(x, t)= A112 sin2Ω0x sin2Ω0t (4.2)

and A112 is determined by (3.10). This solution is a harmonic function. That is seen in
Figure 4.5. Moreover, from Figure 4.5 it follows that numerical and analytical solutions
are practically the same in a steady state.

Diagrams in Figures 4.1–4.4 inform that numerical solutions achieve steady states after
rather long intervals of time because damping is neglected in the considered systems. For
this reason, amplitude-frequency curves for angular displacements in the cross-section
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Figure 4.2. Displacements in x = 0.5.
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Figure 4.3. Velocities in x = 1.
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Figure 4.4. Velocities in x = 0.5.
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Figure 4.5. Numerical and analytical solutions for displacements in x = 1 in a steady state.
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Figure 4.6. Amplitude-frequency curves according to the analytical solution (4.2) for Kr = 0.05, Kr =
0.5, and Kr = 1.0.

x = 1 are presented using only the analytical solution. They are shown in Figure 4.6 for
Kr = 0.05, .5,1.0 and Ω0 < 4.0. The diagrams contain three resonant regions. The ampli-
tudes of the analytical solution tend to infinity for Ω0 = ω1/2, Ω0 = ω2/2 and Ω0 = ω3/2,
where ωi are the first three natural frequencies of the considered systems. From Figure 4.6
it follows that the effect of Kr is observed mainly in the first resonant regions.

5. Conclusions

From the considerations presented in the paper it follows that the problem of the torsional
two-mass system with variable inertia discussed in [1] can be generalized to a multimass
discrete-continuous system in such a way that the wave method can be applied in the
study. An analytical solution in a special case is derived. The analytical approach and
numerical solution for N = 1 give comparable results only in steady states.
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