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theory. Numerical results are presented graphically and salient features of the solutions
are discussed.
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1. Introduction

Because of their various applications during the past several years, generalizations of the
Navier-Stokes model to highly nonlinear constitutive laws have been proposed and stud-
ied (see [4, 5, 7]). Several different models have been introduced to explain such nonstan-
dard features, as normal stress effect, rod climbing, shear thinning, and shear thickening.
Among the differential-type models, Oldroyd models received special attention [2]. These
models are rather complex from the point of view of partial differential equations theory.
Nevertheless, several authors in fluid mechanics are now engaged with the equations of
motion of non-Newtonian fluids of Oldroyd two-, three-, six-, and eight-constant mod-
els. Several authors [2, 6] considered an Oldroyd three-constant model which is a special
case of the Oldroyd six-constant model. This has been used recently by Baris [1] for deal-
ing with the steady and slow flow in the wedge between intersecting planes, one fixed and
the other one moving.

The Cauchy stress T in an incompressible Oldroyd six-constant-type fluid is related to
the fluid motion by

T=−pI + S, (1.1)
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(for details see [2]), where−pI is the indeterminate part of the stress due to the constraint
of incompressibility. The extra stress tensor S is defined by

S + λ1
DS
Dt

+
λ3

2

(
SA1 + A1S

)
+
λ5

2
(trS)A1 = μ

(
A1 + λ2

DA1

Dt
+ λ4A2

1

)
, (1.2)

where μ, λ1, λ2, λ3, λ4, λ5 are six material constants. A1 is the first Rivlin-Ericksen tensor
defined by

A1 = gradv + (gradv)T , (1.3)

where DS/Dt is the upper-convected derivative of S and is defined as

DS
Dt

= ∂S
∂t

+ v ·∇S−LS− SLT (L= gradv). (1.4)

Recently, Wang et al. [8] studied magnetohydrodynamic steady Poiseuille channel flow
of an Oldroyd six-constant fluid and obtained the numerical solution using the predictor
corrector method. However, they did not show existence and uniqueness results.

In this paper, we study the existence, uniqueness, and behavior of exact solutions of
second-order nonlinear differential equations arising in Oldroyd six-constant fluid flows
in a channel. Furthermore, we obtain numerical solutions by using the quasilinearization
technique.

2. Formulation of the problem

In this paper, steady plane shearing flows are considered for which the equation for the
fluid flow (for details see Wang et al. [8]) is

d

dy

{
μ(du/dy) +μα1(du/dy)3

1 +α2(du/dy)2

}

− dp

dx
= 0, (2.1)

where

α1 = λ1λ4−
(
λ3 + λ5

)(
λ4− λ2

)
, α2 = λ1λ3−

(
λ3 + λ5

)(
λ3− λ1

)
. (2.2)

We leave the issue of boundary conditions for later.
Defining nondimensional variables

y∗ = y

H
, x∗ = x

H
, u∗ = u

H
,

α∗1 =
α1

(U/H)2
, α∗2 =

α2

(U/H)2
, p∗ = p

(μU/H)
,

(2.3)
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and substituting (2.3) in (2.1), we obtain (after dropping the stars)

d

dy

{
(du/dy) +α1(du/dy)3

1 +α2(du/dy)2

}

− dp

dx
= 0. (2.4)

The appropriate no-slip boundary conditions are

u(0)= u(1)= 0. (2.5)

First, we define L= ((du/dy) +α1(du/dy)3)/(1 +α2(du/dy)2) so that

dL

dy
= dp

dx
. (2.6)

Now, (2.6) can be solved for du/dy in terms of L. In order to do this we assume the
transformation

du

dy
= α1

du

dy
− α2

3
L. (2.7)

This transformation effectively gets rid of the quadratic first derivative term yielding

du

dy

3

− 3R
du

dy
−B = 0, (2.8)

where

R= 1
9
α2

2L
2− α1

3
, B = α2

1L−
α1α2

3
L+

2
27

α3
2L

3. (2.9)

The solution of this is

du

dy
= χ +ϕ, (2.10)

where

χ = 3

√
B

2
+

√
B2− 4R3

2
, ϕ= 3

√
B

2
−
√
B2− 4R3

2
. (2.11)

We note that (2.8) always has one real solution irrespective of the value of B2 − 4R3.
Also, if (B2− 4R3)≤ 0, then it is easy to see that (2.8) has three real solutions, hence there
is no unique solution, so, throughout this paper, we assume that (B2− 4R3) > 0.

Using (2.7) in (2.10), we get

du

dy
= χ

α1
+

ϕ

α1
+

α2

3α1
L. (2.12)

From (2.6), we have

L= dp

dx
y + c. (2.13)
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Integrating (2.12) and substituting into(2.13), we obtain

u(y)= 1
α1

∫ y

0
χ(ξ)dξ +

1
α1

∫ y

0
ϕ(ξ)dξ +

α2

3α1

(
1
2
dp

dx
y2 + cy

)

. (2.14)

3. Existence and uniqueness results

Theorem 3.1. There exists a classical solution of (2.4) which can be written as

d2u

dy2
− (dp/dx)

(
1 +α2(du/dy)2)2

1 + 3α1(du/dy)2−α2(du/dy)2 +α1α2(du/dy)4 = 0 (3.1)

with

u(0)= u(1)= 0. (3.2)

Proof. We employ the Schauder fixed point theorem. First, from (2.6), we see that the
solution can be written as (2.14). Let B be the Banach space of continuous functions u(y)
on the interval 0≤ y ≤ 1 which vanish at 0 and 1 with the norm

‖u‖ = sup
0≤y≤1

∣
∣u(y)

∣
∣. (3.3)

Define F : B→ B, where (Fu)(y) is equal to the right-hand side of (2.14). �

3.1. A priori bounds. The Schauder fixed point theorem requires us to show that F is a
continuous mapping of a convex compact subset of B into itself. To do this we need to
derive estimates on (Fu)(y) and (Fu)′(y). Since dp/dx = k (constant), k is known, and
y ∈ [0,1], we have from (2.13) that L= ky + c. This gives us an estimate of (Fu)(y) and
(Fu)′(y). From the triangle inequality, we get

∣
∣
∣
∣
χ

α1
+

ϕ

α1
+

α2

3α1
L
∣
∣
∣
∣≤

∣
∣
∣
∣
χ

α1

∣
∣
∣
∣+

∣
∣
∣
∣
ϕ

α1

∣
∣
∣
∣+

∣
∣
∣
∣
α2

3α1
L
∣
∣
∣
∣, (3.4)

where

∣
∣
∣
∣
χ

α1

∣
∣
∣
∣=

1
∣
∣α1

∣
∣

∣
∣
∣
∣
∣
∣
∣

3

√
√
√
√1

2
α2

1L−
1
6
α1α2L+

1
27

α3
2 +

1
2

√

α2
1L−

1
3
α1α2L+

2
27

α3
2−4

(
1
9
α2

2L2− α1

3

)
∣
∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
ϕ

α1

∣
∣= 1

∣
∣α1

∣
∣

∣
∣
∣
∣
∣
∣
∣

3

√
√
√
√1

2
α2

1L−
1
6
α1α2L+

1
27

α3
2−

1
2

√

α2
1!!

1
3
α1α2L+

2
27

α3
2−4

(
1
9
α2

2L2− α1

3

)
∣
∣
∣
∣
∣
∣
∣
.

(3.5)

Since 0≤ y ≤ 1, and c and k are constants, we know that L is bounded. On the other hand
α1 and α2 are dimensionless parameters (see (2.2)-(2.3)) and from (2.7), we see that χ
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and ϕ are bounded. Therefore, |χ/α1| and |ϕ/α1| are bounded by C1/|α1| and C2/|α1|,
respectively. Hence

∣
∣(Fw)(y)

∣
∣≤

∫ y

0

(
C1∣
∣α1

∣
∣ +

C2∣
∣α1

∣
∣

)

dξ +
∣
∣
∣
∣
α2k

3α1

∣
∣
∣
∣

(
1
2

+ c
)
≤ C4. (3.6)

Since C4 is independent of the function w, we see F : Z →V , where

V= {u∈ Z | ‖w‖ ≤ C4
}

(3.7)

is a subset of B and hence

(Fw)′(y)= χ

α1
+

ϕ

α1
+

α2

3α1
L. (3.8)

Similarly, it is easy to show that

∣
∣(Fw)′(y)

∣
∣≤ C5. (3.9)

Since C5 is independent of w, we have F : Z →Vc, where

Vc =
{
w ∈ Z | ‖w‖ ≤ C4, ‖w′‖ ≤ C5

}
, (3.10)

which is convex and compact via the Ascoli-Arzela theorem. Consequently, we have F :
Z → Z. The continuity of F is an elementary calculation based on the estimates, and it is
easy to see from (3.5) that

∥
∥Fu1−Fu2

∥
∥≤ C10, (3.11)

where C10 = C10(C4,C5, . . . ,α1,α2).

Theorem 3.2. The solution u(y) of (3.1) and (3.2) is unique.

Proof. The proof is by contradiction. We assume that (3.1) has two solutions u and v
satisfying the conditions (3.2). Set z = u− v. We get

z′′(y) + kz′(y)
(u′ + v′)

(
α2

2a1u′2v′2 +α2
2u
′2 + 2α2u′2v′2− a2u′2− 2α2 + a1−

(
α2

2 + a2
)
v′2
)

(
1 + a1u′2 + a2u′4

)(
1 + a1v′2 + a2v′4

)

= 0,
(3.12)

where a1 = 3α1−α2 and a2 = α1α2. We can write this equation in the form

z′′ +F(u′,v′)kz′ = 0 (3.13)

with boundary conditions

z(0)= 0, z(1)= 0. (3.14)
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Equation (3.13) can be solved easily to get

z = e1 + e2

∫ y

0
e−
∫
kFdtdt. (3.15)

Using the boundary condition (3.14), we find that z = 0. This proves the theorem. �

4. Results and discussion

We use the quasilinearization method which has been explained in detail in [3]. The
quasilinear process equations for our differential equation are

(
d2u

dy2

)

k+1

= (dp/dx)
(
1 +α2N

2
k

)2

M
+
dp

dx

(
1 +α2N

2
k

)2

×
{

−
(
6α1Nk + 4α1α2N

3
k − 2α2Nk

)

M2
+

4α2Nk
(
1 +α2N

2
k

)2
M

}

×
((

du

dy

)

k+1
−
(
du

dy

)

k

)

, k = 0,1, . . . ,

uk(0)= 0, uk(1)= 0,

(4.1)

where

N = du

dx
, M = 1 + 3α1N

2
k +α1α2N

4
k −α2N

2
k . (4.2)

By means of the finite difference method a linear algebraic equation system is derived
and solved for each iterative step. A sequence of functions u0(y),u1(y), . . . is determined
in the following manner: if an initial estimate u0(y) is given, then u1(y),u2(y), . . . are
calculated successively as the solution of the boundary-value problem (4.1). The solution
is assumed to converge when the difference between two successive iterations is less than
the infinitesimal number ε = 1× 10−10.

In Figures 4.1 and 4.2, we show the effects of the parameters (α1, α2), and the pressure
gradient on the velocity field. In these figures, we also compared our results with the
results of Wang et al. [8]. For small values of α2, there is no appreciable difference between
the two solutions. However, if α2 is large enough, these two solutions are different; this
mathematical problem is of interest and will be the subject of our future investigation. If
α1 is not large, these two solutions are identical as shown in Figures 4.3 and 4.4. Here, the
parameters α1, α2 represent material constants; when they are zero, the model reduces to
the linear Oldroyd-B model. Hence, we can regard the effects of the parameters α1, α2 on
the velocity field as due to nonlinearity.
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Figure 4.1. Velocity profiles for various values of α2 and fixed α1 = 1 (I: Wang et al. solution; K: our
solution) for dp/dx =−2.
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Figure 4.2. Velocity profiles for various values of α2 and fixed α1 = 1 (I: Wang et al. solution; K: our
solution) for dp/dx =−1.
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Figure 4.3. Velocity profiles for various values of α1 and fixed α2 = 1 (I: Wang et al. solution; K: our
solution) for dp/dx =−1.
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Figure 4.4. Velocity profiles for various values of α1 and fixed α2 = 1 (I: Wang et al. solution; K: our
solution) for dp/dx =−2.
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