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1. Introduction

The wave equation occurs in many branches of physics, in applied mathematics as well
as in engineering, and it is also considered as one of the three fundamental equations
in mathematical physics. The homogenous wave equation with constant coefficient can
be solved by many ways such as separation of variables [1], the methods of characteris-
tics [2, 3], and Laplace transform and Fourier transform [4]. The nonhomogenous wave
equation was also studied in [3] by using the methods of eigenfunction expansion.

In this study, we consider the nonhomogenous wave equation

ut + cux = F(x, t), (1.1)

replace the nonhomogenous term by a single convolution and double convolutions, and
prove that if F1 and F2 are solutions for the nonhomogenous equations, then F1(x)∗F2(x)
and F1(x, t)∗x∗yF2(x, t) are also solutions.

Definition 1.1. Let F1(x) and F2(x) be integrable functions, then the convolution of F1(x)
and F2(x), as
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F1(x)∗F2(x) =
∫ x

0
F1(x− ζ)F2(ζ)dζ , (1.2)

is called a single convolution, provided that the integral exists, see [4].

Definition 1.2. Let F1(x, y) and F2(x, y) be integrable functions, then the convolution of
F1(x, y) and F2(x, y), as

F1(x, y)∗x∗yF2(x, y) =
∫ y

0

∫ x

0
F1(x− ζ , y−η)F2(ζ ,η)dζ dη, (1.3)

is called a double convolution, and we use the symbol ∗x∗y to define the double convo-
lution with respect to x and y, provided that integrals exist, see [5].

2. Main results

We start by studying the first-order nonhomogenous partial differential equation, where
the nonhomogenous initial condition with convolution terms is given as

ut + cux = F(x, t),

u(x,0) = g(x), where −∞ < x <∞, t > 0,
(2.1)

where the nonhomogenous term of (2.1) is a single convolution defined as follows:

F(x, t) = F1(x, t)∗xF2(x, t) =
∫ x

0
F1(x− ζ , t)F2(ζ , t)dζ , (2.2)

where t in (2.2) is constant, and we consider the initial condition as a convolution that is
given by

g(x) = g1(x)∗g2(x). (2.3)

Now, the characteristic equations of (2.1) are in the following form:

dt

dβ
= 1,

dx

dβ
= c,

dv

dβ
= F(x, t), (2.4)

if the initial conditions are given by

t(α,0) = 0, x(α,0) = α, v(α,0) = g(α), (2.5)

then we solve (2.4) for t and x, respectively, thus we obtain

t(α,β) = β, x(α,β) = α+ cβ. (2.6)

Then the last equation of (2.4), for v, becomes

dv

dβ
= F(α+ cβ,β), v(α,0) = g(α), (2.7)



A. Kılıçman and H. Eltayeb 3

by solving (2.7), we have

v(α,β) =
∫ β

0
F(α+ cτ,τ)dτ + g(α). (2.8)

Solving (2.8), for α, β, we get the solution of (2.1) as

u(x, t) =
∫ t

0
F(x− ct+ cτ,τ)dτ + g(x− ct). (2.9)

In particular, if we take the nonhomogenous first-order partial differential equation with
the nonhomogenous initial condition

ut +ux = x2 + 2cos(x)− 2,

u(x,0) = 1
2
ex − 1

2
cos(x) +

1
2

sin(x), −∞ < x <∞, t > 0,
(2.10)

where c2 = 1, then it is easy to prove that

(x)∗x sin(x) = x2 + 2cos(x)− 2,

ex∗cos(x) = 1
2
ex − 1

2
cos(x) +

1
2

sin(x),
(2.11)

and then we apply (2.10) as

u(x, t) =
∫ t

0

[
(x− t+ τ)2 + 2cos(x− t+ τ)− 2

]
dτ +

1
2
ex−t − 1

2
cos(x− t) +

1
2

sin(x− t).

(2.12)

If we calculate the integral in (2.12), we obtain

∫ t

0

[
(x− t+ τ)2 + 2cos(x− t+ τ)− 2

]
dτ = x2t− xt2 +

1
3
t3− 2sin(x− t) + 2sin(x)− 2t.

(2.13)

Thus the solution of (2.10) can be written in the form

u(x, t) = 1
2
ex−t − 1

2
cos(x− t) + x2t− xt2 +

1
3
t3− 3

2
sin(x− t) + 2sin(x)− 2t. (2.14)

In the following, we replace the nonhomogenous single convolution term in (2.1) by a
double convolution term as

ut+cux = F(x, t),

u(x,0) = g(x), −∞ < x <∞, t > 0,
(2.15)

where F(x, t) is defined as

F(x, t) = f1(x, t)∗x∗t f2(x, t) =
∫ t

0

∫ x

0
f1(x− ζ , t− τ) f2(ζ ,τ)dζ dτ, (2.16)
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then the solution will be in the form of

u(x, t) =
∫ t

0
F(x− ct+ cτ,τ)dτ + g(x− ct). (2.17)

The proof of (2.15) is similar to that of (2.1).
In particular, take the nonhomogenous first-order partial differential equation with

the nonhomogenous initial condition as

ut +ux = − 2cos(x) + t sin(x) + x sin(t)− 2cos(t) + 2cos(x+ t) + 2,

u(x,0) = − 1
2

sinh(x) +
1
2
xcosh(x) +

1
2
x sinh(x), −∞ < x <∞, t > 0,

(2.18)

where c2 = 1, then it is easy to prove that

(x+ t)∗x∗t sin(x+ t) = −2cos(x) + t sin(x) + x sin(t)− 2cos(t) + 2cos(x+ t) + 2,

ex∗sinh(x) = −1
2

sinh(x) +
1
2
xcosh(x) +

1
2
x sinh(x),

(2.19)

where c2 = 1. Now, apply (2.17) as

u(x, t)=
∫ t

0

[− 2cos(x− t+ τ) + τ sin(x− t+ τ)− 2cos(τ)
]
dτ

×
∫ t

0

[
(x− t+ τ)sin(τ) + 2cos(x− t+ 2τ) + 2

]
dτ

− 1
2

sinh(x− t) +
1
2

(x− t)cosh(x− t) +
1
2

(x− t)sinh(x− t).

(2.20)

Then we get the solution of (2.18) as

u(x, t) = −1
2

sinh(x− t) +
1
2

(x− t)cosh(x− t) + x+ t

+
1
2

(x− t)sinh(x− t)− sin(x)− sin(t)− t cos(x)− xcos(t) + sin(x+ t).

(2.21)

Theorem 2.1. Consider the Cauchy problem as

utt − c2uxx =F(x, t), −∞ < x <∞, t > 0,

u(x,0) =p(x), ut(x,0) = q(x),
(2.22)

where

F(x, t) = F1(x, t)∗xF2(x, t), (2.23)

and the initial condition is defined as

p(x) = h1(x)∗h2(x), q(x) = g1(x)∗g2(x), (2.24)
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then the solution is given by

u(x, t) = 1
2
p(x+ ct) +

1
2
p(x− ct) +

1
2c

∫ x+ct

x−ct
q(y)dy +

1
2c

∫ t

0

∫ x+c(t−β)

x−c(t−β)
F(y,β)dydβ.

(2.25)

Proof. The nonhomogenous term of (2.1) is a convolution defined by

f1(x, t)∗x f2(x, t) =
∫ x

0
f1(x− ζ , t) f2(ζ , t)dζ , (2.26)

where t is considered constant, see [6], and the nonhomogenous initial condition of (2.1)
is also a single convolution defined by

h1(x)∗xh2(x) =
∫ x

0
h1(x− ζ)h2(ζ)dζ , (2.27)

also see [6], and

g1(x)∗xg2(x) =
∫ x

0
g1(x− ζ)g2(ζ)dζ , (2.28)

then by applying the method of reduction to first-order equation, we can write (2.1) in
the following form:

(
∂t + c∂x

)(
∂t − c∂x

)
u(x, t) = F(x, t). (2.29)

Let w = (∂t − c∂x)u(x, t), then we introduce (2.1) with the initial condition to the first
order as

wt + cwx = F(x, t),

w(x,0) = ut(x,0)− cux(x,0) = q(x)− cp′(x),
(2.30)

thus we can write the characteristic equations as

dt

dβ
= 1,

dx

dβ
= c,

dz

dβ
= F(x, t), (2.31)

if the initial condition is provided as

t(α,0) = 0, x(α,0) = α, z(α,0) = q(α)− cp′(α). (2.32)

Now, first of all, we solve (2.31) for t and x, then we get

t(α,β) = β, x(α,β) = cβ+α, (2.33)

the last equation of (2.31), for z, becomes

dz

dβ
= F(α+ cβ,β), z(α,0) = q(α)− cp′(α), (2.34)
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by solving (2.34), we obtain

z(α,β) =
∫ β

0
F(α+ cτ,τ)dτ + q(α)− cp′(α). (2.35)

The solution of (2.35), for α, β, will be given by

w(x, t) =
∫ t

0
F(x− ct+ cτ,τ)dτ + q(x− ct)− cp′(x− ct). (2.36)

Similarly, we consider to solve the equation below by the same method:

ut − cux =w(x, t),

u(x,0) = p(x),
(2.37)

where the characteristic equations are

dt

dβ
= 1,

dx

dβ
= −c, dz

dβ
= w(x, t), (2.38)

and the initial condition is

t(α,0) = 0, x(α,0) = α, z(α,0) = p(α). (2.39)

Now, we solve (2.38), for t, x, as

t(α,β) = β, x(α,β) = α− cβ, (2.40)

the last term of (2.38), for z, becomes

dz

dβ
= w(α− cβ,β), z(α,0) = p(α). (2.41)

We solve (2.41) as

z(α,β)=
∫ β

0
w(α− cθ,θ)dθ + p(α)

=
∫ β

0

[∫ θ

0
F
(
(−cθ +α)− cθ + cτ,τ

)
dτ
]
dθ+

∫ β

0

[
q(α− 2cθ)− cp′(α− 2cθ)

]
dθ+p(α),

(2.42)

and we also solve (2.42), for α, β, where α = x + ct and β = t, then the solution is given
by

u(x, t)=
∫ t

0

[∫ θ

0
F(x+ ct− 2cθ + cτ,τ)dτ

]
dθ

+
∫ t

0
q(x+ ct− 2cθ)dθ−

∫ t

0
cp′(x+ ct− 2cθ)dθ + p(x+ ct).

(2.43)
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If we let y = x+ ct− 2cθ, then we get

∫ t

0
q(x+ ct− 2cθ)dθ = 1

2c

∫ x+ct

x−ct
q(y)dy, (2.44)

similarly, we have

−
∫ t

0
cp′(x+ ct− 2cθ)dθ = −1

2
p(x+ ct) +

1
2
p(x− ct). (2.45)

Then (2.44) and the last term of (2.43) can be written as

1
2
p(x+ ct) +

1
2
p(x− ct), (2.46)

for the first term, we change the variable. Let y = x + ct− 2cθ + cτ and β = τ, then we
can write the first term of (2.43) in the following form:

∫ t

0

[∫ θ

0
F(x+ ct− 2cθ + cτ,τ)dτ

]
dθ = −

∫ t

0

∫ x+c(t−β)

x−c(t−β)
F(y,β)Jdy dβ, (2.47)

where J is the Jacobian

J = − 1
2C

dydβ = dτdθ, (2.48)

this completes the proof of the theorem. �

Now, if we take the nonhomogenous wave equation with nonhomogenous initial con-
dition as

utt −uxx =6ex − x3− 3x2− 6x− 6, −∞ < x <∞, t > 0,

u(x,0) = 1
2
x sin(x), ut(x,0) = 1

2
xcosh(x)− 1

2
sinh(x),

(2.49)

where c2 = 1, and since

ex∗xx3 = 6ex − x3− 3x2− 6x− 6,

sin(x)∗cos(x) = 1
2
x sin(x),

sinh(x)∗sinh(x) = 1
2
xcosh(x)− 1

2
sinh(x),

(2.50)

we apply Theorem 2.1, then we have

u(x, t) = 1
4

(x− t)sin(x− t) +
1
4

(x+ t)sin(x+ t) +
1
4

∫ x+t

x−t

[
y cosh(y)− sinh(y)

]
dy

+
1
2

∫ t

0

∫ x+c(t−β)

x−c(t−β)

[
6ey − y3− 3y2− 6y− 6

]
dydβ,

(2.51)
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if we calculate the last two integrals, we obtain the solution of (2.49) as

u(x, t)= 3e(x−t) + 3e(x+t)− 1
4
t4− 3xt2− 3

2
x2t2− 3t2− 6ex

− 1
4
xt4− 1

2
x3t2− 1

8
sinh(x− t)x+

1
8

sinh(x− t)t

+
1
4

cosh(x− t) +
1
8

sinh(x+ t)x+
1
8

sinh(x+ t)t

− 1
4

cosh(x+ t) +
1
4

(x− t)sin(x− t) +
1
4

(x+ t)sin(x+ t).

(2.52)

In the following theorem, we prove the uniqueness and continuity of the above-
mentioned solution.

Theorem 2.2. If h∈ C2(R), and k ∈ C1(R), then the initial value problem

utt − c2uxx =0, |x| ≤∞, |t| ≤∞,

u(x,0)=h(x), ut(x,0) = k(x),
(2.53)

where the nonhomogenous initial conditions are convolution terms as

h(x) = f1(x)∗ f2(x), k(x) = g1(x)∗g2(x), (2.54)

a solution of the form

u(x, t) = 1
2
h(x+ ct) +

1
2
h(x− ct) +

1
2c

∫ x+ct

x−ct
k(y)dy, (2.55)

which is well posed and its unique solution is given by D’Alembert formula.

Proof. It is easy to see that D’Alembert formula satisfies the wave equation and the initial
condition. We will focus on proving the uniqueness. The general solution is given by

u(x, t) = F(x− ct) +G(x+ ct), (2.56)

and the initial condition determines F and G. If we had two solutions, p1 = F1 +G1 and
p2 = F2 +G2 solve (2.44) with the initial condition h(x) and k(x), then the function

p(x, t) = p1(x, t)− p2(x, t) = (F1−F2
)

+
(
G1−G2

)
(2.57)

satisfies the following equation:

ptt − c2pxx = 0, |x| ≤∞, |t| ≤∞,

p(x,0)=0, pt(x,0) = 0,
(2.58)
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where F and G are uniquely determined from the initial conditions, and we have that
p(x, t) = 0 satisfies the above system, then F1 ≡ F2 and G1 ≡ G2. For continuous depen-
dence on data, let u, v correspond to the solution with initial data h, k and v0, v1, respec-
tively, suppose

∣∣h(x)− v0(x)
∣∣≤ δ,

∣∣k(x)− v1(x)
∣∣≤ δ, ∀x, (2.59)

then for 0≤ t ≤ T , we have

∣∣u(x, t)− v(x, t)
∣∣≤ 1

2

∣∣h(x+ ct)− v0(x+ ct)
∣∣

+
1
2

∣∣h(x− ct)− v0(x− ct)
∣∣+

1
2c

∫ x+ct

x−ct

∣∣k(y)− v1(y)
∣∣dy

≤ 1
2
δ + δ

1
2

+
1
2c
δ(2ct) < δ(1 +T)

(2.60)

for ε > 0, if δ(1 +T) < ε, then |u(x, t)− v(x, t)| < ε. �

Theorem 2.3. Consider the Cauchy problem

utt − c2uxx =F(x, t), −∞ < x <∞, t > 0,

u(x,0)=h(x), ut(x,0) = k(x),
(2.61)

where the nonhomogenseity of the term of (2.61), defined as the double convolution

F(x, t) = f1(x, t)∗x∗t f2(x, t), (2.62)

is well posed.

Proof. It is easy to verify the uniqueness since the difference of two solutions satisfies the
homogenous wave equation with zero initial condition and this was already discussed in
the above theorem, we need only to consider the equation

utt − c2uxx =F(x, t), −∞ < x <∞, t > 0,

u(x,0)=0, ut(x,0) = 0.
(2.63)

The above equation has a solution of the form

u(x, t) = 1
2c

∫ t

0

∫ x+c(t−β)

x−c(t−β)
F(y,β)dydβ. (2.64)

Now, suppose that F(x, t) and G(x, t) satisfy

∣∣F(x, t)−G(x, t)
∣∣ < δ, −∞ < x <∞, t ≥ 0. (2.65)
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If u, v are solutions corresponding to F(x, t) and G(x, t), respectively, and t satisfies 0 ≤
t ≤ T , then

∣∣u(x, t)− v(x, t)
∣∣= 1

2c

∣∣∣∣
∫ t

0

∫ x+c(t−β)

x−c(t−β)
(F −G)(y,β)dydβ

∣∣∣∣

≤ δ

2c

∫ t

0
2c(t−β)dβ = −δ

(
(t−β)2

2

∣∣∣∣
t

0

)

= δ
(
t2

2

)
≤ δ

(
T2

2

)
< δ
(
T2).

(2.66)

Thus for fixed finite time interval [0,T] and ε > 0 if ε > δT2, then |u(x, t)− v(x, t)| <
ε. �

Theorem 2.4. Consider the Cauchy problem as

utt − c2uxx =F(x, t), −∞ < x <∞, t > 0,

u(x,0)= p(x), ut(x,0) = q(x),
(2.67)

where

F(x, t) = f1(x, t)∗x∗x f2(x, t), (2.68)

and the initial condition, defined as

p(x) = h1(x)∗h2(x), q(x) = g1(x)∗g2(x) (2.69)

has a solution in the form of

u(x, t) = 1
2
p(x+ ct) +

1
2
p(x− ct) +

1
2c

∫ x+ct

x−ct
q(y)dy +

1
2c

∫ t

0

∫ x+c(t−β)

x−c(x−β)

[
F(y,β)

]
dydβ.

(2.70)

The proof of this theorem is similar to that of Theorem 2.1.
In particular, if we take the nonhomogenous wave equation with the nonhomogenous

initial condition such as

utt −uxx = 1
2
xt sin(x+ t), −∞ < x <∞, t > 0,

u(x,0)= 1
2
xcosh(x) +

1
2
x sinh(x)− 1

2
sinh(x),

ut(x,0)=2sinh(x)− 2x,

(2.71)

where c2 = 1,then it is easy to prove that the right-hand side of (2.71) can be written as

sin(x+ t)∗x∗t cos(x+ t) = 1
2
xt sin(x+ t), (2.72)
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and similarly,

ex∗x sinh(x)= 1
2
xcosh(x) +

1
2
x sinh(x)− 1

2
sinh(x),

x2∗x cosh(x)=2sinh(x)− 2x.
(2.73)

Now, we apply Theorem 2.4 as

u(x, t)= 1
4

(x− t)cosh(x− t) +
1
4

(x− t)sinh(x− t)− 1
4

sinh(x− t)

+
1
4

(x+ t)cosh(x+ t) +
1
4

(x+ t)sinh(x+ t)

− 1
4

sinh(x+ t)
1
2

∫ x+t

x−t

[
2sinh(y)− 2y

]
dy +

1
4

∫ t

0

∫ x+(t−β)

x−(t−β)
yβ sin(y +β)dydβ,

(2.74)

and we integrate the last two terms of (2.74), then we obtain the solution of (2.71) as

u(x, t)= − cosh(x− t)− 2xt+ cosh(x+ t) +
1
8

sin(x− t)

− 1
16

cos(x− t)x+
1

16
cos(x− t)t+

1
8
xt sin(x+ t)

− 1
8

cos(x+ t)xt2 +
1

16
cos(x+ t)x+

3
16

cos(x+ t)t

− 1
8

sin(x+ t) +
1
8

sin(x+ t)t2− 1
24

cos(x+ t)t3− 1
2

sinh(x− t)

+
1
2

cosh(x− t)(x− t) +
1
2

sinh(x− t)(x− t)− 1
2

sinh(x+ t)

+
1
2

cosh(x+ t)(x+ t) +
1
2

sinh(x+ t)(x+ t).

(2.75)

In the following theorem, we extend Theorem 2.4.

Theorem 2.5. Consider the Cauchy problem as

utt − c2uxx =F(x, t) +G(x, t), −∞ < x <∞, t > 0,

u(x,0)= p(x), ut(x,0) = q(x),
(2.76)

where

F(x, t) = f1(x, t)∗x∗x f2(x, t), G(x, t) = S1(x, t)∗x∗tS2(x, t), (2.77)

and the initial condition given by

p(x) = h1(x)∗h2(x), q(x) = g1(x)∗g2(x) (2.78)
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has a solution of the form

u(x, t)= 1
2
p(x+ ct) +

1
2
p(x− ct)

+
1
2c

∫ x+ct

x−ct
q(y)dy +

1
2c

∫ t

0

∫ x+c(t−β)

x−c(x−β)

[
F(y,β) +G(y,β)

]
dydβ.

(2.79)

The proof of this theorem is similar to that of Theorem 2.4. In the following theorem,
we generalized Theorem 2.5 as follows.

Theorem 2.6. Consider the Cauchy problem as

utt − c2uxx =
n∑
i=1

Fi(x,0)∗xGi(x,0), −∞ < x <∞, t > 0,

u(x,0) = p(x), ut(x,0) = q(x),

(2.80)

where the initial condition defined as

p(x) =
n∑
i=1

hi(x)∗si(x), q(x) =
n∑
i=1

gi(x)∗ki(x) (2.81)

has a solution in the form of

u(x, t)= 1
2

n∑
i=1

hi(x+ ct)∗si(x+ ct) +
1
2

n∑
i=1

hi(x− ct)∗si(x− ct)

+
1
2c

∫ x+ct

x−ct

n∑
i=1

gi(y)∗ki(y)dy +
1
2c

∫ t

0

∫ x+c(t−β)

x−c(x−β)

n∑
i=1

Fi(y,0)∗yGi(y,0)dydβ.

(2.82)

The proof of this theorem is similar to that of Theorem 2.4.
The result in Theorem 2.5 can be extended to a double convolution as in the following

theorem.

Theorem 2.7. Consider the Cauchy problem as

utt − c2uxx =
n∑
i=1

Fi(x, t)∗x∗tGi(x, t), −∞ < x <∞, t > 0,

u(x,0) = p(x), ut(x,0) = q(x),

(2.83)

where the initial condition defined as

p(x) =
n∑
i=1

hi(x)∗si(x), q(x) =
n∑
i=1

gi(x)∗ki(x) (2.84)
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has a solution in the following form:

u(x, t)= 1
2

n∑
i=1

hi(x+ ct)∗si(x+ ct) +
1
2

n∑
i=1

hi(x− ct)∗si(x− ct)

+
1
2c

∫ x+ct

x−ct

n∑
i=1

gi(y)∗ki(y)dy +
1
2c

∫ t

0

∫ x+c(t−β)

x−c(x−β)

n∑
i=1

Fi(y,β)∗y∗βGi(y,β)dydβ.

(2.85)

The proof is similar to that of Theorem 2.5.
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