
Hindawi Publishing Corporation
Differential Equations and Nonlinear Mechanics
Volume 2007, Article ID 19685, 9 pages
doi:10.1155/2007/19685

Research Article
Global Existence and Asymptotic Behavior of Solutions for
a Class of Nonlinear Degenerate Wave Equations

Yaojun Ye

Received 20 December 2006; Accepted 10 April 2007

Recommended by Ramon Quintanilla

This paper studies the existence of global solutions to the initial-boundary value problem
for some nonlinear degenerate wave equations by means of compactness method and
the potential well idea. Meanwhile, we investigate the decay estimate of the energy of the
global solutions to this problem by using a difference inequality.

Copyright © 2007 Yaojun Ye. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

We are concerned with the following nonlinear degenerate wave equation:

utt −div
(|Du|p−2Du

)
+ut = |u|m−2u, (x, t)∈Ω× [0,+∞), (1.1)

with the initial-boundary value conditions

u(x,0)= u0(x), ut(x,0)= u1(x), x ∈Ω; u(x, t)
∣
∣
∂Ω×[0,+∞) = 0, (1.2)

where Ω is a bounded open domain in Rn with a smooth boundary ∂Ω, m≥ 2 is a non-
negative real number, and div(|Du|p−2Du) is a divergence operator (degenerate Laplace
operator) with p > 2 and Du= (D1u,D2u, . . . ,Dnu), Di = ∂/∂xi, i= 1,2, . . . ,n.

When p = 2, (1.1) is converted into the form

utt −�u+ut = |u|m−2u. (1.3)

The global existence, the decay property of weak solutions, and the blow up of solu-
tions to the initial-boundary value problem for the semilinear wave equations related to
(1.2)-(1.3), under suitable assumptive conditions, have been investigated by many people
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through various approaches [1–4]. However, little attention is paid to problem (1.1)-
(1.2). Because the divergence operator div(|Du|p−2Du) is a nonlinear operator, the rea-
sonable proof and computation are greatly different from the Laplace operator; thus, the
investigation of problem (1.1)-(1.2) becomes more complicated. In this paper, on the one
hand, by a Galerkin approximation scheme [5], as well as combining it with the potential
well method, we prove the global existence of solutions to problem (1.1)-(1.2). On the
other hand, we obtain the asymptotic behavior of the global solutions to this problem by
using a difference inequality.

For simplicity of notation, hereafter we denote by ‖ · ‖p the space Lp(Ω) norm. ‖ · ‖
denotes L2(Ω) norm and we write equivalent norm ‖� ·‖p instead of W

1,p
0 (Ω) norm

‖ · ‖W1,p
0 (Ω), C denotes various positive constants depending on the known constants and

may be different at each appearance.
We define the functionals

J(u)= 1
p
‖∇u‖pp− 1

m
‖u‖mm, K(u)= ‖∇u‖pp−‖u‖mm, u∈W1,p

0 (Ω), (1.4)

and according to [6] we put

d = inf

{

sup
λ≥0

J(λu) : u∈W1,p
0 (Ω)/{0}

}

. (1.5)

Then, for problem (1.1)-(1.2) we are able to define the stable sets as follows:

W = {u : u∈W1,p
0 (Ω), K(u) > 0, J(u) < d

}∪{0}. (1.6)

We denote the total energy related to (1.1) by

E(t)= E(u(t)
)= 1

2

∥
∥ut
∥
∥2

+
1
p
‖∇u‖pp− 1

m
‖u‖mm =

1
2

∥
∥ut
∥
∥2

+ J
(
u(t)

)
, t ≥ 0, (1.7)

and E(0)= (1/2)‖u1‖2 + J(u0) is the total energy of the initial data.

2. Some lemmas

We list up some useful lemmas here for the following discussion.

Lemma 2.1. Let a≥ 0, b≥ 0 and 1/p+ 1/q = 1 for 1 < p, q < +∞, then one has the inequal-
ity

ab ≤ δap +C(δ)bq, (2.1)

where δ > 0 is an arbitrary constant and C(δ) > 0 is a positive constant depending on δ.

Lemma 2.2. Let u ∈W
1,p
0 (Ω), then u ∈ Lq(Ω) and the inequality ‖u‖q ≤ C‖u‖W1,p

0 (Ω)

holds, provided that (i) 1≤ q ≤ np/(n− p) if 1 < p < n; (ii) 1≤ q < +∞ if 1≤ n≤ p.

Lemma 2.3. Assume that u ∈W
1,p
0 (Ω) and (i) p < m < np/(n− p) for 2 < p < n; (ii) p <

m < +∞ for n≤ p; then d is a positive real number.
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Proof. By Lemma 2.2, we have ‖u‖m ≤ C‖∇u‖p. Since

J(λu)= λp

p
‖∇u‖pp− λm

m
‖u‖mm, (2.2)

we get

d

dλ
J(λu)= λp−1‖∇u‖pp− λm−1‖u‖mm. (2.3)

Let (d/dλ)J(λu)= 0, which implies that

λ1 =
(‖∇u‖pp
‖u‖mm

)1/(m−p)

. (2.4)

An elementary calculation shows that

d2

dλ2
J(λu)

∣
∣
∣
∣
λ=λ1

< 0. (2.5)

So, we have

sup
λ≥0

J(λu)= J(λ1u
)= λ

p
1

p
‖∇u‖pp− λm1

m
‖u‖mm

= m− p

mp

(‖∇u‖p
‖u‖m

)mp/(m−p)

≥ m− p

mp
Cmp/(p−m) > 0.

(2.6)

Therefore

d = inf

{

sup
λ≥0

J(λu) : u∈W1,p
0 (Ω)/{0}

}

> 0. (2.7)

This completes the proof of Lemma 2.3. �

Lemma 2.4. Provided that (i) p < m < np/(n− p) for 2 < p < n; (ii) p < m < +∞ for n≤ p,

then d is a finite real number and the set W is bounded in W
1,p
0 (Ω).

Proof. From the proof of Lemma 2.3 and the definition of d, we have for any u∈W1,p
0 (Ω)

that

d ≤ sup
λ≥0

J(λu)= J(λ1u
)= λ

p
1

p
‖∇u‖pp− λm1

m
‖u‖mm

= m− p

mp

(‖∇u‖p
‖u‖m

)mp/(m−p)

= m− p

mp
λ
p
1‖∇u‖pp < +∞.

(2.8)

So d is a finite real number.
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Setting u∈W , then ‖∇u‖pp−‖u‖mm ≥ 0. Consequently,

d > J(u)= 1
p
‖∇u‖pp− 1

m
‖u‖mm ≥

m− p

mp
‖∇u‖pp, (2.9)

which yields

‖∇u‖pp ≤ mp

m− p
d < +∞. (2.10)

As a result, u∈W1,p
0 (Ω) and

W ⊂
{
u : u∈W1,p

0 (Ω), ‖∇u‖pp ≤ mp

m− p
d
}
. (2.11)

Thus the stable set W is bounded in W
1,p
0 (Ω). �

Lemma 2.5 [7]. Suppose that φ(t) is a nonincreasing nonnegative function on [0,+∞) and
satisfies

φ(t)1+α ≤ k{φ(t)−φ(t+ 1)
}

(2.12)

for some constants α > 0 and k > 0. Then φ(t) has the decay property

φ(t)≤ {φ(0)−α +αk−1[t− 1]+}−1/α
, t > 0, (2.13)

where [t− 1]+ =max{t− 1,0}.
Proof. Setting ψ(t)= φ(t)−α, we see from (2.13) that

ψ(t+ 1)−ψ(t)=
∫ 1

0

d

dθ

{
θφ(t+ 1) + (1− θ)φ(t)

}−α
dθ

= α(φ(t)−φ(t+ 1)
)
∫ 1

0

{
θφ(t+ 1) + (1− θ)φ(t)

}−α−1
dθ

≥ αk−1.

(2.14)

Then we get

ψ(t)≥ ψ(0) +αk−1t (2.15)

and the desired estimate (2.13). �

3. The global existence

Theorem 3.1. Given that p ≤m≤ np/(n− p), p < n, and p < m < +∞, n≤ p, if u0 ∈W ,
u1 ∈ L2(Ω) and the initial data energy E(0) < d, then problem (1.1)-(1.2) admits a global
solution u(x, t) such that u(x, t)∈W and

u(x, t)∈ L∞(0,T ;W
1,p
0 (Ω)

)
, ut(x, t)∈ L∞(0,T ;L2(Ω)

)
. (3.1)
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Proof. Let r be an integer for which Hr
0(Ω)↩W

1,p
0 (Ω) is continuous. Then the eigen-

functions of −Δrωj = αjωj in Hr
0(Ω) yield a Gaerkin basis for both Hr

0(Ω) ⊂W
1,p
0 (Ω)

and L2(Ω). We seek approximate solutions uN (t) to the problem (1.1)-(1.2) of the form

uN (t)=
N∑

j=1

gjN (t)ωj , N = 1,2, . . . , (3.2)

where the coefficients gjN (t) satisfy gjN (t)= (uN (t),ωj) with

(
u′′N (t),ωj

)
+
(

div
(∣∣DuN

∣
∣p−2

DuN
)
,ωj
)

+
(
u′N (t),ωj

)= (∣∣uN
∣
∣m−2

uN ,ωj
)
, (3.3)

uN (0)= u0N , u′N (0)= u1N , 1≤ j ≤N. (3.4)

Here (u,v)= ∫Ωu(x)v(x)dx. Since C∞0 (Ω) is dense in W
1,p
0 (Ω) and L2(Ω), we choose u0N ,

u1N ∈ C∞0 (Ω) such that uN (0) = u0N → u0(x) in W
1,p
0 (Ω) and u′N (0) = u1N → u1(x) in

L2(Ω) as N →∞.
We observe that (3.3) is a system of ordinary differential equations in the variable t

and has a local solution uN (t) in an interval [0, tm) by the existence theorem. In the next
step, we obtain the a priori estimates for the solution uN (t) so that it can be extended to
the whole interval [0,T] according to the extension theorem.

Multiplying (3.3) by g′jN (t) and summing over j from 1 to N , and then integrating
over [0, t]; we get

1
2

∥
∥u′N (t)

∥
∥2

+ J
(
uN (t)

)
+
∫ t

0

∥
∥u′N (τ)

∥
∥2
dτ = 1

2

∥
∥u1N

∥
∥2

+ J
(
u0N

)
. (3.5)

By using formula (3.5), we can obtain

uN (t)∈W , t ∈ [0, tm
)
. (3.6)

In fact, suppose that (3.6) is false and let t1 be the smallest time for uN (t1) /∈W . Then,
by means of the continuity of uN (t), we see uN (t1)∈ ∂W . From the definition of W and
the continuity of J(u(t)) and K(u(t)) in t, we have either

J
(
uN
(
t1
))= d, (3.7)

or

K
(
uN
(
t1
))= 0. (3.8)

By (3.5) together with the condition E(u(0)) < d, we have

J
(
uN
(
t1
))≤ 1

2

∥
∥u1N

∥
∥2

+ J
(
u0N

)= E(uN (0)
)
< d. (3.9)

So, case (3.7) is impossible.
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Assume that (3.8) holds, then we obtain

d

dλ
J
(
λuN

(
t1
))= λp−1(1− λm−p)∥∥∇uN

(
t1
)∥∥p

p. (3.10)

Consequently,

sup
λ≥0

J
(
λuN

(
t1
))= J(λuN

(
t1
))∣∣

λ=1 = J
(
uN
(
t1
))
< d, (3.11)

which contradicts the definition of d. Therefore, case (3.8) is impossible as well. Thus, we
verify that uN (t)∈W , t ∈ [0, tm).

From (3.5) and (3.6), we have

1
2

∥
∥u′N

∥
∥2

+
m− p

mp

∥
∥∇uN

∥
∥p
p +
∫ t

0

∥
∥u′N (τ)

∥
∥2
dτ ≤ 1

2

∥
∥u1N

∥
∥2

+d ≤ C. (3.12)

With this estimate, we can extend the approximate solutions uN (t) to the interval [0,T]
and we have

{
uN
}

is bounded in L∞
(
0,T ;W

1,p
0 (Ω)

)
, (3.13)

{
u′N
}

is bounded in L∞
(
0,T ;L2(Ω)

)
, (3.14)

{
u′N
}

is bounded in L2(0,T ;L2(Ω)
)
, (3.15)

div
(∣∣DuN

∣
∣p−2

DuN
)

is bounded in L∞
(
0,T ;W

−1,p/(p−1)
0 (Ω)

)
, (3.16)

∣
∣uN

∣
∣m−2

uN is bounded in L∞
(
0,T ;Lm/(m−1)(Ω)

)
. (3.17)

Since our Galerkin basis was taken in the Hilbert space Hr(Ω) ⊂W
1,p
0 (Ω), we can

use the standard projection argument as described in [5]. Then from the approximate
equation (3.3) and the estimates (3.13)–(3.17), we get

{
u′′N
}

is bounded in L2(0,T ;W−1,p/(p−1)(Ω)
)
. (3.18)

Now from (3.13)–(3.17) and the standard arguments of the approximate solutions, we
conclude that after the extraction of suitable subsequence {uμ} from {uN} if necessary,
we have the following:

{
uμ
}−→ u weakly star in L∞

(
0,T ;W

1,p
0 (Ω)

)
, (3.19)

{
u′μ
}−→ u′ weakly star in L∞

(
0,T ;L2(Ω)

)
, (3.20)

{
u′μ
}−→ u′ weakly in L2(0,T ;L2(Ω)

)
, (3.21)

div
(∣∣Duμ

∣
∣p−2

Duμ
)−→ χ1 weakly star in L∞

(
0,T ;W

−1,p/(p−1)
0 (Ω)

)
, (3.22)

∣
∣uμ

∣
∣m−2

uμ −→ χ2 weakly star in L∞
(
0,T ;Lm/(m−1)(Ω)

)
. (3.23)
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By applying the Lions-Aubin compactness lemma [5], we get that from (3.13) and
(3.14),

{
uμ
}−→ u strongly in L2(0,T ;L2(Ω)

)
. (3.24)

We receive that from (3.15) and (3.18)

{
u′μ
}−→ u′ strongly in L2(0,T ;L2(Ω)

)
. (3.25)

Using (3.13) and (3.24), we see that

∫ T

0

∫

Ω

∣
∣
∣
∣uμ

∣
∣m−2

uμ
∣
∣m/(m−1)

dxdt =
∫ T

0

∥
∥uμ

∥
∥m
mdt ≤ C

∫ T

0

∥
∥uμ

∥
∥m
W

1,p
0
dt ≤ C, (3.26)

and |uμ|m−2uμ → |u|m−2u almost everywhere in (0,T)×Ω. Therefore from [5, Lemma
1.3], we infer that

∣
∣uμ

∣
∣m−2

uμ −→ |u|m−2u weakly in Lm/(m−1)(0,T ;Lm/(m−1)(Ω)
)
. (3.27)

We have from (3.23) and (3.27) that χ2 = |u|m−2u. Finally, since we have the strong
convergence (3.25), we can use a standard monotonicity argument as done by Lions in
[5] or by Ye in [8] to show that χ1 = div(|Du|p−2Du).

Multiplying both sides of (3.3) by g(t)∈ C2[0,T] and letting μ=N →∞, we get that
u(x, t) is a global solution of problem (1.1)-(1.2). This ends the proof of Theorem 3.1. �

4. The asymptotic behavior

Theorem 4.1. Under the hypotheses of Theorem 3.1, the global solution u(x, t) in W of
problem (1.1)-(1.2) on [0,+∞) has the following decay property:

E(t)≤ E(0)
{

1 +CE(0)I−2
0 [t− 1]+}−1

, t ∈ (0,+∞), (4.1)

where I0 is some positive constant depending only on u0 and u1.

Proof. Multiplying (1.1) by ut and integrating over [t, t+ 1]×Ω, t > 0, we have

∫ t+1

t

∥
∥ut(s)

∥
∥2
ds= E(t)−E(t+ 1)≡D(t)2. (4.2)

Thus, there exist t1 ∈ [t, t+ 1/4], t2 ∈ [t+ 3/4, t+ 1] such that

∥
∥ut
(
ti
)∥∥≤ 2D(t), i= 1,2. (4.3)
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On the other hand, we multiply (1.1) by u(t,x) and integrate over [t1, t2]×Ω, which
yields

∫ t2

t1
K
(
u(s)

)
ds=

∫ t2

t1

∥
∥ut(s)

∥
∥2
ds

+
(
ut
(
t1
)
,u
(
t1
))− (ut

(
t2
)
,u
(
t2
))−

∫ t2

t1

(
ut(s),u(s)

)
ds

≤D(t)2 + 5D(t) sup
t≤s≤t+1

∥
∥u(s)

∥
∥.

(4.4)

To estimate ‖u(t)‖, we multiply (1.1) by u(t,x) and integrate over [0, t]×Ω to obtain

1
2

∥
∥u(t)

∥
∥2

+
∫ t

0
K
(
u(s)

)
ds= 1

2

∥
∥u0

∥
∥2

+
(
u1,u0

)
+
∫ t

0

∥
∥ut(s)

∥
∥2
ds− (ut(t),u(t)

)
. (4.5)

Since K(u(t)) > 0, we derive that from Lemma 2.1,

∥
∥u(t)

∥
∥2 ≤ ∥∥u0

∥
∥2

+ 2
(
u1,u0

)
+ 2‖u‖∥∥ut

∥
∥+ 2

∫ t

0

∥
∥ut(s)

∥
∥2
ds

≤ ∥∥u0
∥
∥2

+ 2
(
u1,u0

)
+ 2
∥
∥ut(t)

∥
∥2

+
1
2

∥
∥u(t)

∥
∥2

+ 2
∫ t

0

∥
∥ut(s)

∥
∥2
ds.

(4.6)

From (4.2), we get

∫ t

0

∥
∥ut(s)

∥
∥2
ds= E(0)−E(t) < E(0), (4.7)

and hence we have from (4.6) that

∥
∥u(t)

∥
∥2 ≤ 2

{∥∥u0
∥
∥2

+ 2
(
u1,u0

)
+ 6E(0)

}≡ I2
0 . (4.8)

It follows from (4.4) and (4.8) that

∫ t2

t1
K
(
u(s)

)
ds≤D(t)2 + 5I0D(t). (4.9)

Now, it follows from (4.2) and (4.9) that

E
(
t2
)≤ 2

∫ t2

t1
E(s)ds≤ C{D(t)2 + I0D(t)

}
,

E
(
t1
)= E(t2

)
+
∫ t2

t1

∥
∥ut(s)

∥
∥2
ds≤ E(t2

)
+
∫ t+1

t

∥
∥ut(s)

∥
∥2
ds

≤ C{D(t)2 + I0D(t)
}

+D(t)2 ≤ CI0D(t),

(4.10)

which implies by (4.2) that

sup
t≤s≤t+1

E(s)2 ≤ CI2
0D(t)2 = CI2

0

{
E(t)−E(t+ 1)

}
. (4.11)
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Thus, applying Lemma 2.5 to (4.11) and using the fact that E(t)≤ E(0) < d, we derive the
decay estimate

E(t)≤ {E(0)−1 +CI−2
0 [t− 1]+}−1 = E(0)

{
1 +CE(0)I−2

0 [t− 1]+}−1
. (4.12)

This completes the proof of Theorem 4.1. �
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