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This paper is devoted to the study of the elasticity with porous dissipation. In the context
of the nonlinear problem, we prove instability and nonexistence of solutions. In the con-
text of the linear problem, we obtain exponential growth. We also obtain uniqueness of
solutions of the backward in time problem of the linear equations.
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1. Introduction

In what follows, we consider a theory for the behaviour of porous solids such that the
matrix material is elastic and the interstices are void of material; it is a generalization of
the classical theory of elasticity. The theory of porous elastic material has been established
by Cowin and Nunziato [2, 11]. In this theory, the bulk density is the product of two scalar
fields, the matrix material density and the volume fraction field; it is studied in the book
of Ciarletta and Ieşan [1]. Thermal effects were included in the book of Ieşan [4]. Results
on linear and nonlinear problems have been obtained recently [5, 14, 15].

The aim of this paper is the study of the qualitative behaviour of the solutions of the
elasticity with porous dissipation. It is worth noting that there are very few contributions
to this topic. We can recall some contributions to the nonlinear problem in the book of
Ciarletta and Ieşan [1], but they are in the case where porous dissipation is not present.
Here we prove instability and nonexistence in the nonlinear case when some conditions
on the internal energy and the dissipation function are satisfied. We also work in the
linear case and we prove exponential growth of solutions whenever the initial data satisfy
several conditions. A uniqueness result is also obtained in the case of the backward in
time problem for the linear equations. The results of this paper are of interest from the
mechanical and from the mathematical point of view: from the mechanical point of view
because we obtain some qualitative results in the theory of elastic materials with voids;
from the mathematical point of view because we extend some results that were known
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in the case of no dissipation to the case that there exists dissipation. Here, we are able to
overcome the difficulty proposed by this new term.

It is worth recalling that some of the results are inspired by methods and techniques
used in the classical elasticity. For example, Section 3 is inspired by the studies of Knops
[6]. The methodology of Section 5 has been used by Knops et al. [7], Levine [9], Payne
[12], and Knops and Straughan [8]. Recently this approach has been also used by Galak-
tionov and Pohozaev [3] and Quintanilla [13] has applied it to the thermoelasticity with-
out energy dissipation.

The plan of the paper is as follows. In Section 2, we set down the basic equations and
the initial and boundary conditions. An instability result is proved in Section 3. Some
cases where the instability assumptions hold are presented in Section 4. In Section 5,
we set down a nonexistence result and some cases where the assumptions hold are pre-
sented in Section 6. An exponential growth of the solutions for the linear case is proved in
Section 7. The paper concludes with a uniqueness result for the backward-in-time prob-
lem corresponding to the linear equations.

2. Preliminaries

Consider a homogeneous body which occupies a bounded region B that we consider as a
reference configuration. The surface ∂B is assumed to have sufficient smoothness to per-
mit applications of the divergence theorem. The particles of the body are identified with
their positions in B and we assume that the body is in equilibrium under the action of
supply terms and surface tractions. The mechanical motion is described by the displace-
ment u and the volume fraction ν. We assume that they are referred to as the reference
configuration and a fixed system of Cartesian axes. B is at rest relative to the consid-
ered system of axes. Equilibrium is destroyed at t = 0 by instantaneously imparting to all
points of B a given displacement and volume fraction, but keeping the boundary fixed
throughout the ensuing mechanical motion. The governing equations of the nonlinear
elasticity with voids are the equation of motion

ρüi = TKi,K , (2.1)

the equation

ρkν̈=HK ,K + g, (2.2)

and the constitutive equations

TKi = ∂W

∂ui,K
, HK = ∂W

∂ν,K
, g =−∂W

∂ν
+D. (2.3)

Here W is the internal energy which depends on the gradient of the displacement ui,K , the
gradient of the volume fraction ν,K , and the volume fraction ν, and D is the dissipation
function which also depends on the gradient of the displacement, the gradient of the
volume fraction, the volume fraction, and the time derivative of the volume fraction ν̇.
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We assume that D vanishes when ν̇ vanishes and in general we have the condition

ν̇D ≤ 0. (2.4)

If we introduce the constitutive equations into the evolution equations, we obtain the
system of equations

ρüi =
(
∂W

∂ui,K

)
,K

, (2.5)

ρkν̈=
(
∂W

∂ν,K

)
,K
− ∂W

∂ν
+D. (2.6)

To the system of field equations we adjoin the initial conditions

u(x,0)= u0(x), u̇(x,0)= v0(x), ν(x,0)= ν0(x), ν̇(x,0)= η0(x), (2.7)

and the boundary conditions

u= 0, ν= 0, on ∂B. (2.8)

If we multiply (2.5) by u̇i and (2.6) by ν̇, integrate over B, and use the boundary condi-
tions, we obtain the energy equation

E(t)= 1
2

∫
B

(
ρu̇iu̇i + ρk(ν̇)2 + 2W

)
dv−

∫ t

0

∫
B

ν̇Ddvds= E(0). (2.9)

Although we work in the case of bounded domains, it is worth noting that the analysis
and results of Sections 3, 5, 7, and 8 can be also used in the case of unbounded domains
whenever we assume that the solutions vanish at infinity.

3. Instability: nonlinear case

The aim of this section is to state and prove the following result.

Theorem 3.1. Let (ui,ν) be a solution of the initial-boundary-value problem (2.5)–(2.8).
Let us assume that

∫
B

(
∂W

∂ui,K
ui,K +

∂W

∂ν,K
ν,K +

∂W

∂ν
ν

)
dv ≤ 0, (3.1)

and that
∣∣∣∣
∫
B

νDdv
∣∣∣∣≤ ε

∫
B
ρk(ν̇)2dv−

∫
B

[
∂W

∂ui,K
ui,K +

∂W

∂ν,K
ν,K +

∂W

∂ν
ν

]
dv, (3.2)

where 0 < ε < 1. Then, the equilibrium state is unstable.

Proof. Define

F(t)= 1
2

∫
B

(
ρuiui + ρkν2)dv. (3.3)
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Then

Ḟ(t)=
∫
B

(
ρuiu̇i + ρkνν̇

)
dv,

F̈(t)=
∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv−

∫
B

[
∂W

∂ui,K
ui,K +

∂W

∂ν,K
ν,K +

∂W

∂ν
ν− νD

]
dv.

(3.4)

In view of the assumptions, we have

F̈(t)≥ (1− ε)
∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv. (3.5)

Then

F(t)F̈(t)≥ (1− ε)
2

∫
B

(
ρuiui + ρkν2)dv

∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv ≥ (1− ε)

2

[
Ḟ(t)

]2
, (3.6)

where the last inequality follows from the Schwarz inequality. We see that

d2

dt2
Fδ(t)≥ 0, (3.7)

where δ = (ε+ 1)/2. So

Fδ(t)≥ δ−1F(0) + t
(
dF/dt(0)

)
δ−1F1−δ(0)

, (3.8)

which proves that Fδ(t) becomes unbounded whenever dF/dt(0) > 0. �

4. Instability: discussion

The energy criterion is sometimes a condition to determine stability or instability. With
the help of Theorem 3.1, it is possible to obtain a result when the equilibrium solution
corresponds to a maximum of the energy. If we look for one-dimensional examples, we
may consider

W =−
(∣∣ux∣∣p +

∣∣νx
∣∣q + |ν|r

)
, p,q,r > 1. (4.1)

Condition (3.1) is satisfied. To satisfy condition (3.2), let us consider functions of the type

D =−d|ν|sν̇, d > 0. (4.2)

We have

∣∣∣∣
∫
B

νDdx
∣∣∣∣≤ d

∫
B
|ν|s+1|ν̇|dx ≤ d

(∫
B
|ν|2(s+1)dx

)1/2(∫
B
|ν̇|2dx

)1/2

≤ d
(∫

B

(
λ|ν|2(s+1) + (1− λ)

∣∣νx
∣∣2(s+1)

μ2(s+1)
2(s+1)

)
dx
)1/2(∫

B
|ν̇|2dx

)1/2

,

(4.3)
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where

μ−1
2(s+1) = min

φ∈C∞0 (B)

(∫
B

∣∣φx∣∣2(s+1)
dx
)1/(2(s+1))

(∫
B |φ|2(s+1)dx

)1/(2(s+1)) . (4.4)

Arithmetic-geometric mean inequality and
√
a+ b≤√a+

√
b imply that

∣∣∣∣
∫
B

νDdx
∣∣∣∣≤ d

2

[
λ1/2ε1

∫
B
|ν|2(s+1)dx+μs+1

2(s+1)(1− λ)1/2ε2

∫
B

∣∣νx
∣∣2(s+1)

dx

+

(
λ1/2

ε1
+

(1− λ)1/2μs+1
2(s+1)

ε2

)∫
B
|ν̇|2dx

]
.

(4.5)

In case that r = q = 2(s+ 1), condition (3.2) is satisfied whenever there are three positive
constants λ < 1, ε1, and ε2 such that

λ1/2dε1 ≤ 4(s+ 1),

(1− λ)1/2dε2μ
s+1
2(s+1) ≤ 4(s+ 1),

λ1/2dε2 + (1− λ)1/2dε1μ
s+1
2(s+1) < 2ρkε1ε2.

(4.6)

In particular, if s= 0, the above conditions become

λ1/2dε1 ≤ 4, (1− λ)1/2dε2μ2 ≤ 4, λ1/2dε2 + (1− λ)1/2dε1μ2 < 2ρkε1ε2. (4.7)

In case that r = 2(s+ 1), but q �= 2(s+ 1), condition (3.2) is satisfied whenever there
exists a positive constant ε1 such that

dε1 ≤ 4(s+ 1), d < 2ρkε1. (4.8)

This last condition can be satisfied whenever d2 < 8ρk(s+ 1). If s= 0, the above condition
becomes d2 < 8ρk.

When q = 2(s+ 1), but r �= 2(s+ 1), condition (3.2) is satisfied whenever there exists a
positive constant ε2 such that

μs+1
2(s+1)dε2 ≤ 4(s+ 1), μs+1

2(s+1)d < 2ρkε2. (4.9)

It is satisfied whenever d2μ2(s+1)
2(s+1) < 8ρk(s+ 1). If s= 0, the condition is d2μ2

2 < 8ρk.
Another family of examples corresponds to the case when

D =−d|ux|sν̇. (4.10)

In case that s/p+ 1/r = 1/2, we have

∣∣∣∣
∫
B

νDdx
∣∣∣∣≤ d

(
εp/s1

∫
B

∣∣ux∣∣pdx
)s/p(

εr2
∫
B
|ν|rdx

)1/r(
ε2

3

∫
B

(ν̇)2dx
)1/2

, (4.11)
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where ε1ε2ε3 = 1. Thus

∣∣∣∣
∫
B

νDdx
∣∣∣∣≤ dsεp/s1

p

∫
B

∣∣ux∣∣pdx+
dεr2
r

∫
B
|ν|rdx+

dε2
3

2

∫
B

(ν̇)2dx. (4.12)

A sufficient condition to guarantee that condition (3.2) is satisfied could be the exis-
tence of three positive constants ε1, ε2, and ε3 such that ε1ε2ε3 = 1 and

εp/s1 ≤ p2

ds
, εr2 ≤

r2

d
, ε2

3 <
2ρk
d

. (4.13)

In the particular case that s= 1, p = 4, and r = 4, the previous conditions say

ε4
1 ≤

16
d

, ε4
2 ≤

16
d

, ε2
3 <

2ρk
d

. (4.14)

In case that d4 < 45ρ2k2, we can select εi satisfying the previous conditions. We consider
now s = 0, so r = 2. If there are two positive constants ε2 and ε3 such that ε2ε3 = 1 and
ε2

2 ≤ 4/d, ε2
3 < 2ρk/d, then condition (3.2) holds. Thus, we obtain the condition d2 < 8ρk.

We note that it is the same condition as that corresponding to family (4.2) when s = 0,
r = 2, and q �= 2.

It could also be possible to consider equilibrium states that correspond to a “saddle
point” of the inner energy W . For instance, we can consider

W =−∣∣ux∣∣p−∣∣νx
∣∣q + |ν|q. (4.15)

Condition (3.1) is satisfied whenever p,q > 1 and μq < 1. The family defined by (4.2)

satisfies condition (3.2) whenever q = 2(s+ 1) and d2μ2(s+1)
2(s+1) < 8ρk(s+ 1)(1− μ2(s+1)

2(s+1)). The
case s= 0 corresponds to q = 2 and d2μ2

2 < 8ρk(1−μ2
2).

5. Nonexistence

Here, we analyze the consequence of strengthening conditions (3.1) and (3.2). Thus, we
assume that condition (3.1) is satisfied and the inequality

∫
B

(
ξW − ∂W

∂ui,K
ui,K − ∂W

∂ν,K
ν,K − ∂W

∂ν
ν

)
dv ≥ 0 (5.1)

is satisfied for ξ > 2. Concerning the dissipation function, we assume that

∣∣∣∣
∫
B

νDdv
∣∣∣∣≤ ε1

∫
B
ρk(ν̇)2dv+

∫
B

[
ξW − ∂W

∂ui,K
ui,K − ∂W

∂ν,K
ν,K − ∂W

∂ν
ν

]
dv, (5.2)

where (1/2)(2 + ξ)− ε1 = ξ∗ > 2.
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We define

Gβ,t0 = F(t) +
1
2
β
(
t+ t0

)2
, β ≥ 0, (5.3)

where F(t) is defined in (3.3). We have

Ġβ,t0 = Ḟ(t) +β
(
t+ t0

)
,

G̈β,t0 = F̈(t) +β.
(5.4)

In view of the energy equation, we have that

G̈β,t0 ≥
1
2

(2 + ξ)
∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv

+
∫
B

[
ξW − ∂W

∂ui,K
ui,K− ∂W

∂ν,K
ν,K − ∂W

∂ν
ν + νD

]
dv− (ξE(0)−β

)
.

(5.5)

Inequality (5.2) implies that

G̈β,t0 ≥ ξ∗
∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv− (ξE(0)−β

)
. (5.6)

Schwarz’s inequality leads to

Gβ,t0G̈β,t0 −
ξ∗

2

(
Ġβ,t0

)2 ≥−(ξE(0) +
(
ξ∗ − 1

)
β
)
Gβ,t0 . (5.7)

Since ξ∗ > 2, the last inequality may be put in the form

d2G
−γ
β,t0

dt2
≤ γG

−(1+γ)
β,t0

(
ξE(0) +

(
ξ∗ − 1

)
β
)
, (5.8)

where

γ = ξ∗ − 2
2

. (5.9)

If we choose β such that ξE(0) + (ξ∗ − 1)β= 0, inequality (5.8) implies that

d2G
−γ
β,t0

dt2
≤ 0. (5.10)

This shows that G
−γ
β,t0 is a concave function. We have

Gβ,t0 (t)≥Gβ,t0 (0)
[

1− γt
dGβ,t0

dt
(0)Gβ,t0 (0)−1

]−1/γ

. (5.11)

We can always select t0 sufficiently large to guarantee that the derivative of Gβ,t0 is positive
at zero. This provides a lower bound to Gβ,t0 which becomes unbounded in finite time.
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An integration of the inequality (5.10) also gives the estimate

G
γ
β,t0 (t)≤

G
γ
β,t0 (0)G

γ
β,t0 (T)

(1− t/T)G
γ
β,t0 (T) + (t/T)G

γ
β,t0 (0)

, (5.12)

where we assume that the solution exists in 0 ≤ t ≤ T . From (5.12), we may deduce the
uniqueness of the null solution, and also continuous dependence upon the initial data.

6. Nonexistence: discussion

In this section, we give some examples where conditions (5.1) and (5.2) are satisfied. In
fact, we discuss when the examples proposed in Section 4 also satisfy conditions (5.1) and
(5.2). First, we see that the family (4.1) with functions of type (4.2) satisfy condition (5.1)
whenever p, q, and r are greater than two. Thus, in this section, we consider the function
W defined in (4.1) when the parameters p, q, and r satisfy the previous condition. In this
case,

ξW −
(
∂W

∂ux
ux +

∂W

∂νx
νx +

∂W

∂ν
ν
)
= (p− ξ)

∣∣ux∣∣p + (q− ξ)
∣∣νx
∣∣q + (r− ξ)|ν|r . (6.1)

We can take ξ as near as we want to the minimum of p, q, r. If we assume that r = q =
2(s+ 1), the assumptions are satisfied whenever there exist positive numbers λ < 1, ξ∗ > 2,
ε2, and ε3 such that

λ1/2dε2 ≤ 4(s+ 1)− 2ξ, (1− λ)1/2dε3μ
s+1
2(s+1) ≤ 4(s+ 1)− 2ξ,

λ1/2dε3 + (1− λ)1/2dε2μ
s+1
2(s+1) ≤ 2ρkε2ε3

[
1
2

(2 + ξ)− ξ∗
]
.

(6.2)

In case that r = 2(s+ 1), but q �= 2(s+ 1), condition (3.2) is satisfied whenever there exist
two positive constants ε2, ξ∗ > 2 such that

dε2 ≤ 4(s+ 1)− 2ξ, d ≤ 2ρk
[

1
2

(2 + ξ)− ξ∗
]
ε2. (6.3)

We note that if s= 0, then we have the condition d2 ≤ 4ρk(2− ξ) [(1/2)(2 + ξ)− ξ∗].
Perhaps, it would be good to give an explicit example. For instance, let us assume that

r = 3, s= 1/2, and q, p are greater than three. We can take ξ = 2.5. The condition is the
existence of two positive constants ε1 and ξ∗ > 2 such that

dε1 ≤ 1, d ≤ 2ρk
[
2.25− ξ∗

]
ε1. (6.4)

If we select ξ∗ = 2.05, our second condition becomes

d ≤ 0.4ρkε1. (6.5)

We can select ε1 satisfying the required conditions whenever

d2 ≤ 0.4ρk. (6.6)
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It is also possible to study conditions corresponding to the family of dissipation functions
defined in (4.10). It is possible as well to consider the case when the function W is defined
by (4.15).

7. Exponential growth: linear case

In this section, we consider the problem determined by a centrosymmetric porous elastic
material. To make the calculations easier, we also assume that the material is linearly
homogeneous. In this case, the system of equations can be expressed as

ρüi = Cijrsui, jr +Bijν, j , (7.1)

ρkν̈= Aijν,i j −Bijui, j −ην− τν̇. (7.2)

First we assume that ρ, k, and τ are strictly positive, but we do not impose the positivity
of the internal energy. However, at the end of this section, we will consider the case k = 0.
In fact, the aim of this section is to prove that whenever the internal energy is negative,
then there exist solutions that grow exponentially.

We will work with the functional

Hβ,t0 (t)=Gβ,t0 (t) +
τ

2

∫
B

∫ t

0
ν2dsdv. (7.3)

We observe by differentiation that

Ḣβ,t0 (t)= Ġβ,t0 (t) + τ
∫
B

∫ t

0
νν̇dsdv+

τ

2

∫
B

(
ν0)2

dv,

Ḧβ,t0 (t)= G̈β,t0 (t) + τ
∫
B

νν̇dv.

(7.4)

In the linear case, the energy equation (2.9) becomes

E(t)= 1
2

∫
B

(
ρu̇iu̇i + ρk(ν̇)2 +Cijrsui, jus,r + 2Bijui, jν +Aijν,iν, j +ην2

+ 2τ
∫ t

0
(ν̇)2ds

)
dv = E(0).

(7.5)

Also, multiplication of (7.1) by ui and (7.2) by ν and integration over B yields

∫
B

(
ρuiüi +Cijrsui, jus,r +Bijui, jν

)
dv = 0,

∫
B

(
ρkνν̈ +Aijν,iν, j +Bijui, jν +ην2)dv =−τ

∫
B

ν̇νdv.
(7.6)

Thus, we obtain

Ḧβ,t0 = 2
∫
B

(
ρu̇iu̇i + ρkν̇ν̇ + τ

∫ t

0
(ν̇)2ds

)
dv− (2E(0)−β

)
. (7.7)
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Hence,

Hβ,t0Ḧβ,t0 −
(
Ḣβ,t0 −

ω

2

)2

≥ 0, (7.8)

if

β =−2E(0) (7.9)

and

ω = 2τ
∫
B

(
ν0)2

dv. (7.10)

If we take t0 such that

Ḣβ,t0 (0) > ω, (7.11)

it may be proved that

Hβ,t0 ≥
Hβ,t0 (0)Ḣβ,t0 (0)

Ḣβ,t0 (0)−ω
exp

(
Ḣβ,t0 (0)−ω

Hβ,t0 (0)

)
t− ωHβ,t0 (0)

Ḣβ,t0 (0)−ω
. (7.12)

If we consider the function H0,0, estimate (7.3) implies that

H0,0(t)≥ Hβ,t0 (0)Ḣβ,t0 (0)

Ḣβ,t0 (0)−ω
exp

(
Ḣβ,t0 (0)−ω

Hβ,t0 (0)

)
t− ωHβ,t0 (0)

Ḣβ,t0 (0)−ω
− β

2

(
t+ t0

)2
. (7.13)

We have proved the following.

Theorem 7.1. Let (ui,ν) be a solution of the initial-boundary-value problem determined
by (2.1)–(2.6), such that the initial conditions satisfy that E(0) < 0. Then, for β satisfying
(7.9) and t0 determined from (7.10) and (7.11), it follows that for large time the function
H0,0 grows exponentially.

Theorem 7.1 says that whenever the initial conditions are such that E(0) < 0, the so-
lution grows exponentially. In view of the assumptions on constitutive tensors, we can
obtain solutions with negative energy.

The quasistatic evolution of microvoids can be considered (see [10]). From a math-
ematical point of view, it corresponds to the case where we assume that k = 0 in (7.2).
Then, we obtain system of (7.1) and the equation

τν̇= Aijν,i j −Bijui, j −ην. (7.14)

As far as the authors know, this system has not been studied in the literature. However, it
is easy to obtain uniqueness and exponential growth of solutions in a similar way as for
the system (7.1)-(7.2). To prove uniqueness, we can define the function

J(t)= 1
2

∫
B

(
ρuiui + τ

∫ t

0
ν2ds

)
dv. (7.15)
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When we assume null initial conditions and boundary conditions (2.8), we see that the
function J(t) satisfies the inequality (7.8), where ω= 0. This inequality is well known and
it implies that (see [6])

J(t)≤ J(0)1−t/T J(T)t/T , (7.16)

for 0≤ t ≤ T . This estimate implies that J(t)= 0 whenever we assume null initial condi-
tion and then the uniqueness of solutions follows.

Also, it is possible to prove the growth exponential of solutions of the problem deter-
mined by (7.2) and (7.14). To this end, we consider the function

Jβ,t0 (t)= J(t) +
β

2

(
t+ t0

)2
. (7.17)

It is worth noting that in this case the energy of the system is given by

E1(t)= 1
2

∫
B

(
ρu̇iu̇i +Cijrsui, jus,r + 2Bijui, jν +Aijν,iν, j +ην2 + 2τ

∫ t

0
(ν̇)2ds

)
dv = E1(0).

(7.18)

The analysis proposed previously shows that Jβ,t0 (t) satisfies (7.8) and then the exponen-
tial growth of solutions is obtained whenever E1(0) < 0.

8. Uniqueness backward in time problem: linear case

In this section, we consider the problem determined by the backward in time problem for
a linear porous elastic material. We continue with the assumptions proposed in Section 7
with respect to ρ, k, and τ, but we do not impose any condition neither on the positivity
nor on the negativity of the internal energy. Thus, the internal energy has not a defined
sign (which is the most general case). Thus we consider a homogeneous and centro-
symmetric porous elastic material. In this case, the system of equations can be expressed
as

ρüi = Cijrsuj,rs +Bijν, j ,

ρkν̈= Aijν,i j −Bijui, j −ην + τν̇.
(8.1)

To treat the uniqueness question, let (ui,ν) be the difference of two solutions that satisfy
the same initial and boundary conditions. Thus (ui,ν) satisfies the system (8.1), with the
boundary conditions (2.8) and the homogeneous initial conditions

ui(x,0)= ν(x,0)= 0, on B. (8.2)
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We can form the identities
∫ t

0

∫
B
ρüi(s)u̇i(2t− s)dvds

=−
∫ t

0

∫
B
Ci jrsui, j(s)u̇s,r(2t− s)dvds−

∫ t

0

∫
B
Bi jν(s)u̇i, j(2t− s)dvds,

(8.3)

∫ t

0

∫
B
ρüi(2t− s)u̇i(s)dvds

=−
∫ t

0

∫
B
Ci jrsui, j(2t− s)u̇s,r(s)dvds−

∫ t

0

∫
B
Bi jν(2t− s)u̇i, j(s)dvds,

(8.4)

∫ t

0

∫
B
ρkν̈(s)ν̇(2t− s)dvds

=−
∫ t

0

∫
B
Ai jν,i(s)ν̇, j(2t− s)dvds−

∫ t

0

∫
B
Bi jui, j(s)ν̇(2t− s)dvds

−
∫ t

0

∫
B
ην(s)ν̇(2t− s)dvds+

∫ t

0

∫
B
τν̇(s)ν̇(2t− s)dvds,

(8.5)

∫ t

0

∫
B
ρkν̈(2t− s)ν̇(s)dvds

=−
∫ t

0

∫
B
Ai jν,i(2t− s)ν̇, j(s)dvds−

∫ t

0

∫
B
Bi jui, j(2t− s)ν̇(s)dvds

−
∫ t

0

∫
B
ην(2t− s)ν̇(s)dvds

∫ t

0

∫
B
τν̇(2t− s)ν̇(s)dvds.

(8.6)

If we recall that ḟ (2t− s)=−(d/ds) f (2t− s) and form the combinations (8.3)-(8.4) +
(8.5)-(8.6) after some integrations, one finds

∫
B

(
ρu̇iu̇i + ρk(ν̇)2−Cijrsui, jus,r − 2Bijui, jν−Aijν,iν, j −ην2)dv = 0. (8.7)

We can obtain the energy equation

E(t)= 1
2

∫
B

(
ρu̇iu̇i + ρk(ν̇)2 +Cijrsui, jus,r + 2Bijui, jν +Aijν,iν, j +ην2)dv

− τ
∫ t

0

∫
B

(ν̇)2dvds= 0.
(8.8)

Through combination of the two last equalities, we find that
∫
B

(
ρu̇iu̇i + ρk(ν̇)2− τ

∫ t

0
(ν̇)2ds

)
dv = 0. (8.9)

If we consider the function

Z(t)=
∫
B

(
ρu̇iu̇i + ρk(ν̇)2)dv = τ

∫ t

0

∫
B

(ν̇)2dvds, (8.10)

we can compute a positive constant such that

Z′(t)≤ CZ(t), (8.11)
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that after a quadrature implies that

Z(t)≤ Z(0)exp(Ct). (8.12)

As we assume homogeneous initial conditions, it follows that Z(0) = 0. Then, Z(t) = 0
for all time and we obtain the uniqueness of solutions.
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