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This paper studies the effect of variable viscosity on the transient Couette flow of dusty
fluid with heat transfer between parallel plates. The fluid is acted upon by a constant
pressure gradient and an external uniform magnetic field is applied perpendicular to the
plates. The parallel plates are assumed to be porous and subjected to a uniform suction
from above and injection from below. The upper plate is moving with a uniform velocity
while the lower is kept stationary. The governing nonlinear partial differential equations
are solved numerically and some important effects for the variable viscosity and the uni-
form magnetic field on the transient flow and heat transfer of both the fluid and dust
particles are indicated.
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1. Introduction

The study of the flow of dusty fluids has important applications in the fields of fluidiza-
tion, combustion, use of dust in gas cooling systems, centrifugal separation of matter
from fluid, petroleum industry, purification of crude oil, electrostatic precipitation, poly-
mer technology, and fluid droplets sprays.

The hydrodynamic flow of dusty fluids was studied by a number of authors [6–8, 13,
14]. Later, the influence of the magnetic field on the flow of electrically conducting dusty
fluids was studied [1, 5, 11, 12, 16]. Most of these studies are based on constant physical
properties. More accurate prediction for the flow and heat transfer can be achieved by
taking into account the variation of these properties, especially the variation of the fluid
viscosity with temperature [9]. Klemp et al. [10] have studied the effect of temperature-
dependent viscosity on the entrance flow in a channel in the hydrodynamic case. Attia
and Kotb [4] studied the steady MHD fully developed flow and heat transfer between
two parallel plates with temperature-dependent viscosity. Later, Attia [3] has extended
the problem to the transient state.
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2 MHD Couette flow of dusty fluid

In the present work, the effect of variable viscosity on the unsteady flow of an elec-
trically conducting, viscous, incompressible dusty fluid and heat transfer between paral-
lel nonconducting porous plates is studied. The fluid is flowing between two electrically
insulating infinite plates maintained at two constants but different temperatures. An ex-
ternal uniform magnetic field is applied perpendicular to the plates. The upper plate is
moving with a uniform velocity while the lower is kept stationary. The magnetic Reynolds
number is assumed small so that the induced magnetic field is neglected. The fluid is acted
upon by a constant pressure gradient and its viscosity is assumed to vary exponentially
with temperature. The flow and temperature distributions of both the fluid and dust par-
ticles are governed by the coupled set of the momentum and energy equations. The Joule
and viscous dissipation terms in the energy equation are taken into consideration. The
governing coupled nonlinear partial differential equations are solved numerically using
the finite difference approximations. The effects of the external uniform magnetic field
and the temperature-dependent viscosity on the time development of both the velocity
and temperature distributions are discussed.

2. Description of the problem

The dusty fluid is assumed to be flowing between two infinite horizontal plates located at
the y =±h planes. The dusty particles are assumed to be uniformly distributed through-
out the fluid. The two plates are assumed to be electrically nonconducting and kept at
two constant temperatures, T1 for the lower plate and T2 for the upper plate with T2 > T1.
The upper plate is moving with a uniform velocity Uo while the lower is kept stationary.
A constant pressure gradient is applied in the x-direction and the parallel plates are as-
sumed to be porous and subjected to a uniform suction from above and injection from
below. Thus the y-component of the velocity is constant and denoted by vo. A uniform
magnetic field Bo is applied in the positive y-direction. By assuming a very small magnetic
Reynolds number the induced magnetic field is neglected [17]. The fluid motion starts
from rest at t = 0, and the no-slip condition at the plates implies that the fluid and dust
particles velocities have neither a z- nor an x-component at y =±h. The initial tempera-
tures of the fluid and dust particles are assumed to be equal to T1 and the fluid viscosity
is assumed to vary exponentially with temperature. Since the plates are infinite in the x-
and z-directions, the physical variables are invariant in these directions. The flow of the
fluid is governed by the Navier-Stokes equation [17]

ρ
∂u

∂t
+ ρvo

∂u

∂y
=−dP

dx
+

∂

∂y

(
μ
∂u

∂y

)
− σB2

ou−KN
(
u−up

)
, (2.1)

where ρ is the density of clean fluid, μ is the viscosity of clean fluid, u is the velocity of
fluid, up is the velocity of dust particles, σ is the electric conductivity, p is the pressure
acting on the fluid, N is the number of dust particles per unit volume, and K is a constant.
The first three terms in the right-hand side are, respectively, the pressure gradient, viscos-
ity, and Lorentz force terms. The last term represents the force term due to the relative
motion between fluid and dust particles. It is assumed that the Reynolds number of the
relative velocity is small. In such a case the force between dust and fluid is proportional
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to the relative velocity [14]. The motion of the dust particles is governed by Newton’s
second law [14]

mp
∂up

∂t
= KN

(
u−up

)
, (2.2)

where mp is the average mass of dust particles. The initial and boundary conditions on
the velocity fields are, respectively, given by

t = 0 : u= up = 0. (2.3)

For t > 0, the no-slip condition at the plates implies that

y =−h : u= 0,

y = h : u=Uo.
(2.4)

Heat transfer takes place from the upper hot plate towards the lower cold plate by
conduction through the fluid. Also, there is a heat generation due to both the Joule and
viscous dissipations. The dust particles gain heat energy from the fluid by conduction
through their spherical surface. Two energy equations are required which describe the
temperature distributions for both the fluid and dust particles and are, respectively, given
by [15]

ρc
∂T

∂t
+ ρcvo

∂T

∂y
= k

∂2T

∂y2
+μ

(
∂u

∂y

)2

+ σB2
ou

2 +
ρpCs

γT

(
Tp−T

)
, (2.5)

∂Tp

∂t
=− 1

γT

(
Tp−T

)
, (2.6)

where T is the temperature of the fluid, Tp is the temperature of the particles, c is the
specific heat capacity of the fluid at constant pressure, Cs is the specific heat capacity of
the particles, k is the thermal conductivity of the fluid, γT is the temperature relaxation
time (= 3PrγpCs/2c), γp is the velocity relaxation time (= 2ρsD2/9μ), ρs is the material
density of dust particles (= 3ρp/4πD3N), andD is the average radius of dust particles. The
last three terms in the right-hand side of (2.5) represent the viscous dissipation, the Joule
dissipation, and the heat conduction between the fluid and dust particles. The initial and
boundary conditions on the temperature fields are given as

t ≤ 0 : T = Tp = 0,

t > 0, y =−h : T = T1,

t > 0, y = h : T = T2.

(2.7)

The viscosity of the fluid is assumed to depend on temperature and is defined as μ=
μo f (T). For practical reasons which are shown to be suitable for most kinds of fluids
[2, 10], the viscosity is assumed to vary exponentially with temperature. The function
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f (T) takes the form [2, 10], f (T)= e−b(T−T1), where the parameter b has the dimension
of [T]−1 and such that at T = T1, f (T1) = 1 and then μ = μo. This means that μo is the
viscosity coefficient at T = T1. The parameter a1 may take positive values for liquids such
as water, benzene, or crude oil. In some gases like air, helium, or methane a1 it may be
negative, that is, the coefficient viscosity increases with temperature [2, 10].

The temperature variations within a convective flow give rise to variations in the prop-
erties of the fluid, in the density and viscosity, for example. An analysis including the
full effects of these is so complicated that some approximations become essential. The
equations are commonly used in a form known as the Boussinesq approximation. In the
Boussinesq approximation, variations of all fluid properties other than the density are ig-
nored completely. Variations of the density are ignored except insofar as they give rise to
gravitational force [18]. Therefore, a buoyancy force term may be included in the Navier-
Stokes equation which equals−αρΔT , where α is the coefficient of expansion of the fluid.
Such a buoyancy term may be neglected on the basis of either ΔT small, that is, T2−T1 is
small, or small α which is a reasonable approximation for liquids and perfect gases [18].

The problem is simplified by writing the equations in the nondimensional form. The
characteristic length is taken to be h and the characteristic velocity is Uo. We define the
following nondimensional quantities:

(x̂, ŷ)= (x, y)
h

, t̂ = tUo

h
, P̂ = P

ρU2
o

, λ=−dp̂

dx̂
, (û, v̂)= (u,v)

Uo
,

(
ûp, v̂p

)=
(
up,vp

)
Uo

, T̂ = T −T1

T2−T1
, T̂p =

Tp−T1

T2−T1
,

(2.8)

f (T̂)= e−b(T2−T1)T̂ = e−aT̂ , a is the viscosity variation parameter,
Ha2 = σB2

oh
2/μo, Ha is the Hartmann number,

R= KNh2/μo is the particle concentration parameter,
G=mpUo/(hK) is the particle mass parameter,
S= vo/Uo is the suction parameter,
Pr= μoc/k is the Prandtl number,
Ec=U2

o /(c(T2−T1)) is the Eckert number,
Lo = ρh2/μoγT is the temperature relaxation time parameter.

In terms of the above nondimensional variables and parameters (2.1) to (2.7) take the
form (the hats are dropped for convenience)

∂u

∂t
+ S

∂u

∂y
= λ+ f (T)

∂2u

∂y2
+
∂ f (T)
∂y

∂u

∂y
−Ha2u−R

(
u−up

)
, (2.9)

G
∂up

∂t
= (u−up

)
, (2.10)

t ≤ 0 : u= up = 0,

t > 0, y =−1 : u= 0,

t > 0, y = 1 : u= 1,

(2.11)
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∂T

∂t
+ S

∂T

∂y
= 1

Pr
∂2T

∂y2
+ Ec f (T)

(
∂u

∂y

)2

+ EcHa2u2 +
2R
3Pr

(
Tp−T

)
, (2.12)

∂Tp

∂t
=−Lo

(
Tp−T

)
, (2.13)

t ≤ 0 : T = Tp = 0,

t > 0, y =−1 : T = 0,

t > 0, y = 1 : T = 1.

(2.14)

Equations (2.9), (2.10), (2.12), and (2.13) represent a system of coupled and nonlinear
partial differential equations which are solved numerically under the initial and boundary
conditions (2.11) and (2.14) using the finite difference approximations. A linearization
technique is first applied to replace the nonlinear terms at a linear stage, with the correc-
tions incorporated in subsequent iterative steps until convergence is reached. Then the
Crank-Nicolson implicit method is used at two successive time levels [2]. An iterative
scheme is used to solve the linearized system of difference equations. The solution at a
certain time step is chosen as an initial guess for next time step and the iterations are
continued till convergence, within a prescribed accuracy. Finally, the resulting block tri-
diagonal system is solved using the generalized Thomas algorithm [2]. Finite difference
equations relating the variables are obtained by writing the equations at the midpoint
of the computational cell and then replacing the different terms by their second-order
central difference approximations in the y-direction. The diffusion terms are replaced by
the average of the central differences at two successive time levels. The computational do-
main is divided into meshes each of dimension Δt and Δy in time and space, respectively.
We define the variables v = ∂u/∂y and H = ∂θ/∂y to reduce the second-order differential
equations (2.9) and (2.12) to first-order differential equations which are

(
ui+1, j+1−ui, j+1 +ui+1, j −ui, j

2Δt

)
+ S

(
vi+1, j+1 + vi, j+1 + vi+1, j + vi, j

4

)

= α+

(
f 1(T)i, j+1 + f 1(T)i, j

2

)
×
((

vi+1, j+1 + vi, j+1
)− (vi+1, j + vi, j

)
2Δy

)

+

(
f 1(T)i, j+1− f 1(T)i, j

Δy

)(
vi+1, j+1 + vi, j+1 + vi+1, j + vi, j

4

)

−Ha2

(
ui+1, j+1 +ui, j+1 +ui+1, j +ui, j

4

)
−R

(
ui+1, j+1 +ui, j+1 +ui+1, j +ui, j

4

)

+R

(
upi+1, j+1 +upi, j+1 +upi+1, j +upi, j

4

)
,
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G

(
upi+1, j+1 −upi, j+1 +upi+1, j −upi, j

2Δt

)

=
(
ui+1, j+1 +ui, j+1 +ui+1, j +ui, j

4
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4

)
,

(
Ti+1, j+1−Ti, j+1 +Ti+1, j −Ti, j

2Δt

)
+ S

(
Hi+1, j+1 +Hi, j+1 +Hi+1, j +Hi, j

4Pr

)

=
(
f 2(T)i, j+1 + f 2(T)i, j

2Pr

)
×
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)− (Hi+1, j +Hi, j

)
2Δy

)

+ Ec

(
f 1(T)i, j+1 + f 1(T)i, j

2

)(
vi+1, j+1 + vi, j+1 + vi+1, j + vi, j

2

)

×
(
vi+1, j+1 + vi, j+1 + vi+1, j + vi, j

2

)
+ EcHa2

(
ui+1, j+1 +ui, j+1 +ui+1, j +ui, j

2

)

×
(
ui+1, j+1 +ui, j+1 +ui+1, j +ui, j

2

)

+
2R
3Pr

(
Tpi+1, j+1 +Tpi, j+1 +Tpi+1, j +Tpi, j

4
− Ti+1, j+1 +Ti, j+1 +Ti+1, j +Ti, j

4

)
,

(
Tpi+1, j+1 −Tpi, j+1 +Tpi+1, j −Tpi, j

2Δt

)

=−Lo
(
Tpi+1, j+1 +Tpi, j+1 +Tpi+1, j +Tpi, j

4
− Ti+1, j+1 +Ti, j+1 +Ti+1, j +Ti, j

4

)
.

(2.15)

The variables with bars are given initial guesses from the previous time steps and an
iterative scheme is used at every time to solve the linearized system of difference equa-
tions. Computations have been made for R = 0.5, G = 0.8, λ = 5, Pr = 1, Ec = 0.2, and
Lo = 0.7. Grid-independence studies show that the computational domain 0 < t <∞ and
−1 < y < 1 can be divided into intervals with step sizes Δt = 0.0001 and Δy = 0.005 for
time and space, respectively. Smaller step sizes do not show any significant change in the
results. Convergence of the scheme is assumed when all of the unknowns u, v, up, T , H ,
and Tp for the last two approximations differ from unity by less than 10−6 for all values
of y in −1 < y < 1 at every time step. Less than 7 approximations are required to satisfy
these convergence criteria for all ranges of the parameters studied here.

3. Results and discussions

The exponential dependence of the viscosity on temperature results in decomposing the
viscous force term in the momentum equation into two terms. The variations of these
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Figure 3.1. The evolution of u for different values of a (Ha= 0, S= 0).
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Figure 3.2. The evolution of up for different values of a (Ha= 0, S= 0).

resulting terms with the viscosity variation parameter a and their relative magnitudes
have an important effect on the flow and temperature fields in the absence or presence of
the applied uniform magnetic field.

Figures 3.1 and 3.2 indicate the variations of the velocities u and up at the center of the
channel (y = 0) with time for different values of the viscosity variation parameter a and
for Ha = 0 and S = 0. The figures show that increasing a increases the velocity and the
time required to approach the steady-state. The effect of the parameter a on the steady-
state time is more pronounced for positive values of a than for negative values. Notice that
u reaches the steady state faster than up. This is because the fluid velocity is the source for
the dust particles velocity. Figure 3.1 shows also that the influence of a on up is negligible
for some time and then increases as the time develops.

Figures 3.3 and 3.4 present the variations of the temperatures T and Tp at the center
of the channel (y = 0) with time for different values of the viscosity variation parameter
a for Ha = 0 and S = 0. The figures show that increasing a increases the temperatures
and the steady-state times. Increasing the positive values of a decreases the temperature
for some time and then the temperature increases with the increment in a as the time
develops. Thus, increasing a increases the steady-state value of the temperature with the
appearance of the cross-over of the temperature curves corresponding to different values
of a. The time at which the curves intersect increases with the increment in a and is longer
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Figure 3.3. The evolution of T for different values of a (Ha= 0, S= 0).
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Figure 3.4. The evolution of Tp for different values of a (Ha= 0, S= 0).

for T than for Tp, as Tp always follows T . It is noticed that the steady-state values of Tp

coincide with the corresponding steady-state values of T , and the time required for Tp to
reach the steady state, which depends on a, is longer than that for T .

The application of the uniform magnetic field adds one resistive term to the momen-
tum equation and the Joule dissipation term to the energy equation. Figures 3.5 and 3.6
present the influence of the viscosity variation parameter a on the evolution of both the
velocities u and up at the center of the channel, respectively, for Ha = 1 and S = 0. The
magnetic field results in a reduction in the velocities and the steady-state time for all
values of a due to its damping effect.

Figures 3.7 and 3.8 present the influence of the viscosity variation parameter a on
the evolution of the temperatures T and Tp at the center of the channel, respectively,
for Ha = 1 and S = 0. Increasing the magnetic field increases the temperatures for all
positive values of a except for very small time. This is because the magnetic field has a
resistive effect which becomes more pronounced as time develops especially with the case
of negative a which has the same resistive effect.

Figures 3.9 and 3.10 indicate the variations of the velocities u and up at the center of
the channel (y = 0) with time for different values of the viscosity variation parameter a
and for Ha= 0 and S= 1. It is clear that the suction velocity decreases both u and up and
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Figure 3.5. The evolution of u for different values of a (Ha= 1, S= 0).
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Figure 3.6. The evolution of up for different values of a (Ha= 1, S= 0).
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Figure 3.7. The evolution of T for different values of a (Ha= 1, S= 0).

their steady-state times as a result of pumping the fluid from the slower lower half region
to the center of the channel. The influence of suction on u and up is more pronounced
for higher values of the parameter a.

Figures 3.11 and 3.12 present the influence of the viscosity variation parameter a on
the evolution of the temperatures T and Tp at the center of the channel, respectively, for
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Figure 3.8. The evolution of Tp for different values of a (Ha= 1, S= 0).
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Figure 3.9. The evolution of u for different values of a (Ha= 0, S= 1).
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Figure 3.10. The evolution of up for different values of a (Ha= 0, S= 1).

Ha = 0 and S = 1. It is shown that increasing suction velocity decreases both T and Tp

and their steady-state times. This results from pumping the fluid from colder lower half
region to the center of the channel. The effect of suction on T and Tp is more apparent
for higher values of a.
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Figure 3.11. The evolution of T for different values of a (Ha= 0, S= 1).
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Figure 3.12. The evolution of Tp for different values of a (Ha= 0, S= 1).
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Figure 3.13. Steady-state profile of u for various values of a (Ha= 0.5, S= 0.5).

Figures 3.13 and 3.14 present the influence of the viscosity variation parameter a on
the steady-state profile of the velocities u and up, respectively, for Ha = 0.5 and S = 0.5.
It is clear that increasing a increases u and up for all values of y due to the increase in
viscosity. It is clear also that the steady-state velocity attains more than three times the
wall velocity due to the effect of the applied pressure gradient. Figures 3.15 and 3.16
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Figure 3.14. Steady-state profile of up for various values of a (Ha= 0.5, S= 0.5).
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Figure 3.15. Steady-state profile of T for various values of a (Ha= 0.5, S= 0.5).
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Figure 3.16. Steady-state profile of Tp for various values of a (Ha= 0.5, S= 0.5).

present the influence of the viscosity variation parameter a on the steady-state profile of
the temperatures T and Tp, respectively, for Ha= 0.5 and S= 0.5. Increasing a increases
both T and Tp as a result of increasing the velocities and their gradients which increase
the viscous and Joule dissipations. Also, it is shown that the temperatures exceed unity
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for some locations (i.e., the temperature of the upper plate) due to the heating effect of
the dissipations.

4. Conclusions

In this paper the effect of a temperature-dependent viscosity, suction and injection ve-
locity, and an external uniform magnetic field on the unsteady flow and temperature dis-
tributions of an electrically conducting viscous incompressible dusty fluid between two
parallel porous plates has been studied. The viscosity was assumed to vary exponentially
with temperature and the Joule and viscous dissipations were taken into consideration.
The most interesting result was the cross-over of the temperature curves due to the varia-
tion of the parameter a and the influence of the magnetic field in the suppression of such
cross-over. On the other hand, changing the magnetic field results in the appearance of
cross-over in the temperature curves for a given negative value of a. Also, changing the
viscosity variation parameter a leads to asymmetric velocity profiles about the central
plane of the channel (y = 0) which is similar to the effect of variable percolation perpen-
dicular to the plates.
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