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In the present work, we consider a class of nonlinear optimal control problems, which can
be called “optimal control problems in mechanics.” We deal with control systems whose
dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using
the variational structure of the solution of the corresponding boundary-value problems,
we reduce the initial optimal control problem to an auxiliary problem of multiobjec-
tive programming. This technique makes it possible to apply some consistent numerical
approximations of a multiobjective optimization problem to the initial optimal control
problem. For solving the auxiliary problem, we propose an implementable numerical al-
gorithm.
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1. Introduction

The control of mechanical systems has become a modern application focus of nonlinear
control theory [1–4]. In this paper, we study a class of controlled mechanical systems
governed by the second-order Euler-Lagrange equations or Hamilton equations. It is well
known that a large class of mechanical and physical systems admits, at least partially, a
representation by these equations which lie at the heart of the theoretical framework of
physics. The important examples of controlled mechanical systems are mechanical and
electromechanical plants such as diverse mechanisms, transport systems, robots, and so
on [4].

In practice, the controlled mechanical systems are strongly nonlinear dynamical sys-
tems of high order. Moreover, the majority of applied optimal control problems are con-
strained problems. The most real-world mechanical problems are becoming too complex
to allow analytical solution. Thus, computational algorithms are inevitable in solving
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these problems. There is a number of results scattered in the literature on numerical
methods for optimal control problems that are very often closely related, although ap-
parently independent. One can find a fairly complete review in [5–9].

Computational methods based on the Bellman optimality principle were among the
first proposed for optimal control problems [10, 11]. Application of necessary conditions
of optimal control theory, specifically of the Pontryagin maximum principle, yields a
boundary-value problem with ordinary differential equations. Clearly, the necessary op-
timality conditions and the corresponding boundary-value problems play an important
role in optimal control computations (see, e.g., [12, 13]). An optimal control problem
with state constraints can also be solved using some modern nonlinear programming al-
gorithms. For example, the implementation of the interior point method is presented in
[14]. The application of the trust-region method to optimal control is discussed in [15].

The gradient-type algorithms [7] can also be applied to optimal control problems with
constraints if the problem is discretized a priori and the discretization for states coin-
cides with that for controls. There are many variants of gradient algorithms depending on
whether the problem is a priori discretized in time, and on the optimization solver used.
A gradient-based method evaluates gradients of the objective functional [5, 6]. The calcu-
lation of second-order derivatives of the objective functional can be avoided by applying
a sequential-quadratic-programming-(SQP-)type optimization algorithm in which these
derivatives are approximated by quasi-Newton formulas. The application of SQP-type
methods to optimal control is comprehensively discussed in [16, 17].

The aim of our investigations is to use the variational structure of the solution to
the two-point boundary-value problem for the controllable Euler-Lagrange or Hamilton
equation and to propose a new computational algorithm for optimal control problems
in mechanics. We consider an optimal control problem in mechanics in the general non-
linear formulation and reduce the initial optimal control problem to an auxiliary multi-
objective optimization problem with constraints. This optimization problem provided a
basis for solving the original optimal control problem.

The outline of the paper is the following. Section 2 contains an overview and some ba-
sic facts about controllable mechanical systems. In Section 3, we consider the constrained
optimal control problem in mechanics. In Section 4, we study the variational properties
of the initial problem. Section 5 deals with an implementable numerical scheme for op-
timal control problems in mechanics. Section 6 summarizes the paper.

2. Preliminary results and overview

The basic inspiration for modeling systems in analytical mechanics is the following vari-
ational problem:

minimize
∫ 1

0
L̃
(
t,q(t), q̇(t)

)
dt subject to q(0)= c0, q(1)= c1, (2.1)

where L̃ is the Lagrangian function of the (noncontrolled) mechanical system and q(·)
is a continuously differentiable function, q(t) ∈ Rn. We consider a mechanical system
with n degrees of freedom, locally represented by n generalized configuration coordinates
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q(t) = (q1(t), . . . ,qn(t)). The components q̇λ(t), λ = 1, . . . ,n of q̇(t) are so-called gener-
alized velocities. We assume that the function L̃(t,·,·) is a twice continuously differen-
tiable function. It is also assumed that the function L̃(t,q,·) is a strongly convex function.
The necessary conditions for the variational problem (2.1) describe the equations of mo-
tion for many mechanical systems, which are free from external influence, for appropri-
ate choice of the Lagrangian function L̃. This necessary conditions are the second-order
Euler-Lagrange equations [18, 19],

d

dt

∂L̃(t,q, q̇)
∂q̇λ

− ∂L̃(t,q, q̇)
∂qλ

= 0, λ= 1, . . . ,n,

q(0)= c0, q(1)= c1.

(2.2)

The principle of Hamilton (see, e.g., [18, 19]) gives a variational description of the solu-
tion of the two-point boundary-value problem for the Euler-Lagrange equations (2.2).

For a controlled mechanical system of n degrees of freedom with a Lagrangian
L(t,q, q̇,u), we introduce the equations of motion:

d

dt

∂L(t,q, q̇,u)
∂q̇λ

− ∂L(t,q, q̇,u)
∂qλ

= 0,

q(0)= c0, q(1)= c1,

(2.3)

where u(·)∈� is a control function from the set of admissible controls �. Let

� := {v(·)∈ L2
m

(
[0,1]

)
: v(t)∈Ua.e. on[0,1]

}
,

U := {u∈Rm : b1,ν ≤ uν ≤ b2,ν, ν= 1, . . . ,m
}

,
(2.4)

where b1,ν, b2,ν, ν= 1, . . . ,m, are constants and L2
m([0,1]) is the usual Lebesgue space of all

square-integrable functions from [0,1] into Rm. The introduced set � provides a stan-
dard example of an admissible control set (see, e.g., [20]). In specific cases, we consider
the following set of admissible controls �∩C1

m(0,1). We also examine the given con-
trolled mechanical system in the absence of external forces. The Lagrangian function L
depends directly on the control function u(·). We assume that the function L(t,·,·,u) is a
twice continuously differentiable function and L(t,q, q̇,·) is a continuously differentiable
function. For a fixed admissible control u(·) ∈�, we obtain the usual (noncontrolled)
mechanical system with L̃(t,q, q̇)≡ L(t,q, q̇,u(t)) and the corresponding Euler-Lagrange
equation (2.2). It is assumed that the function L(t,q,·,u) is a strongly convex function,
that is, for any (t,q, q̇,u)∈R×Rn×Rn×Rm and ξ ∈Rn the inequality

n∑
λ,θ=1

∂2L(t,q, q̇,u)
∂q̇λ∂q̇θ

ξλξθ ≥ α
n∑

λ=1

ξ2
λ , α > 0, (2.5)

holds. This convexity condition is a direct consequence of the representation

1
2
q̇TM(t,u)q̇ (2.6)
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for the kinetic energy of a mechanical system. The matrixM(t,u) here is a positive definite
matrix. Under the above-mentioned assumptions for the Lagrangian function L, the two-
point boundary-value problem (2.3) has a solution for every u(·)∈� [21]. We assume
that (2.3) has a unique solution for every u(·)∈�. Given an admissible control function
u(·)∈�, the solution to the boundary-value problem (2.3) is denoted by qu(·). We will
call (2.3) an Euler-Lagrange control system. Note that (2.3) is a system of implicit second-
order differential equations.

Example 2.1. We consider a linear mass-spring system [4] attached to a moving frame.
The control u(·)∈�∩C1

1(0,1) is the velocity of the frame. By ω we denote the mass of
the system. The kinetic energy (1/2)ω(q̇ + u)2 depends directly on u(·), and so does the
Lagrangian function

L(q, q̇,u)= 1
2
ω(q̇+u)2− 1

2
κq2, κ∈R+, (2.7)

yielding the equation of motion (2.3)

d

dt

∂L(t,q, q̇,u)
∂q̇

− ∂L(t,q, q̇,u)∂q = ω(q̈+ u̇) + κq = 0. (2.8)

By κ we denote here the elasticity coefficient of the system.

Some important controlled mechanical systems have the Lagrangian function of the
form (see, e.g., [4])

L(t,q, q̇,u)= L0(t,q, q̇) +
m∑

ν=1

qνuν. (2.9)

In this special case, we have

d

dt

∂L0(t,q, q̇)
∂q̇λ

− ∂L0(t,q, q̇)
∂qλ

=
⎧⎨
⎩
uλ, λ= 1, . . . ,m,

0, λ=m+ 1, . . . ,n,
(2.10)

and the control function u(·) can be interpreted as an external force.
Let us now pass on to the Hamiltonian formulation. For the Euler-Lagrange control

system (2.3), we introduce the generalized momenta

pλ := ∂L(t,q, q̇,u)
∂q̇λ

, λ= 1, . . . ,n, (2.11)

and define the Hamiltonian function H(t,q, p,u) as a Legendre transform of L(t,q, q̇,u),
that is

H(t,q, p,u) :=
n∑

λ=1

pλq̇λ−L(t,q, q̇,u). (2.12)

In the case of hyperregular Lagrangians L(t,q, q̇,u) (see, e.g., [18]) the Legendre trans-
form � is a diffeomorphism. Using the introduced Hamiltonian H(t,q, p,u), we can
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rewrite the equations of motion (2.3):

q̇λ(t)= ∂H(t,q, p,u)
∂pλ

, q(0)= c0, q(1)= c1,

ṗλ(t)=−H(t,q, p,u)
∂qλ

, λ= 1, . . . ,n.
(2.13)

Under the above-mentioned assumptions, the boundary-value problem (2.13) has a so-
lution for every u(·)∈�. We will call (2.13) a Hamilton control system. A main advantage
of (2.13) in comparison with (2.3) is that (2.13) immediately constitutes a control system
in standard state space form [20] with state variables (q, p) (in physics usually called the
phase variables). Consider the system of Example 2.1 with

H(q, p,u)= 1
2
ω
(
q̇2−u2)+

1
2
κq2 = 1

2ω
p2 +

1
2
κq2−up. (2.14)

The Hamilton equations in this case are given as

q̇ = ∂H(q, p,u)
∂p

= 1
ω
p−u,

ṗ =−∂H(q, p,u)
∂q

=−κq.
(2.15)

Note that if L(t,q, q̇,u) is given as

L(t,q, q̇,u)= L0(t,q, q̇) +
m∑

ν=1

qνuν, (2.16)

then we have

H(t,q, p,u)=H0(t,q, p)−
m∑

ν=1

qνuν, (2.17)

where H0(t,q, p) is the Legendre transform of L0(t,q, q̇).

3. Optimal control problems in mechanics

Let us consider the following optimal control problem with constraints:

minimize J
(
q(·),u(·)) :=

∫ 1

0
f0
(
t,q(t),u(t)

)
dt

subject to (2.3), u(t)∈Ut ∈ [0,1],

hj
(
u(·))≤ 0 ∀ j ∈ I ,

gk
(
q(·))(t)≤ 0 ∀k ∈ K , ∀t ∈ [0,1],

(3.1)

where hj : L2
m([0,1]) → R, gk : C1

n(0,1) → Cn(0,1) for j ∈ I and k ∈ K . Let f0 : [0,1]×
Rn×Rm→R be a continuous function. By I and K we denote finite sets of index values.
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In the ensuring analysis, we assume that function f0(t,·,·) and functionals hj(·), j ∈ I ,
gk(·),k ∈ K , are proper convex. We also assume that the boundary-value problem (2.3)
has a unique solution and that (3.1) has an optimal solution. The class of optimal control
problems of the type (3.1) is broadly representative [20, 8]. Let (qopt(·),uopt(·)) be an op-
timal solution of (3.1). Note that we formulate the initial optimal control problem for the
Euler-Lagrange control system. Clearly, it is also possible to use the Hamiltonian formu-
lation. Note that a variety of constraints may be represented in the form of inequalities

hj
(
u(·))≤ 0 ∀ j ∈ I ,

gk
(
q(·))(t)≤ 0 ∀k ∈ K , ∀t ∈ [0,1],

(3.2)

including the initial conditions, boundary conditions, and interior point conditions of
the general form. For example, if the initial optimal control problem contains the target
constraints

ĥ j
(
q(1)

)≤ 0 ∀ j ∈ I , ĥ j :Rn −→R, (3.3)

then hj(u(·)) := ĥ j(qu(1)) for all j ∈ I .
We mainly focus our attention on the application of a direct numerical method to

the constrained optimal control problem (3.1). A great amount of work is devoted to
numerical methods for optimal control problems (see [5, 7–9] and references therein).
One can find a fairly complete review of the main results in [6, 8].

It is common knowledge that an optimal control problem involving ordinary differen-
tial equations can be formulated in various ways as an optimization problem in a suitable
function space [5, 8, 20, 22]. For example, the original problem (3.1) can be expressed as
an infinite-dimensional optimization problem over the set of control functions u(·)∈�
(or u(·)∈�∩C1

m(0,1)):

minimize Ĵ
(
u(·)) subject to u(·)∈�,

hj
(
u(·))≤ 0 ∀ j ∈ I , Gk

(
u(·))(t)≤ 0

(3.4)

with the aid of the functions Ĵ : L2
m([0,1])→R and Gk : L2

m([0,1])→ C(0,1) for all k ∈ K ,

Ĵ
(
u(·)) := J

(
qu(·),u(·))=

∫ 1

0
f0
(
t,qu(t),u(t)

)
dt,

Gk
(
u(·))(t) := gk

(
qu(·))(t) ∀k ∈ K , ∀t ∈ [0,1].

(3.5)

The minimization problem (3.4) can be solved by using some numerical algorithms
(e.g., by applying a first-order method [7, 23]). For example, the implementation of the
method of feasible directions is presented in [8].
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Example 3.1. Using the Euler-Lagrange control system of Example 2.1, we formulate the
optimal control problem

minimize J
(
q(·),u(·)) :=−

∫ 1

0

(
u(t) + q(t)

)
dt

subject to q̈(t) +
κ

ω
q(t)=−u̇(t)q(0)= 0, q(1)= 1,

u(·)∈ C1
1(0,1), 0≤ u(t)≤ 1 ∀t ∈ [0,1],

u̇(t)≥ 0,
∫ 1

0
u(t)dt ≤ 1

2
, q(t)≤ 3, ∀t ∈ [0,1].

(3.6)

Let ω ≥ 4κ/π2. The solution qu(·) of the boundary-value problem is

qu(t)= Cu sin

(
t
√
κ

ω

)
−
∫ t

0

√
κ

ω
sin

(√
κ

ω
(t− τ)

)
u̇(τ)dτ, (3.7)

where

Cu = 1
sin
√
κ/ω

[
1 +

∫ 1

0

√
κ

ω
sin

(√
κ

ω
(t− τ)

)
u̇(τ)dτ

]
(3.8)

is a constant. Consequently,

Ĵ
(
u(·))=−

∫ 1

0

[
u(t) + qu(t)

]
dt

=−
∫ 1

0

[
u(t) +Cu sin

(
t
√
κ

ω

)
−
∫ t

0

√
κ

ω
sin

(√
κ

ω
(t− τ)

)
u̇(τ)dτ

]
dt.

(3.9)

Moreover,

h1
(
u(·))=−u̇(t), h2

(
u(·))=

∫ 1

0
u(t)dt− 1

2
, (3.10)

and g1(q(·))(t)= q(t)− 1.
The above-mentioned conditions ω ≥ 4κ/π2 and u̇(t)≥ 0 imply that

sin

(√
κ

ω
(t− τ)

)
≥ 0,sin

(
t
√
κ

ω

)
≥ 0,

∫ t

0

√
κ

ω
sin
√
κ

ω
(t− τ)u̇(τ)dτ ≥ 0,

∫ 1

0

√
κ

ω
sin
√
κ

ω
(t− τ)u̇(τ)dτ ≥ 0, Cu ≥ 0.

(3.11)
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We claim that uopt(t)≡ 1/2 is an optimal solution of the given optimal control problem.
Note that this result is consistent with the Bauer maximum principle of convex program-
ming (see, e.g., [20]). For uopt(·) we obtain the optimal trajectory

qopt(t)= sin
(
t
√
κ/ω

)
sin
√
κ/ω

. (3.12)

Evidently, we have

√
κ

ω
≤ π

2
, qopt(t)≤ 3, (3.13)

where qopt(·)∈ C1
1(0,1).

4. The variational approach

An effective numerical procedure, as a rule, uses the specific character of the concrete
problem. Our aim is to consider the variational description of the optimal control prob-
lem (3.1). Let

Γ := {γ(·)∈ C1
n

(
[0,1]

)
: γ(0)= c0, γ(1)= c1

}
. (4.1)

The following theorem is an immediate consequence of the classical Hamilton principle
from analytical mechanics.

Theorem 4.1. Let the Lagrangian L(t,q, q̇,u) be a strongly convex function of the variables
q̇i, i = 1, . . . ,n. Assume that the boundary-value problem (2.3) has a unique solution for
every u(·) ∈�∩C1

m(0,1). The function qu(·) with u(·) ∈�∩C1
m(0,1) is the solution of

the boundary-value problem (2.3) if and only if

qu(·)= argmin
q(·)∈Γ

∫ 1

0
L
(
t,q(t), q̇(t),u(t)

)
dt. (4.2)

For a fixed admissible control function u(·), we introduce two following functionals

T
(
q(·),z(·)) :=

∫ 1

0

[
L
(
t,q(t), q̇(t),u(t)

)−L
(
t,z(t), ż(t),u(t)

)]
dt,

V
(
q(·)) := max

z(·)∈Γ

∫ 1

0

[
L
(
t,q(t), q̇(t),u(t)

)−L
(
t,z(t), ż(t),u(t)

)]
dt.

(4.3)

Let us also consider the set

Θ := {q(·)∈ Γ : gk
(
qu(·))(t)≤ 0, k ∈ K , t ∈ [0,1]

}
(4.4)

of all functions q(·) satisfying the constraints of problem (3.1). We assume that Θ 
= ∅.

Theorem 4.2. Let the Lagrangian L(t,q, q̇,u) be a strongly convex function of the variables
q̇i, i = 1, . . . ,n. Assume that the boundary-value problem (2.3) has a unique solution for
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every u(·)∈�∩C1
m(0,1). The function qu(·) with u(·)∈�∩C1

m(0,1) is a solution of the
boundary-value problem (2.3) that satisfies conditions

gk
(
q(·))(t)≤ 0 ∀k ∈ K , t ∈ [0,1] (4.5)

if and only if

qu(·)= argmin
q(·)∈Θ

V
(
q(·)) (4.6)

Proof. Let qu(·)∈ Γ be a unique solution of (2.3) satisfying gk(q(·))(t)≤ 0 for all k ∈ K ,
t ∈ [0,1] with u(·)∈�∩C1

m(0,1). Using the Hamilton principle, we obtain

min
q(·)∈Θ

V
(
q(·))

= min
q(·)∈Θ

max
z(·)∈Γ

∫ 1

0

[
L
(
t,q(t), q̇(t),u(t)

)−L
(
t,z(t), ż(t),u(t)

)]
dt

= min
q(·)∈Θ

∫ 1

0
L
(
t,q(t), q̇(t),u(t)

)
dt− min

z(·)∈Γ

∫ 1

0
L
(
t,z(t), ż(t),u(t)

)
dt

=
∫ 1

0
L
(
t,qu(t), q̇u(t),u(t)

)
dt−

∫ 1

0
L
(
t,qu(t), q̇u(t),u(t)

)
dt =V

(
qu(·))= 0.

(4.7)

If the condition (4.6) holds, then qu(·) is a solution of the boundary-value problem (2.3).
This completes the proof. �

The presented theorems make it possible to express the initial optimal control prob-
lem (3.1) as a multiobjective optimization problem over the set of admissible control
functions and generalized coordinates

minimize J
(
q(·),u(·)), P

(
q(·))

subject to
(
q(·),u(·))∈ Γ× (�∩C1

m(0,1)
)
,

hj
(
u(·))≤ 0 ∀ j ∈ I , gk

(
q(·))(t)≤ 0

∀k ∈ K , ∀t ∈ [0,1]

(4.8)

or

minimize J
(
q(·),u(·)), V(q(·))

subject to
(
q(·),u(·))∈ Γ× (�∩C1

m(0,1)
)
,

hj
(
u(·))≤ 0 ∀ j ∈ I , gk

(
q(·))(t)≤ 0

∀k ∈ K , ∀t ∈ [0,1],

(4.9)

where P(q(·)) := ∫ 1
0 L(t,q(t), q̇(t),uopt(t))dt. We define the objective functionals P(·) and

V(·) for an optimal control function u(·)= uopt(·). The minimizing problems (4.8) and
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(4.9) are multiobjective optimization problems (see, e.g., [24]). The set Γ× (�∩C1
m(0,1)

is a convex set. Since f0(t,·,·), t ∈ [0,1] is a convex function, J(q(·),u(·)) is convex. If
P(·) (or V(·)) is a convex functional, then we deal with a convex multiobjective mini-
mization problem (4.8) (or (4.9)).

The variational description of the solution of the two-point boundary-value problem
for the Lagrange equations (2.3) eliminates the differential equations from consideration.
The problems (4.8) and (4.9) provide a basis for numerical algorithms to the initial op-
timal control problem (3.1). The auxiliary optimization problem (4.8) has two objective
functionals. For (4.8) we introduce the Lagrange function [25]

Λ
(
t,q(·),u(·),μ,r,s, l

)
:= μ1J

(
q(·),u(·))+μ2P

(
q(·))

+
∑
j∈I

r jhj
(
u(·))+

∑
k∈K

skgk
(
q(·))(t)

+ l
∥∥(μ,r,s)

∥∥
2 dist

Γ×
(

�∩C1
m(0,1)

) {(q(·),u(·))},

(4.10)

where distΓ×(�∩C1
m(0,1)){·} denotes the distance function

distΓ×(�∩C1
m(0,1))

{(
q(·),u(·))}

:= inf
{∥∥(q(·),u(·))− ρ

∥∥
C1
n(0,1)×C1

m(0,1), ρ∈ Γ× (�∩C1
m(0,1)

)} (4.11)

associated with Γ× (�∩C1
m(0,1)). We use the following notation:

μ := (μ1,μ2
)T

, r := (r j)T , j ∈ I , s := (sk)T , k ∈ K. (4.12)

Recall that a feasible point (q∗(·),u∗(·)) is called Pareto optimal for the multiobjective
problem (4.9) if there is no feasible point (q(·),u(·)) for which

J
(
q(·),u(·)) < J

(
q∗(·),u∗(·)), P

(
q(·)) < P

(
q∗(·)). (4.13)

A necessary condition for (q∗(·),u∗(·)) to be a Pareto optimal solution to (4.9) in the
sense of Kuhn-Tucker (see [24, 25]) is that for every l ∈ R sufficiently large there exist
μ∗ > 0, r∗ ≥ 0, and s∗ ≥ 0 such that

∑
j∈I

r∗j h j
(
u∗(·))+

∑
k∈K

s∗k gk
(
q∗(·))(t)= 0,

0∈ ∂(q(·),u(·))Λ
(
t,q∗(·),u∗(·),μ∗,r∗,s∗, l

)
.

(4.14)

By ∂(q(·),u(·)) we denote here the generalized gradient of the Lagrange function Λ [25].
If P(·) is a convex functional, then the necessary condition (4.14) is also sufficient for
(q∗(·),u∗(·)) to be a Pareto optimal solution to (4.9). Let ℵ be a set of all Pareto optimal
solutions (q∗(·),u∗(·)) to (4.8). Since (qopt(·)uopt(·)) ∈ ℵ, the above conditions (4.14)
are satisfied also for this optimal pair (qopt(·)uopt(·)). Note that one can investigate the
auxiliary minimization problem (4.9) in a similar way.
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5. Numerical aspects

A direct implementation of the necessary conditions (4.14) is often not practical. Using a
discretization of (4.8), we can obtain a finite-dimensional approximating problem. Note
that discrete approximation techniques have been recognized as a powerful tool for solv-
ing optimal control problems [6, 8]. Let N be a sufficiently large positive integer number
and let �N := {t0 = 0, t1, . . . , tN = 1} be a (possible nonequidistant) partition of [0,1] with

max
0≤i≤N−1

∣∣ti+1− ti
∣∣≤ ξN , (5.1)

and limN→∞ ξN = 0. Define

Δti+1 := ti+1− ti, i= 0, . . . ,N − 1, (5.2)

and consider the following finite-dimensional optimization problem:

minimize JN
(
qN (·),uN (·)), PN

(
qN (·)),

subject to qN
(
t0
)= c0, qN

(
tN
)= c1,

b1 ≤ uN
(
ti
)≤ b2, hj

(
uN (·))≤ 0 ∀ j ∈ I ,

gk
(
qN (·))(ti)≤ 0 ∀k ∈ K , ∀ti ∈�N ,

(5.3)

where b1 and b2 are constant vectors,

JN
(
qN (·),uN (·)) :=

N−1∑
i=0

f0
(
ti,qi,ui

)
Δti+1,

PN
(
qN (·)) :=

N−1∑
i=0

L
(
ti,qi, q̇N

(
ti
)
,uopt(ti))Δti+1,

qN (t) :=
N−1∑
i=0

φi(t)qi, qi = q(ti),

uN (t) :=
N−1∑
i=0

φi(t)ui, ui = u(ti), t ∈ [0,1], ti ∈�N ,

φi(t) :=
⎧⎨
⎩

1 if t ∈ [ti, ti+1
[
, i= 0, . . . ,N − 1,

0 otherwise.

(5.4)

In effect, we deal with the spaces L2,N
n (�N ) and L2,N

m (�N ) of the piecewise constant trajec-
tories qN (·) and piecewise constant control functions uN (·). Note that the space L2,N

n (�N )
is in one-to-one correspondence with the Euclidean space RnN .

The discrete optimization problem (5.3) approximates the infinite-dimensional op-
timization problem (4.8). We assume that the set of all Pareto optimal solution of the
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discrete problem (5.3) is nonempty. If P(·) is a convex functional, then the discrete mul-
tiobjective optimization problem (5.3) is also a convex problem. Let

ΓN := {γN (·)∈ L2,N
n

(
�N
)

: γN
(
t0
)= c0, γN

(
tN
)= c1

}
,

�N := {uN (·)∈ L2,N
m

(
�N
)

: b1 ≤ uN
(
ti
)≤ b2, i∈GN

}
.

(5.5)

Here, L2,N
n (�N ) and L2,N

m (�N ) are the finite-dimensional spaces of the corresponding
piecewise constant functions. For (5.3) we also can introduce the Lagrange function ΛN

(see [24])

ΛN
(
ti,qN (·),uN (·),μ,r,s,σ

)
:= μ1JN

(
qN (·),uN (·))+μ2PN

(
qN (·))

+
∑
j∈I

r jhj
(
uN (·))+

∑
k∈K

skgk
(
qN (·))(ti)

+
〈
σ1,b1−uN

(
ti
)〉
Rm +

〈
σ2,uN

(
ti
)− b2

〉
Rm ,

(5.6)

where σ := (σ1,σ2)T and σ1,σ2 ∈ Rm. We now consider the corresponding necessary
(Kuhn-Tucker) conditions for (q∗N (·),u∗N (·)) to be a Pareto optimal solution to (5.3). In
this case, we have the following Kuhn-Tucker system:

μ∗1

(
∇qN (·)JN

(
q∗N (·),u∗N (·))

∇uN (·)JN
(
q∗N (·),u∗N (·))

)
+μ∗2

(
∇qN (·)PN

(
q∗N (·))

0

)

+

(
0∑

j∈I r∗j ∇uN (·)hj
(
u∗N (·))

)
+

(∑
k∈K s∗k∇qN (·)gk

(
q∗N (·))(ti)

0

)

+

(
0〈

σ∗1 ,−e〉Rm +
〈
σ∗2 ,e

〉
Rm

)
= 0,

∑
j∈I

r∗j h j
(
u∗N (·))+

∑
k∈K

s∗k gk
(
q∗N (·))(ti)

+
〈
σ∗1 ,b1−u∗N

(
ti
)〉
Rm +

〈
σ∗2 ,u∗N

(
ti
)− b2

〉
Rm = 0,

q∗N
(
t0
)− c0 = 0, q∗N

(
tN
)− c1 = 0,

μ∗ > 0, r∗ ≥ 0, s∗ ≥ 0, σ∗ ≥ 0,

(5.7)

where ∇qN (·), ∇uN (·) stand for partial derivatives, μ∗, r∗, s∗, and σ∗ are the (Pareto) op-
timal Lagrange multipliers [24]. By e ∈ Rm we denote a unit vector. If P(·) is a convex
functional, then the necessary condition (5.7) is also sufficient for (q∗N (·),u∗N (·)) to be
a Pareto optimal solution to (5.3). An optimal solution (q

opt
N (·),u

opt
N (·)) to the finite-

dimensional problem (5.3) belongs to the set of all Pareto optimal solutions of (5.3).
Thus (q

opt
N (·),u

opt
N (·)) satisfies the presented conditions (5.7). In a similar manner, one

can derive the Kuhn-Tucker conditions for a finite-dimensional optimization problem
over the set of variables (qi,ui), i= 0, . . . ,N .
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The necessary optimality conditions (5.7) reduce the finite-dimensional multiobjec-
tive optimization problem to a problem of finding a zero of nonlinear functions. Such
a problem can be solved by using some gradient-based or Newton-like methods [7, 23].
From the viewpoint of numerical mathematics, we solve the optimal control problem
in mechanics approximately. We now propose a (conceptual) computational algorithm
based on the finite-dimensional approximations (5.3) and on the corresponding Kuhn-
Tucker system (5.7).

Algorithm 5.1. Fix a small parameter ε > 0.
(1) Choose the initial control u(0)(·)∈�∩C1

m(0,1) which satisfies

hj
(
u(0)(·))≤ 0 ∀ j ∈ I , gk

(
q(0)(·))(t)≤ 0, (5.8)

where q(0)(·) is a solution of (2.3) for u(0)(·). Define u(0)
N (ti) := u(0)(ti) and

q(0)
N (ti) := q(0)(ti), where ti ∈�N . Set a= 0.

(2) Compute

PN =
(
qN (·))

N−1∑
i=0

L
(
ti,qi, q̇N

(
ti
)
,u(a)(ti))Δti+1. (5.9)

Increase a by one.
(3) Solve the following Kuhn-Tucker system of algebraic equations and inequalities:

μ1

(
∇qN (·)JN

(
qN (·),uN (·))

∇uN (·)JN
(
qN (·),uN (·))

)
+μ2

(
∇qN (·)PN

(
qN (·))

0

)

+

(
0∑

j∈I r j∇uN (·)hj
(
uN (·))

)
+

(∑
k∈K sk∇qN (·)gk

(
qN (·))(ti)

0

)

+

(
0

−σ1 + σ2

)
= 0,

∑
j∈I

r jhj
(
uN (·))+

∑
k∈K

skgk
(
qN (·))(ti)

+
〈
σ1,b1−uN

(
ti
)〉
Rm +

〈
σ2,uN

(
ti
)− b2

〉
Rm = 0,

qN
(
t0
)− c0 = 0, qN

(
tN
)− c1 = 0,

μ > 0, r ≥ 0, s≥ 0, σ ≥ 0.

(5.10)

Let (q(a)
N (·),u(a)

N (·)) be a solution of this system. If ‖u(a)
N −u(a−1)

N ‖ ≤ ε, then stop.
(4) Go to step (2).

For the aims of solving the Kuhn-Tucker system, one can use, for example, a variant of
the Newton-type method. Note that the similar approach can also be considered for the
auxiliary problem (4.9). We are able to formulate the following convergence result (see
[26] for the corresponding proof).
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Theorem 5.2. Assume that the initial optimal control problem (3.1) has a solution and that
all conditions of Theorem 4.2 are satisfied. Suppose that J and P from the corresponding mul-
tiobjective problem (4.8) are convex functionals. Let the discrete optimization problem (5.3)

be regular and let {(q(a)
N (·),u(a)

N (·))} be a sequence generated by the proposed Algorithm 5.1.
Then, the point

(
q∗,u∗

)
:= lim

N→∞
lim
a→∞

(
q(a)
N (·),u(a)

N (·)) (5.11)

is a stationary point of the initial problem (3.1).

We now apply the computational Algorithm 5.1 to a simple optimal control problem
in mechanics.

Example 5.3. Consider the optimal control problem of Example 3.1. We put ω = 1 and
κ= 1. Evidently, the condition ω ≥ 4κ/π2 holds. We use the following initial control func-
tion u(0)(t)= t, t ∈ [0,1]. It can easily be shown that u(0)(·) is an admissible control func-
tion. Clearly, ‖u(0)(·)− uopt(·)‖ = 1/2. We use an equidistant partition �N of [0,1] and
Δti = 1/N for all i = 1, . . . ,N . We now apply the proposed computational Algorithm 5.1
for N = 100, ε = 10−3 and consider the approximating finite-dimensional optimization
problem as an optimization problem over the set of variables (qi,ui), i= 0, . . . ,N . In fact,
we deal with the following problem:

minimize−
N−1∑
i=0

(
qi +ui

)
,

1
2

[N−1∑
i=0

(
N
(
qi+1− qi

)
+u

opt
N

(
ti
))2− (qi)2

]

subject to q0 = 0, qN = 1,

−ui ≤ 0, ui− 1≤ 0, i= 0, . . . ,N ,

ui−ui+1 ≤ 0, i= 0, . . . ,N − 1,
N−1∑
i=0

ui− 1
2
≤ 0,

qi− 3≤ 0, i= 1, . . . ,N − 1.

(5.12)

Note that we approximate the derivatives q̇ and u̇ by qi+1− qi/(1/N) and (ui+1−ui)/(1/N),
respectively. The Lagrange function ΛN in this case can be written as follows:

ΛN
(
μ1,μ2,q0, . . . ,qN ,u0, . . . ,uN ,r1,r2,s,σ1,σ2

)

=−μ1

N−1∑
i=0

(
qi +ui

)
+μ2

1
2

[N−1∑
i=0

(
N
(
qi+1− qi

)
+u

opt
N

(
ti
))2− (qi)2

]

+
N−1∑
i=0

ri1
(
ui−ui+1)+ r2

(N−1∑
i=0

ui− 1
2

)
+

N−1∑
i=1

si
(
qi− 3

)

−
N∑
i=0

σi1u
i +

N∑
i=0

σ2
(
ui− 1

)
,

(5.13)
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where μ1,μ2,r2 ∈ R, r1 ∈ RN , s ∈ RN−1, σ1,σ2 ∈ RN+1. For some positive constants and
vectors r1, r2, s, σ1, σ2, we apply the Newton-Raphson method (see, e.g., [23]) to the corre-
sponding Kuhn-Tucker system for problem under consideration. The above implementa-
tion of conceptual Algorithm 5.1 was carried out using the standard MATLAB packages.
The computed optimal control uN (·) and the computed optimal trajectory qN (·) have
the properties

max
0≤i≤N

∣∣uN(ti)−uopt(ti)∣∣≤ 10−3, max
0≤i≤N

∣∣qN(ti)− qopt(ti)∣∣≤ 2 · 10−3. (5.14)

The computed optimal objective value is (−1.0442). Note that the exact optimal objective
value in this example is

J
(
qopt(·),uopt(·))≈−1.0463. (5.15)

The implementation of the presented Algorithm 5.1 requires a first approximation
u(0)(·) to an optimal control uopt(·). The efficiency of this algorithm essentially depends
on u(0)(·).

6. Concluding remarks

In this paper, we propose a new computational method for some classes of constrained
optimal control problems in mechanics. Using the variational approach to the nonlinear
mechanical systems, one formulate an auxiliary problem of multiobjective optimization.
This problem and the corresponding techniques of the multiobjective optimization the-
ory are applied to numerical solution of the optimal control problem under considera-
tion.
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