
A PERTURBATION-BASED MODEL FOR RECTIFIER CIRCUITS

VIPIN B. VATS AND H. PARTHASARATHY

Received 29 December 2005; Accepted 2 June 2006

A perturbation-theoretic analysis of rectifier circuits is presented. The governing differ-
ential equation of the half-wave rectifier with capacitor filter is analyzed by expanding
the output voltage as a Taylor series with respect to an artificially introduced parameter
in the nonlinearity of the diode characteristic as is done in quantum theory. The pertur-
bation parameter introduced in the analysis is independent of the circuit components as
compared to the method presented by multiple scales. The various terms appearing in the
perturbation series are then modeled in the form of an equivalent circuit. This model is
subsequently used in the analysis of full-wave rectifier. Matlab simulation results are in-
cluded which confirm the validity of the theoretical formulations. Perturbation analysis
acts a helpful tool in analyzing time-varying systems and chaotic systems.
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1. Introduction

The rectification process plays a very important role in modern electronics, and rectifiers
are widely used in power supply circuits. A simple half-wave rectifier contains a diode, a
resistor, and a capacitor as shown in Figure 1.1. The governing differential equation of the
half-wave rectifier can be obtained by writing the KCL at the output node for the circuit
as shown in Figure 1.1,

C
dV0

dt
+
V0

R
= ID, (1.1)

and where ID = Is(VD/VT − 1), VD(t)=Vi(t)−V0(t). In the above-mentioned equations
Vi is an input voltage, ID is the current flowing through the diode, and V0 is the output
voltage. If the piecewise linear model of diode is chosen, then the solution to the above
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Figure 1.1. Half-wave rectifier circuit with capacitive load.

differential equation is possible in closed form, but for the nonlinear diode characteristics
closed-form solution of the differential equation does not exist [1, 3, 5]. Such type of
circuits have been studied in detail and many models have been proposed for the analysis
of diode circuits.

In this paper, we had tried an alternative technique for analyzing the differential equa-
tion (1.1) through perturbation of theoretic methods. The perturbation technique used
in this paper is a widely used method in quantum mechanics and celestial mechanics.
In quantum mechanics, we seek a time-independent solution to the eigenvalue problem
H | ψn = En | ψn. In such problems one expands the Hamiltonian H as H = H0 + εH1,
where εH1 is considered as a small perturbation toH0 [4] but En and ψn are also expanded
as a power series of the same perturbation parameter in order to keep track of the vari-
ation. We use the perturbation technique for the rectifier circuit under the assumption
that the diode has a weak nonlinearity. One of the techniques used in the analysis of such
circuits is the method of multiple scales [2], in which the circuit parameters were used
in deciding the smallness of the perturbation parameter ε, but this may restrict the per-
turbation approach to certain circuits and one may not be able to generalize this method
for all values of the parameter. However, in this paper, we overcome the limitation or
dependence of the perturbation technique on the circuit parameters.

2. Proposed nonlinear model of half-wave rectifier circuit using
perturbation expansion

In this section, we analyze the basic half-wave rectifier, as shown in Figure 1.1. Let the cir-
cuit be excited with a voltage Vi. We assume that the nonlinear diode characteristics are
given by

ID = Is
(
eVD/VT − 1

)
, (2.1)
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where Is is the reverse saturation current, VD is the terminal voltage across the diode, and
VT is the temperature-dependent voltage. Plugging the above equation in (1.1) we get

C
dV0

dt
+
V0

R
= Is

(
eVD/VT − 1

)
, (2.2)

where VD = Vi −V0, assuming that the capacitor connected in the half-wave rectifier
is not initially charged. As per the standard asymptotic technique, the nonlinearity and
the output voltage are expanded as a power series in the perturbation parameter ε. The
smallness of the perturbation parameter is independent of the circuit components like R
and C and is assumed to be very small. This leads to

V0(t)=
∞∑

n=0

εnV0n(t), (2.3)

note that the diode characteristics can be expanded as

fNL
(
VD
)= Is

(
eVD/VT − 1

)= fL
(
VD
)

+ ε fN
(
VD
)
, (2.4)

where fL(VD)= IsVD/VT and fN (VD)= Is(eVD/VT − 1−VD/VT). The term fN (VD) is con-
sidered as a perturbation to the linear part of the characteristics ( fL(VD)) and the param-
eter ε is to be set equal to unity after completing all computations [4]. Plugging (2.3) and
(2.4) in (2.2) we get

d
(∑

n εnV0n(t)
)

dt
+

∑
n εnV0n(t)
RC

= Is
C

(
VD

VT
+ ε
(
eVD/VT − 1− VD

VT

))
. (2.5)

Now equating the coefficients of εn for n= 0,1,2 results into three differential equations
which are

dVoo(t)
dt

+
Voo(t)
R′C

= IS
CVT

Vi(t),

dVo1(t)
dt

+
Vo1(t)
R′C

= IS
C
g
(
Vi(t)−Voo(t)),

dVo2(t)
dt

+
Vo2(t)
R′C

= −IS
C
g′
(
Vi(t)−Voo(t))Vo1(t),

(2.6)

where g(x) = exp(x/VT)− 1− x/VT and 1/R′ = 1/R+ IS/VT (see [2]). The solutions to
these differential equations are, respectively, given by

V00 = Is
CVT

∫ t

0
e−(t−τ)/R′CVi(τ)dτ,

V01 = Is
C

∫ t

0
e−(t−τ)/R′Cg

(
Vi(τ)−V00(τ)

)
dτ,

V02 = −Is
C

∫ t

0
e−(t−τ)/R′Cg′

(
Vi(τ)−V00(τ)

)
V01(τ)dτ.

(2.7)
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The calculations for the above equations were carried for sinusoidal input voltageVi =
Vm sin(ωt), whereas the method is applicable for any input voltage,

V00(t)= VmIs
CVTr

(
sin(ωt−φ)

)
, (2.8)

where 1/R′C = r cos(φ) and ω = r sin(φ). Plugging the above solution into the next inte-
gral, we can obtain the solution for the next perturbation:

V01 = Is exp(−at)
C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2
A(t)

+
Is exp(−at)

C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2
B(t),

(2.9)

whereA(t)= eat f (ψ(t))− f (ξ), B(t)= eatg(ψ(t))− g(ξ), a= 1/R′C, ψ(τ)= (2r−n)(ωτ+
θ), and ξ = (2r − n)θ. For large “t,” we neglect e−t/R′C and thus obtain the steady-state
solution in first-order perturbation terms. On the same lines, we can derive the second-
order perturbation term by evaluating the third integral given below:

V02 = −Is
C

∫ t

0
e−(t−τ)/R′Cg′

(
Vi(τ)−V00(τ)

)
V01(τ)dτ. (2.10)

Rewriting the above integral in the following form we get

V02 = −Is exp(−at)
C

ωR′1
[
I1 + I2− I3

]
, (2.11)

where

I1 =
∫ t

0

1
2

exp
(
aτ +R′1 sin(ωτ + θ) + j(ωτ + θ)

)
V01(τ)dτ,

I2 =
∫ t

0

1
2

exp
(
aτ +R′1 sin(ωτ + θ)− j(ωτ + θ)

)
V01(τ)dτ,

I3 =
∫ t

0
exp(aτ)cos(ωτ + θ)V01(τ),

(2.12)

evaluating the integrals I1, I2, and I3 gives the second-order perturbation term of voltage.

3. Simulation results

Simulation was performed using Matlab for the perturbation terms of a half-wave rec-
tifier by discretizing the differential equation of each perturbation term. The result ob-
tained, for the zeroth-order perturbation, was a sine wave with a very low magnitude.
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Figure 3.1. Perturbation result for half-wave rectifier: top most figure shows the zeroth-order pertur-
bation followed by the first-order and the second-order, respectively.

This result can be thought as passing the sinusoidal input wave Vi = Vm sin(ωt) through
a series resistance rn = VT/Is in series with the load impedance (R and C in parallel).
Thus, diode in the rectifier acts as a linear resistance depending on the thermal volt-
age and the reverse saturation current. In the first-order perturbation the input to the
circuit can be thought as g(t) = e(Vi−Voo)/(VT ) − 1− (Vi −Voo)/(VT), passing through the
series combination of rn and the load impedance. Thus in this case the circuits remain
the same except for the memoryless nonlinearity g(t) which depends on the zeroth-order
perturbation voltage. The wave form obtained in the output of the first-order pertur-
bation term indicates that the voltage g(t) = e(Vi−Voo)/(VT ) − 1− (Vi −Voo)/(VT) is being
traced at its envelope. Similar to the first-order perturbation we can formulate the model
for the second-order perturbation by replacing g(t) with g′(t). The output of the pertur-
bation analysis of half-wave rectifier is shown in Figure 3.1. The model proposed using
the half-wave rectifier circuits were used in the analysis of the full-wave rectifier and the
results are shown in Figure 3.2. The proposed models of all the perturbation terms are
shown in Figures 3.3, 3.4, and 3.5.
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Figure 3.2. Results for the full-wave rectifier.
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Figure 3.3. Zeroth-order perturbation model for diode in half-wave rectifier.

4. Conclusion

In this paper we have analyzed the half-wave rectifier circuit using the perturbation tech-
nique. The results obtained from each perturbation was finally transformed into an equiv-
alent circuit model. With the help of these circuits, exact nonlinear analysis of rectifier
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Figure 3.4. First-order perturbation model for diode in half-wave rectifier.

+
+

+
�

1/VT g�(�) X

V01

rN

V00

Vi

�

R C

V02

Figure 3.5. Second-order perturbation model for diode in half-wave rectifier.

circuits can be carried out. The model obtained for the zeroth-order perturbation stage
resulted in a resistance defined as rn = VT/Is. Using this structure for a diode, we have
modeled the other two perturbations. To the author’s best knowledge, such a model
has never been proposed. The second-order perturbation model results, as shown in the
above section, return nearly the exact rectified output. Further evaluation of the pertur-
bation terms will lead to more detailed results. Equivalent model of the diode obtained
in the zeroth-order perturbation is proposed to be as a resistance, rn = VT/Is, which has
never been proposed in the literature to the author’s best knowledge thus revealing that
the nonlinear behavior of diode will change with any change in temperature due to de-
pendence on VT .

Appendices

The following notation will be used in the derivations of the perturbation terms:
(A) exp(τ) instead of eτ ,
(B) Imag (Z) represent the imaginary part of variable Z.

A. Calculation of the zeroth-order perturbation term V00

V00 = Is
CVT

∫ t

0
exp

(−(t− τ)
R′C

)
Vi(τ)dτ. (A.1)
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Assuming Vi =Vm sin(ωt),

V00(t)= IsVm

CVT

∫ t

0
exp

(
t− τ
R′C

)
sin(ωt)dτ

= IsVm

CVT
exp

( −t
R′C

)
Imag

(∫ t

0
exp

(
τ

R′C

)
exp( jωτ)dτ

)

= IsVm

CVT
exp

( −t
R′C

)
Imag

(
exp( jωt+ t/R′C)− 1

1/R′C+ jω

)

= IsVm

CVT
Imag

(
exp( jωt)− exp(−t/R′C)

1/R′C+ jω

)
.

(A.2)

For large t, we neglect exp(−t/R′C) and obtain the steady state solution as

V00(t)= IsVm

CVT
Imag

(
exp( jωt)

1/R′C+ jω

)
,

V00(t)= IsVm

CVTr
sin(ωt−φ),

(A.3)

where r exp( jφ)= 1/R′C+ jω.

B. Calculation of the first-order perturbation term V01

V01 = Is
C

∫ t

0
exp

(−(t− τ)
R′C

)
g
(
Vi(τ)−V00(τ)

)
dτ. (B.1)

Let

Vm sin(ωt)−Vom sin(wt−φ)=VTR
′
1 sin(ωt+ θ), (B.2)

where

Vom = VmIs
CVTr

,

R′1 =
√((

Vom sin(φ)
)2

+
(
Vm−Vom cos(φ)

)2)
/VT ,

θ = tan−1
(

Vom sin(φ)
Vm−Vom cos(φ)

)
,

V01(t)= Is
C

∫ t

0
exp

(
τ − t
R′C

)(
exp

(
R′1 sin(ωτ + θ)

)− 1−R′1 sin(ωτ + θ)
)
dτ.

(B.3)

Simplifying the second term in the integral we get

exp

(
Vi−Voo

VT

)

− 1− Vi−Voo

VT
=

∞∑

n=2

1
n!
R
′n
1 sinn(ωτ + θ). (B.4)



V. B. Vats and H. Parthasarathy 9

Since we have

sinn(x)=
(

exp( jx)− exp(− jx)
2 j

)n
= 1

(2 j)n

n∑

r=0

Cnr exp
(
j(2r−n)x

)
(−1)r−n, (B.5)

we get

exp

(
Vi−Voo

VT

)

− 1− Vi−Voo

VT

=
∞∑

n=2

R
′n
1

n!(2 j)n

n∑

r=0

(
n

r

)

(−1)n−r exp
(
j(2r−n)(ωτ + θ)

)
,

(B.6)

therefore the net integral results into

= Is exp(−t/R′C)
C

∞∑

n=2

R
′n
1

n!(2 j)n

n∑

r=0

(
n

r

)

(−1)n−r
∫ t

0
exp

(
j(2r−n)(ωτ + θ) +

τ

R′C

)
dτ,

(B.7)

thus we get the final solution to the first-order perturbation terms as the real part of the
following equation:

= Is exp(−t/R′C)
C

∞∑

n=2

R
′n
1

n!(2 j)n

n∑

r=0

(
n

r

)

(−1)n−r
[

exp( j(2r−n)(ωτ + θ) + τ/R′C)
1/R′C+ j(2r−n)ω

]t

0

= Is exp(−t/R′C)
C

∞∑

n=2

R
′n
1

n!(2 j)n

n∑

r=0

(
n

r

)

(−1)n−r

×
[

exp
(
j(2r−n)(ωt+ θ) + t/R′C

)

1/R′C+ j(2r−n)ω
− exp

(
j(2r−n)θ

)

1/R′C+ j(2r−n)ω

]
.

(B.8)

Real part of the above equation can be expressed in the form

V01 =V01,n=odd +V01,n=even, (B.9)

V01 = Is exp(−at)
C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

(
exp(at) f (ψ)− f (ξ)

)

+
Is exp(−at)

C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
exp(at)g(ψ)− g(ξ)

)
,

(B.10)

where a=1/R′C, ψ(τ)=(2r−n)(ωτ+θ), ξ=(2r−n)θ, g(ψ)=acos(ψ) +ω(2r−n)sin(ψ),
f (ψ)= asin(ψ)−ω(2r−n)cos(ψ).
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For the steady state solution the terms containing e−at are neglected. Thus the steady
state solution of V01 is given by

V01 = Is
C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2
f (ψ)

+
Is
C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2
g(ψ).

(B.11)

C. Calculation for the second-order perturbation term

V02 = −Is
C

∫ t

0
e−(t−τ)/R′Cg′

(
Vi(τ)−V00(τ)

)
V01(τ)dτ

= −Is exp(−at)
C

∫ t

0
exp(aτ)ωR′1 cos(ωτ + θ)

(
exp

(
R′1 sin(ωτ + θ)

)− 1
)
V01(τ)dτ

= −Is exp(−at)
C

∫ t

0

ωR′1
2

(
exp

(
aτ + j(ωτ + θ)

))

+ exp
(
aτ − j(ωτ + θ)

)(
exp

(
R′1 sin(ωτ + θ)

)− 1
)
V01(τ)dτ.

(C.1)

Rewrite the above integral in the following form:

V02 = −Is exp(−at)
C

ωR′1
[
I1 + I2− I3

]
, (C.2)

where

I1 =
∫ t

0

1
2

exp
(
aτ +R′1 sin(ωτ + θ) + j(ωτ + θ)

)
V01(τ)dτ,

I2 =
∫ t

0

1
2

exp
(
aτ +R′1 sin(ωτ + θ)− j(ωτ + θ)

)
V01(τ)dτ,

I3 =
∫ t

0
exp(aτ)cos(ωτ + θ)V01(τ).

(C.3)

Solve the integral I1:

I1 =
∫ t

0

1
2

exp
(
aτ +R′1 sin(ωτ + θ) + j(ωτ + θ)

)

×
⎛

⎝ Is
C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2
f (ψ)

⎞

⎠

+
1
2

exp
(
aτ +R′1 sin(ωτ + θ) + j(ωτ + θ)

)

×
⎛

⎝ Is
C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2
g(ψ)

⎞

⎠ .

(C.4)
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Solving the integral, we get

= Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

a

ω

∞∑

m=0

R
′m
1

m!(2)m

m+1∑

k=0

(
m+ 1
k

)

(−1)k−m−1

∗
(

exp
(
at+ j(ωt+ θ)(2k−m+ 1)

)− exp(ξ + θ)
a/ω+ j(2k−m+ 1)

)

− Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

2r−n
2

∗
∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m

×
(

exp
(
at+ j(ωt+ θ)

(
2(k+ r) + 1− (m+n)

))− exp
(
jθ
(
2(k+ r) + 1− (m+n)

))

a/ω+ j
(
2(k+ r)− (m+n) + 1

)

+
exp

(
at+ j(ωt+ θ)

(
2(k+ r)− 1− (m+n)

))− exp
(
jθ
(
2(k+ r)− 1− (m+n)

))

a/ω+ j
(
2(k+ r)− (m+n)− 1

)
)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2+ω2(2r−n)2

(
a

2
+
ω(2r−n)

2 j

) ∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m

×
(

exp
(
at+ j(2r+2k−n−m+1)(ωt+θ)

)

a+ j(2r+2k−n−m+1)
− exp

(
j(2r+2k−n−m+1)θ

)

a+ j(2r+2k−n−m+1)

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
a

2
−ω(2r−n)

2 j

) ∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m

×
(

exp
(
at+ j(2r + 2k−n−m− 1)(ωt+ θ)

)− exp
(
j(2r + 2k−n−m− 1)θ

)

a+ j(2r + 2k−n−m− 1)

)
.

(C.5)

The integral I2 can be obtained by just replacing the term j(ωτ + θ) by − j(ωτ + θ) in
the above result:

= Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

a

ω

∞∑

m=0

R
′m
1

m!(2)m

m+1∑

k=0

(
m+ 1
k

)

(−1)k−m−1

∗
(

exp
(
at+ j(ωt+ θ)(2k−m− 1)

)− exp(ξ − θ)
a/ω+ j(2k−m− 1)

)

− Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

2r−n
2

∗
∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m
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×
(

exp(at+ j(ωt+ θ)
(
2(k+ r)− 1− (m+n)

))− exp
(
jθ
(
2(k+ r)− 1− (m+n)

))

a/ω+ j
(
2(k+ r)− (m+n)− 1

)

+
exp

(
at+ j(ωt+ θ)

(
2(k+ r) + 1− (m+n)

))− exp
(
jθ
(
2(k+ r) + 1− (m+n)

))

a/ω+ j
(
2(k+ r)− (m+n) + 1)

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2+ω2(2r−n)2

(
a

2
+
ω(2r−n)

2 j

) ∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m

×
(

exp
(
at+ j(2r + 2k−n−m− 1)(ωt+ θ)

)

a+ j(2r + 2k−n−m− 1)
− exp

(
j(2r + 2k−n−m− 1)θ

)

a+ j(2r + 2k−n−m− 1)

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2+ω2(2r−n)2

(
a

2
−ω(2r−n)

2 j

) ∞∑

m=0

R
′m
1

m!(2)m

m∑

k=0

(
m

k

)

(−1)k−m

×
(

exp
(
at+ j(2r + 2k−n−m+ 1)(ωt+ θ)

)− exp
(
j(2r + 2k−n−m+ 1)θ

)

a+ j(2r + 2k−n−m+ 1)

)
.

(C.6)

Solving for the integral I3, we get

I3 =
∫ t

0
exp(aτ)cos(ωτ + θ)V01(τ)

= Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

(
a

2 j
− ω(2r−n)

2

)

×
(

exp
(
at+ j(ψ +ωt+ θ)

)− exp
(
j(ξ + θ)

)

a+ j(2r−n+ 1)ω

)

− Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

(
a

2 j
+
ω(2r−n)

2

)

×
(

exp
(
at+ j(−ψ +ωt+ θ)

)− exp
(
j(−ξ + θ)

)

a+ j(n− 2r + 1)ω

)

+
Is

2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

(
a

2 j
− ω(2r−n)

2

)

×
(

exp
(
at+ j(ψ−ωt− θ)

)− exp
(
j(ξ − θ)

)

a+ j(n− 2r− 1)ω

)

− Is
2C

∞∑

n=odd

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r+1

a2 +ω2(2r−n)2

(
a

2 j
+
ω(2r−n)

2

)

×
(

exp
(
at− j(ψ +ωt+ θ)

)− exp
(− j(ξ + θ)

)

a− j(2r−n+ 1)ω

)
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+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
a

2
+
w(2r−n)

2 j

)

×
(

exp
(
at+ j(ωt+ θ +ψ)

)− exp
(
j(θ + ξ)

)

a+ j(2r−n+ 1)ω

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
a

2
− w(2r−n)

2 j

)

×
(

exp
(
at+ j(ωt+ θ−ψ)

)− exp
(
j(θ− ξ)

)

a+ j(n− 2r + 1)ω

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
a

2
+
w(2r−n)

2 j

)

×
(

exp
(
at+ j(ψ−ωt− θ)

)− exp
(
j(ξ − θ)

)

a+ j(2r−n− 1)ω

)

+
Is

2C

∞∑

n=even

R
′n
1

n!(2)n

n∑

r=0

(
n

r

)
( j)n−2r

a2 +ω2(2r−n)2

(
a

2
− w(2r−n)

2 j

)

×
(

exp
(
at− j(ωt+ θ +ψ)

)− exp
(− j(θ + ξ)

)

a+ j(n− 2r− 1)ω

)
.

(C.7)

Summing up all integrals I1, I2, and I3 we get the final solution of the second-order
perturbation V02.
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