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1. Introduction

In this work we consider the following initial boundary value problem:

u′′ −M
(
‖∇u‖2

)
Δu +

∫ t

0
h(t − τ)Δu(τ)dτ −Δu′ + |u|ρ−2u + β1θ = f in Q,

θ′ −Δθ + β2u′ = g in Q,

u = θ = 0 on Σ,

u(x, 0) = u0(x), u′(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω,

(1.1)

whereQ := Ω× [0, T], Σ := ∂Ω× [0, T], ρ ≥ 2,Ω is a bounded domain in Rn with C2 boundary,
u′ = du/dt, u′′ = d2u/dt2, M(s) is C1 class function like 1 + sγ , γ ≥ 1 and β1, β2 are positive
constants:

‖∇u‖2 =
n∑
i=1

∫

Ω

∣∣∣∣
∂u

∂xi
(x)

∣∣∣∣
2

dx, Δu =
n∑
i=1

∂2u

∂x2
i

, (1.2)
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f , g is a known function and the function h(t) is positive and satisfies some conditions to be
specified later.

However, (1.1) consists of a dynamical equation coupling a heat equation, which
can be used to describe some physical process of thermoelastic material. Also, u(x, t) and
θ(x, t) represent the displacement and temperature, respectively, at position x and time t.
The coupling of the heat equation in the model of vibrations presents important aspects
because it represents better than the reality, that is, allowing to influence the vibrations in
a more adequate way. M(s) appearing in the dynamical part of system (1.1) is a nonlinear
perturbation of Moeover, Kirchhoff-Carrier’s model which describes small vibrations of
a stretched string (dimension n = 1) when tension is assumed to have only a vertical
component at each point of the string. Many researchers have investigated several types
of problems involving the Kirchhoff equation among which we can cite the work in [1, 2].
Clark and Lima [3] studied the local existence for 0 < T0 < T of solutions to the mixed
problem:

u′′ −M
(∫

Ω
|∇u|2dx

)
Δu + |u|ρu + θ = f in Q,

θ′ −Δθ + u′ = g in Q.

(1.3)

In this paper, we prove the global existence and uniqueness of weak solutions of
(1.1) based on different definition of weak solution and estimate techniques from [3],
we consider the Kirchhoff equation with the strong damping term Δu′ and so-called
“memory” term

∫ t
0h(t − τ)Δu(τ)dτ . Here we consider the memory effect in (1.1) because

physically some materials could produce the viscosity of memory type [4]. Hence under
appropriate assumptions on h(t), ρ, f, and g, and making use of Galerkin’s approximations
and compactness argument, we establish global existence and uniqueness. Meanwhile, by
some suitable estimate techniques, we deal with the memory term and another nonlinear
term appearing in the mixed problem of viscoelastic wave equation. In order to obtain the
exponential decay of the energy, we make use of the perturbed energy method, see Komornik
and Zuazua [5].

The rest of this paper is organized as follows: In Section 2 we give out assumptions
and state the main result. In Section 3 we exploit Faedo-Galerkin’s approximation, priori
estimates, and compactness arguments to obtain the existence of solutions of a penalty
problem. In Section 4, uniqueness is proved. In Section 5, the exponential decay of solution is
obtained by using the perturbed energy method.

2. Assumptions and Main Results

Throughout this paper, we use the following notation:

(u, v) =
∫

Ω
u(x)v(x) dx, ‖u‖2 =

∫

Ω
|u(x)|2 dx. (2.1)

Now we state the main hypotheses in this paper.



International Journal of Differential Equations 3

(A.1) Assumption on Kernel h

Let h : R+ → R+ be a nonnegative and bounded C2 function and suppose that there exist
positive constants ξ1, ξ2, ξ3 such that

−ξ1h(t) ≤ h′(t) ≤ −ξ2h(t) ∀t ≥ 0, (2.2)

0 ≤ h′′(t) ≤ ξ3h(t) ∀t ≥ 0. (2.3)

Moreover, h verifies l := 1 − ∫∞
0 h(s)ds > 0.

(A.2) Assumption on ρ, μ

Let ρ satisfies that

2 ≤ ρ ≤ 2n − 2
n − 2

if n ≥ 3,

2 ≤ ρ <∞ if n = 1, 2;
(2.4)

μ is given by the Sobolev embedding inequality ‖u‖2 ≤ μ‖∇u‖ for u ∈ H1
0(Ω), in the general

case, we denote ‖u‖ρ ≤ C‖∇u‖.

(A.3) Assumption on Initial Condition, f and g

Assume that u0, u1, θ0 ∈ H1
0(Ω) ∩ H2(Ω), and f, g ∈ C1

loc(0,∞;L2(Ω)). Next we define the
energy E(t)with

E(t) =
1
2

(∥∥u′(t)∥∥2 + ‖θ(t)‖2 + ‖∇u(t)‖2 + 1
γ + 1

‖∇u(t)‖2(γ+1) + 2
ρ
‖u(t)‖ρρ

)
. (2.5)

The main result is as follow.

Theorem 2.1. If assumptions (1)–(3) hold, then there exists a unique weak solution {u, θ} with u ∈
L∞(0, T ;H1

0(Ω)), u′ ∈ L∞(0, T ;H1
0(Ω)), u′′ ∈ L∞(0, T ;L2(Ω)), θ ∈ L∞(0, T ;H1

0(Ω)), and θ′ ∈
L∞(0, T ;L2(Ω)) such that

(
u′′, w

)
+ (∇u,∇w) + ‖∇u‖2γ(∇u,∇w) −

∫ t

0
h(t − τ)(∇u(τ),∇w)dτ

+
(∇u′,∇w)

+ β1(θ,w) +
(
|u|ρ−2u,w

)
− (

f,w
)
= 0,

(2.6)

(
θ′, w

)
+ (∇θ,∇w) + β2

(
u′, w

) − (
g,w

)
= 0 ∀w ∈ H1

0(Ω),

u(0) = u0, u′(0) = u1, θ(0) = θ0.
(2.7)
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Furthermore, if f = g = 0, β1, β2 satisfy that 2/μ2 ≥ β1 + β2 and β1 small enough, we have the
following decay estimate:

E(t) ≤ C exp(−ξt), ∀t ≥ t0, (2.8)

where C and ξ are positive constants.

3. Existence of Solutions

Proof of Theorem 2.1. We use Galerkin’s approximation. Let w1, . . . , wm be a basis in H1
0(Ω)

which is orthonormal in L2(Ω), and Vm the subspace of H1
0(Ω) generated by the first m of

{wj}. For eachm ∈N, we seek the approximate solution:

um(t, x) =
m∑
j=1

gm(t)wj(x), θm(t, x) =
m∑
j=1

g̃m(t)wj(x), (3.1)

of the following Cauchy problem:

(u′′m,w) + (∇um,∇w) + ‖∇um‖2γ(∇um,∇w) − ∫ t
0h(t − τ)(∇um(τ),∇w)dτ

+(∇u′m,∇w) + β1(θm,w) +
(
|um|ρ−2um,w

)
− (

f,w
)
= 0 ∀w ∈ Vm,

(3.2)

(θ′m,w) + (∇θm,∇w) + β2(u′m,w) − (
g,w

)
= 0 ∀w ∈ Vm (3.3)

satisfying the initial conditions

um(0) = u0m =
m∑
j=1

(
u0, wj

)
wj −→ u0 strongly in H1

0(Ω) ∩H2(Ω),

u′m(0) = u1m =
m∑
j=1

(
u1, wj

)
wj −→ u1 strongly in H1

0(Ω) ∩H2(Ω),

θm(0) = θ0m =
m∑
j=1

(
θ0, wj

)
wj −→ θ0 strongly in H1

0(Ω) ∩H2(Ω).

(3.4)

According to the ODE theory, we can solve the system (3.2)-(3.3) by Picard’s iteration. Hence,
this system has unique solution on interval [0, Tm] for eachm. The following estimates allow
us to extend the solution to the closed interval [0, T].

In the following proof, wewill use ci, i = 0, 1, 2, . . ., to denote various positive constants
which may be different in different places and may be dependent on T in some cases.
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The First Estimate

Taking w = u′m(t) in (3.2) and w = θm(t) in (3.3), respectively, then adding the results and
using assumption (1),we have

1
2
d

dt

(∥∥u′m(t)
∥∥2 + ‖θm(t)‖2 + ‖∇um(t)‖2 + 1

γ + 1
‖∇um(t)‖2(γ+1) + 2

ρ
‖um(t)‖ρρ

)

+
∥∥∇u′m(t)

∥∥2 + ‖∇θm(t)‖2

=
d

dt

[∫ t

0
h(t − τ)(∇um(τ),∇um(t))dτ

]
− (

β1 + β2
)(
u′m, θm

)
+
(
f, u′m(t)

)

+
(
g, θm

) −
∫ t

0
h′(t − τ)(∇um(τ),∇um(t))dτ − h(0)‖∇um(t)‖2

≤
(
β1 + β2

)2 + 1
2

∥∥u′m(t)
∥∥2 + ‖θm‖2 + d

dt

[∫ t

0
h(t − τ)(∇um(τ),∇um(t))dτ

]

+
1
2
∥∥f∥∥2 +

1
2
∥∥g∥∥2 + c1‖∇um(t)‖2 + c2

∫ t

0
‖∇um(τ)‖2dτ.

(3.5)

Now integrating (3.5) over (0, t) for t < T,we have

1
2

(∥∥u′m(t)
∥∥2 + ‖θm(t)‖2 + ‖∇um(t)‖2 + 1

γ + 1
‖∇um(t)‖2(γ+1) + 2

ρ
‖um(t)‖ρρ

)

+
∫ t

0

∥∥∇u′m(τ)
∥∥2
dτ +

∫ t

0
‖∇θm(τ)‖2dτ

≤
(
β1 + β2

)2 + 1
2

∫ t

0

∥∥u′m(τ)
∥∥2
dτ +

∫ t

0
h(t − τ)(∇um(τ),∇um(t))dτ

+
∫ t

0
‖θm(τ)‖2dτ + c3

∫ t

0
‖∇um(τ)‖2dτ + c4.

(3.6)

Moreover, from assumption (1), we have

∫ t

0
h(t − τ)(∇um(τ),∇um(t))dτ ≤ c5

(
η
)∫ t

0
‖∇um(τ)‖2dτ + η‖∇um(t)‖2, (3.7)

where η > 0 is arbitrary.
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Hence letting η small enough and using Gronwall’s inequality we obtain the first
estimate:

∥∥u′m(t)
∥∥2 + ‖θm(t)‖2 + ‖∇um(t)‖2 + ‖∇um(t)‖2(γ+1) + ‖um(t)‖ρρ

+
∫ t

0

∥∥∇u′m(τ)
∥∥2
dτ +

∫ t

0
‖∇θm(τ)‖2dτ ≤ L1,

(3.8)

where L1 is independent ofm.

The Second Estimate

First we estimate the initial data u′′m(0) in the L2-norm. Taking t = 0 and w = u′′m(0) in (3.2)
we have

∥∥u′′m(0)
∥∥2 ≤

(
1 + ‖∇u0‖2γ

)∣∣(Δu0, u′′m(0)
)∣∣ + β1

(
θ0, u

′′(0)
)
+
(
Δu1, u′′(0)

)

+ ‖u0‖ρ−1ρ−1
∥∥u′′m(0)

∥∥ +
∥∥f∥∥∥∥u′′m(0)

∥∥.
(3.9)

Hence, noticing the assumption on u0, u1, and θ0, we deduce

‖u′′m(0)‖ ≤ L2, (3.10)

where L2 is independent ofm.
Similarly, taking t = 0 and w = θ′m(0) in (3.3), we also deduce

‖θ′m(0)‖ ≤ L3, (3.11)

where L3 is independent ofm.
Differentiating (3.2) and (3.3), replacing w by u′′m(t) and θ′m(t) respectively, and then

adding the results, we get

1
2
d

dt

[∥∥u′′m(t)
∥∥2 +

∥∥θ′m(t)
∥∥2 +

∥∥∇u′m(t)
∥∥2
]

+
∥∥∇u′′m(t)

∥∥2 +
∥∥∇θ′m(t)

∥∥2 + h(0)
∥∥∇u′m(t)

∥∥2

≤ −2γ‖∇um(t)‖2γ−2
(∇um(t),∇u′m(t)

)(∇um(t),∇u′′m(t)
)

− (∇u′m(t),∇u′′m(t)
)‖∇um(t)‖2γ −

((
ρ − 1

)|um(t)|ρ−2u′m(t), u′′m(t)
)

+
(
β1 + β2

)∣∣(θ′m(t), u′′m(t)
)∣∣ + (

f ′, u′′m(t)
)
+
(
g ′, θ′m(t)

)

+
d

dt

[∫ t

0
h′(t − τ)(∇um(τ),∇u′m(t)

)
dτ

]
− h′(0)(∇um(t),∇u′m(t)

)

−
∫ t

0
h′′(t − τ)(∇um(τ),∇u′m(t)

)
dτ + h(0)

d

dt

(∇um(t),∇u′m(t)
)
.

(3.12)
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From the first estimate and Young’s inequality, we have

2γ‖∇um(t)‖2γ−2
(∇um(t),∇u′m(t)

)(∇um(t),∇u′′m(t)
)

+
(∇u′m(t),∇u′′m(t)

)‖∇um(t)‖2γ

≤ c1
(
η
)∥∥∇u′m(t)

∥∥2 + η
∥∥∇u′′m(t)

∥∥2
,

(3.13)

where η > 0 is arbitrary.
Noticing 1/n + (n − 2)/2n + 1/2 = 1, assumption (2), and the first estimate, we have

((
ρ − 1

)
um(t)|ρ−2u′m(t), u′′m(t)

)

≤ (
ρ − 1

)‖um(t)‖ρ−2n(ρ−2)
∥∥u′m(t)

∥∥
2n/(n−2)

∥∥u′′m(t)
∥∥

≤ c2‖∇um(t)‖ρ−2
∥∥∇u′m(t)

∥∥∥∥u′′m(t)
∥∥

≤ c3
∥∥∇u′m(t)

∥∥2 + c3
∥∥u′′m(t)

∥∥2
,

(3.14)

h′(0)
(∇um(t),∇u′m(t)

) ≤ h′(0)2

2
‖∇um(t)‖2 + 1

2
∥∥∇u′m(t)

∥∥2
, (3.15)

and by assumption (1), we have

∫ t

0
h′′(t − τ)(∇um(τ),∇u′m(t)

)
dτ ≤ c4

∫ t

0
‖∇um(τ)‖2dτ +

1
2
∥∥∇u′m(t)

∥∥2
. (3.16)

Therefore, combining (3.14)–(3.16), (3.10), (3.11) and integrating (3.12) over (0, t) we have

1
2

[∥∥u′′m(t)
∥∥2 +

∥∥θ′m(t)
∥∥2 +

∥∥∇u′m(t)
∥∥2
]

+
(
1 − η)

∫ t

0

∥∥∇u′′m(τ)
∥∥2
dτ +

∫ t

0

∥∥∇θ′m(τ)
∥∥2
dτ + h(0)

∫ t

0

∥∥∇u′m(τ)
∥∥2
dτ

≤ (
c1
(
η
)
+ c3 + 1

)∫ t

0

∥∥∇u′m(τ)
∥∥2
dτ +

(
β1 + β2

)2 + 1
2

∫ t

0

∥∥θ′m(τ)
∥∥2
dτ

+ (c3 + 1)
∫ t

0

∥∥u′′m(τ)
∥∥2
dτ + c5

∫ t

0
‖∇um(τ)‖2dτ

+
∫ t

0
h′(t − τ)(∇um(τ),∇u′m(t)

)
dτ + h(0)

(∇um(t),∇u′m(t)
)
+ c6.

(3.17)
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Moreover, consider that

∫ t

0
h′(t − τ)(∇um(τ),∇u′m(t)

)
dτ ≤ c7

(
η
)∫ t

0
‖∇um(τ)‖2dτ + η

∥∥∇u′m(t)
∥∥2
,

h(0)
(∇um(t),∇u′m(t)

) ≤ c8
(
η
)‖∇um(t)‖2 + η

∥∥∇u′m(t)
∥∥2
.

(3.18)

Hence, from (3.17), (3.18), the first estimate, letting η small enough and using
Gronwall’s inequality, we get the second estimate:

∥∥u′′m(t)
∥∥2 +

∥∥θ′m(t)
∥∥2 +

∥∥∇u′m(t)
∥∥2 +

∫T

0

∥∥∇u′′m(τ)
∥∥2
dτ +

∫T

0

∥∥∇θ′m(τ)
∥∥2
dτ ≤ L4,

∀0 ≤ t ≤ T,
(3.19)

where L4 is independent ofm.

The Third Estimate

Taking w = θ′m(t) in (3.3), we have

∥∥θ′m
∥∥2 +

1
2
d

dt
‖∇θm‖2 ≤ β2|(u′m(t), θ′m(t))| +

∣∣(g(t), θ′m(t)
)∣∣. (3.20)

Hence we easily get ‖∇θ‖2 ≤ L5, ∀0 ≤ t ≤ T , and L5 is independent ofm.

The Fourth Estimate

Letm1 ≥ m2 be two natural numbers and consider ym := um1 − um2 , zm := θm1 − θm2 . From the
system (3.2), we have

(
y′′
m,w

)
+
(∇ym,∇w

)
+
(
‖∇um1‖2γ∇ym,∇w

)

+
((

‖∇um1‖2γ − ‖∇um2‖2γ
)
∇um2 ,∇w

)

−
∫ t

0
h(t − τ)(∇ym(τ),∇w

)
dτ + β1(zm,w) +

(∇y′
m,∇w

)

+
(
|um1(t)|ρ−2um1(t) − |um2(t)|ρ−2um2(t), w

)
= 0,

(3.21)
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Taking w = y′
m in (3.21), we have

1
2
d

dt

[∥∥y′
m(t)

∥∥2 +
∥∥∇ym(t)

∥∥2 + ‖∇um1(t)‖2γ
∥∥∇ym(t)

∥∥2
]
+
∥∥∇y′

m(t)
∥∥2

≤
((

‖∇um2(t)‖2γ − ‖∇um1(t)‖2γ
)
∇um2(t),∇y′

m(t)
)

−
(
|um1(t)|ρ−2um1(t) − |um2(t)|ρ−2um2(t), y

′
m(t)

)

+
1
2
∥∥∇ym(t)

∥∥2 d

dt
‖∇um1(t)‖2γ + β1

∣∣(zm(t), y′
m(t)

)∣∣

+
∫ t

0
h(t − τ)(∇ym(τ),∇y′

m(t)
)
dτ.

(3.22)

Noticing that

∫ t

0
h(t − τ)(∇ym(τ),∇y′

m(t)
)
dτ

= −h(0)∥∥∇ym(t)
∥∥2 −

∫ t

0
h′(t − τ)(∇ym(τ),∇ym(t)

)
dτ

+
d

dt

(∫ t

0
h(t − τ)(∇ym(τ),∇ym(t)

)
dτ

)
,

(3.23)

hence, using assumption (2.2) and integrating (3.22) over (0, t), we get

1
2

[∥∥y′
m(t)

∥∥2 +
∥∥∇ym(t)

∥∥2 + ‖∇um1(t)‖2γ
∥∥∇ym(t)

∥∥2
]

+ h(0)
∫ t

0

∥∥∇ym(τ)
∥∥2
dτ +

∫ t

0

∥∥∇y′
m(τ)

∥∥2
dτ

≤
∫ t

0

∣∣∣‖∇um1(τ)‖2γ − ‖∇um2(τ)‖2γ
∣∣∣‖∇um2(τ)‖

∥∥∇y′
m(τ)

∥∥dτ

+
∫ t

0

∥∥∥|um1(τ)|ρ−2um1(τ) − |um2(τ)|ρ−2um2(τ)
∥∥∥
∥∥y′

m(τ)
∥∥dτ

+
∫ t

0
β1
∣∣(zm(τ), y′

m(τ)
)∣∣dτ +

1
2

∫ t

0

∥∥∇ym(τ)
∥∥2 d

dτ
‖∇um1(τ)‖2γdτ

+ c1

∫ t

0
h(t − τ)∣∣(∇ym(τ),∇ym(t)

)∣∣dτ + c2
(∥∥y1m

∥∥2 +
∥∥∇y0m

∥∥2
)
.

(3.24)

Notice that

c1

∫ t

0
h(t − τ)∣∣(∇ym(τ),∇ym(t)

)∣∣dτ ≤ c3
(
η
)∫ t

0

∥∥∇ym(τ)
∥∥2
dτ + η

∥∥∇ym(t)
∥∥2
. (3.25)
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where η > 0 is arbitrary:

∣∣∣‖∇um1(τ)‖2γ − ‖∇um2(τ)‖2γ
∣∣∣ ≤ c4

(
‖∇um1(τ)‖2γ−1 + ‖∇um2(τ)‖2γ−1

)∥∥∇ym(τ)
∥∥,

d

dτ
‖∇um1(τ)‖2γ ≤ c5‖∇um1(τ)‖2γ−1

∥∥∇u′m1(τ)
∥∥.

(3.26)

Moreover, by mean value theorem and assumption (2),we have

∥∥∥|um1(τ)|ρ−2um1(τ) − |um2(τ)|ρ−2um2(τ)
∥∥∥

≤ c6
(
‖∇um1(τ)‖ρ−2 + ‖∇um2(τ)‖ρ−2

)∥∥∇ym(τ)
∥∥.

(3.27)

Therefore, by (3.25)–(3.27), letting η > 0 small enough, by the first estimate, and using the
Gronwall’s lemma of integral form (see [6]) in (3.24) we obtain that

∥∥y′
m(t)

∥∥2 +
∥∥∇ym(t)

∥∥2 +
∫T

0

∥∥∇y′
m(τ)

∥∥2
dτ

≤ c7(T)
(∥∥y1m

∥∥2 +
∥∥∇y0m

∥∥2 +
∫T

0
‖zm(τ)‖2dτ

)
.

(3.28)

Passage to the Limit

From above estimates, we deduce that there exist functions u, θ and subsequences of {um},
{θm}which we still denote by {um}, {θm} satisfying

um −→ u in L∞
(
0, T ;H1

0(Ω)
)
weak∗,

u′m −→ u′ in L∞
(
0, T ;H1

0(Ω)
)
weak∗,

u′′m −→ u′′ in L∞
(
0, T ;L2(Ω)

)
weak∗,

u′′m −→ u′′ in L2
(
0, T ;H1

0(Ω)
)
weakly,

θm −→ θ in L∞
(
0, T ;H1

0(Ω)
)
weak∗,

θ′m −→ θ′ in L2
(
0, T ;H1

0(Ω)
)
weakly,

θ′m −→ θ′ in L∞
(
0, T ;L2(Ω)

)
weak∗ .

(3.29)
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Moreover, according to the compactness of Aubin-Lions, we have

um −→ u strongly in L2(0, T ;L2(Ω)
)
, (3.30)

θm −→ θ strongly in L2
(
0, T ;L2(Ω)

)
. (3.31)

Hence combing (3.31) and the fourth estimate (3.28), we deduce that

um −→ u strongly in C0
(
0, T ;H1

0(Ω)
)
. (3.32)

Thus we can pass the limit in system (3.2)-(3.3). Let m → ∞, we prove that {u, θ} is
a weak solution of the system (1.1).

4. Uniqueness of the Solution

The proof of uniqueness of solution is similar to the fourth estimate, but for integrity, we still
give the detailed proof.

Let (u1, θ1) and (u2, θ2) be two solutions of couple system (1.1) under the conditions
of Theorem 2.1, then we have (u, θ) := (u1 − u2, θ1 − θ2) verifying

(
u′′, w

)
+ (∇u,∇w) +

(
‖∇u1‖2γ∇u,∇w

)
+
((

‖∇u1‖2γ − ‖∇u2‖2γ
)
∇u2,∇w

)

−
∫ t

0
h(t − τ)(∇u(τ),∇w)dτ + β1(θ,w) +

(∇u′,∇w)

+
(
|u1(t)|ρ−2u1(t) − |u2(t)|ρ−2u2(t), w

)
= 0,

(4.1)

(
θ′, w

)
+ (∇θ,∇w) + β2

(
u′, w

)
= 0 ∀w ∈ H1

0(Ω),

u(0) = u′(0) = θ(0) = 0.
(4.2)

Takingw = u′ in (4.1) andw = θ in (4.2), respectively, and adding the results, we have

1
2
d

dt

[∥∥u′(t)∥∥2 + ‖θ(t)‖2 + ‖∇u(t)‖2 + ‖∇u1(t)‖2γ‖∇u(t)‖2
]
+
∥∥∇u′(t)∥∥2 + ‖∇θ(t)‖2

≤
((

‖∇u2(t)‖2γ − ‖∇u1(t)‖2γ
)
∇u2(t),∇u′(t)

)

−
(
|u1(t)|ρ−2u1(t) − |u2(t)|ρ−2u2(t), u′(t)

)
+
1
2
‖∇u(t)‖2 d

dt
‖∇u1(t)‖2γ

+
(
β1 + β2

)∣∣(θ(t), u′(t))∣∣ +
∫ t

0
h(t − τ)(∇u(τ),∇u′(t))dτ.

(4.3)
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Noticing that

∫ t

0
h(t − τ)(∇u(τ),∇u′(t))dτ

= −h(0)‖∇u(t)‖2 −
∫ t

0
h′(t − τ)(∇u(τ),∇u(t))dτ +

d

dt

(∫ t

0
h(t − τ)(∇u(τ),∇u(t))dτ

)
,

(4.4)

hence, using assumption (2.2) and integrating (4.3) over (0, t), we get

1
2

[∥∥u′(t)∥∥2 + ‖θ(t)‖2 + ‖∇u(t)‖2 + ‖∇u1(t)‖2γ‖∇u(t)‖2
]

+ h(0)
∫ t

0
‖∇u(τ)‖2dτ +

∫ t

0

∥∥∇u′(τ)∥∥2
dτ +

∫ t

0
‖∇θ(τ)‖2dτ

≤
∫ t

0

∣∣∣‖∇u1(τ)‖2γ − ‖∇u2(τ)‖2γ
∣∣∣‖∇u2(τ)‖

∥∥∇u′(τ)∥∥dτ

+
∫ t

0

∥∥∥|u1(τ)|ρ−2u1(τ) − |u2(τ)|ρ−2u2(τ)
∥∥∥
∥∥u′(τ)∥∥dτ

+
∫ t

0

(
β1 + β2

)∣∣(θ(τ), u′(τ))∣∣dτ +
1
2

∫ t

0
‖∇u(τ)‖2 d

dτ
‖∇u1(τ)‖2γdτ

+ c1

∫ t

0
h(t − τ)|(∇u(τ),∇u(t))|dτ.

(4.5)

Notice that

c1

∫ t

0
h(t − τ)|(∇u(τ),∇u(t))|dτ ≤ c2

(
η
)∫ t

0
‖∇u(τ)‖2dτ + η‖∇u(t)‖2, (4.6)

where η > 0 is arbitrary:

∣∣∣‖∇u1(τ)‖2γ − ‖∇u2(τ)‖2γ
∣∣∣ ≤ c3

(
‖∇u1(τ)‖2γ−1 + ‖∇u2(τ)‖2γ−1

)
‖∇u(τ)‖,

d

dτ
‖∇u1(τ)‖2γ ≤ c4‖∇u1(τ)‖2γ−1

∥∥∇u′1(τ)
∥∥.

(4.7)

Moreover, by mean value theorem and assumption (2), we have

∥∥∥|u1(τ)|ρ−2u1(τ) − |u2(τ)|ρ−2u2(τ)
∥∥∥ ≤ c5

(
‖∇u1(τ)‖ρ−2 + ‖∇u2(τ)‖ρ−2

)
‖∇u(τ)‖. (4.8)
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Therefore, by (4.6)–(4.8), Cauchy inequality, Young’s inequality, and using Gronwall’s lemma
in (4.5), we get

∥∥u′(t)∥∥2 + ‖θ(t)‖2 + ‖∇u(t)‖2 +
∫T

0

∥∥∇u′(τ)∥∥2
dτ +

∫T

0
‖∇θ(τ)‖2dτ = 0. (4.9)

Thus, we have proved the uniqueness consequence.

5. Asymptotic Behavior of the Solution

In this section, we follow the additional assumptions appeared in Theorem 2.1. We introduce
the energy

e(t) :=
1
2

(∥∥u′(t)∥∥2 + ‖θ(t)‖2 +
(
1 −

∫ t

0
h(s)ds

)
‖∇u(t)‖2

+(h�∇u)(t) + 1
γ + 1

‖∇u(t)‖2(γ+1) + 2
ρ
‖u(t)‖ρρ

)
,

(5.1)

where we define

(
h�y

)
(t) =

∫ t

0
h(t − τ)∥∥y(t) − y(τ)∥∥2

2dτ. (5.2)

Remark 5.1. Taking w = u′(t) in (2.6) and w = θ(t) in (2.7), respectively, then adding the
results we have

1
2
d

dt

(∥∥u′(t)∥∥2 + ‖θ(t)‖2 + ‖∇u(t)‖2 + 1
γ + 1

‖∇u(t)‖2(γ+1) + 2
ρ
‖u(t)‖ρρ

)

+
∥∥∇u′(t)∥∥2 + ‖∇θ(t)‖2 + (

β1 + β2
)(
θ(t), u′(t)

)

=
∫ t

0
h(t − τ)(∇u(τ),∇u′(t))dτ.

(5.3)

Noticing

∫ t

0
h(t − τ)(∇u(τ),∇u′(t))dτ

=
1
2
(
h′�∇u)(t) − 1

2
(h�∇u)′(t) + 1

2

(∫ t

0
h(s)ds‖∇u(t)‖2

)′
− 1
2
h(t)‖∇u(t)‖2,

(5.4)
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and combining the assumptions on β1, β2 appeared in Theorem 2.1, we deduce

e′(t) ≤ −M1
∥∥∇u′(t)∥∥2 −M1‖∇θ(t)‖2 + 1

2
(
h′�∇u)(t) − 1

2
h(t)‖∇u(t)‖2

≤ −M1
∥∥∇u′(t)∥∥2 −M1‖∇θ(t)‖2 − ξ2

2
(h�∇u)(t)

≤ 0,

(5.5)

where we denote M1 = 1 − (β1 + β2)(μ2/2) ≥ 0. Thus, we have the energy e(t) is uniformly
bounded (by e(0)) and is decreasing in t.

Remark 5.2. Furthermore, from the assumption (1), we have

E(t) ≤ 1
2

(∥∥u′(t)∥∥2 + ‖θ(t)‖2 + 1
l

(
1 −

∫ t

0
h(s)ds

)
‖∇u(t)‖2 + 1

γ + 1
‖∇u(t)‖2(γ+1) + 2

ρ
‖u(t)‖ρρ

)

≤ l−1e(t).
(5.6)

For every ε > 0, we define the perturbed energy by setting

eε(t) = e(t) + εψ(t), where ψ(t) = (u′(t), u(t)). (5.7)

Lemma 5.3. There existsM2 > 0 such that

|eε(t) − e(t)| ≤ εM2e(t), ∀t ≥ 0. (5.8)

Proof. From (5.7), we obtain

∣∣ψ(t)∣∣ ≤ μ∥∥u′(t)∥∥‖∇u(t)‖

≤ μ

2
∥∥u′(t)∥∥2 +

μ

2
‖∇u(t)‖2

≤ μ

l
e(t),

(5.9)

hence we have

|eε(t) − e(t)| ≤ εM2e(t), ∀t ≥ 0, (5.10)

whereM2 = μ/l.
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Lemma 5.4. There existsM3 > 0 and ε such that for ε ∈ (0, ε],

e′ε(t) ≤ −εM3e(t). (5.11)

Proof. By using the problem (1.1), we obtain

ψ ′(t) =
∥∥u′(t)∥∥2 +

(
u′′(t), u(t)

)

=
∥∥u′(t)∥∥2 − ‖∇u(t)‖2 − ‖∇u(t)‖2γ+2 +

∫ t

0
h(t − τ)(∇u(τ),∇u(t))dτ

− (∇u′(t),∇u(t)) − β1(θ(t), u(t)) −
(
|u|ρ−2u, u

)
.

(5.12)

Notice that

∫ t

0
h(t − τ)(∇u(τ),∇u(t))dτ

=
∫ t

0
h(t − τ)(∇u(τ) − ∇u(t),∇u(t))dτ + ‖∇u(t)‖2

∫ t

0
h(t − τ)dτ

≤ 1
4η

∫ t

0
h(t − τ)‖∇u(τ) − ∇u(t)‖2dτ +

(
1 + η

)‖∇u(t)‖2
∫ t

0
h(t − τ)dτ

=
1
4η

(h�∇u)(t) + (
1 + η

)‖∇u(t)‖2
∫ t

0
h(t − τ)dτ

≤ 1
4η

(h∇u)(t) + (
1 + η

)
(1 − l)‖∇u(t)‖2,

(5.13)

β1(θ(t), u(t)) ≤
β1μ

2

2
‖∇θ(t)‖2 + β1μ

2

2
‖∇u(t)‖2, (5.14)

(∇u′(t),∇u(t)) ≤ η‖∇u(t)‖2 + 1
4η

‖∇u′(t)‖2, (5.15)

where η > 0 is arbitrary.
Hence, from (5.12)–(5.15), we have

ψ ′(t) ≤ ∥∥u′(t)∥∥2 +

(
−l + η(2 − l) + β1μ

2

2

)
‖∇u(t)‖2 − ‖∇u(t)‖2γ+2

+
1
4η

(h�∇u)(t) + 1
4η

∥∥∇u′(t)∥∥2 +
β1μ

2

2
‖∇θ(t)‖2 − ‖u(t)‖ρρ.

(5.16)
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Therefore, from (5.5) and (5.16), we get

e′ε(t) = e′(t) + εψ ′(t)

≤ −M1
∥∥∇u′(t)∥∥2 −M1‖∇θ(t)‖2 − ξ2

2
(h�∇u)(t)

+ εμ2∥∥∇u′(t)∥∥2 + ε

(
−l + η(2 − l) + β1μ

2

2

)
‖∇u(t)‖2 − ε‖∇u(t)‖2γ+2

+
ε

4η
(h�∇u)(t) + ε

4η
∥∥∇u′(t)∥∥2 +

εβ1μ
2

2
‖∇θ(t)‖2 − ε‖u(t)‖ρρ

≤ −
(
M1 − εμ2 − ε

4η

)∥∥∇u′(t)∥∥2 −
(
M1 −

εβ1μ
2

2

)
‖∇θ(t)‖2

−
(
ξ2
2
− ε

4η

)
(h�∇u)(t) − ε

(
l − η(2 − l) − β1μ

2

2

)
‖∇u(t)‖2

− ε‖∇u(t)‖2γ+2 − ε‖u(t)‖ρρ.

(5.17)

Taking β1 and η small enough, we have l − η(2 − l) − β1μ2/2 ≥ 0. Moreover if we denote

ε̃ = min
{

M1

μ2 + 1/4η
,
2M1

β1μ2
, 2ηξ2

}
, (5.18)

and choosing ε ∈ (0, ε̃],we obtain

e′ε(t) ≤ −εM3e(t) (5.19)

for some constantM3 > 0.

Proof of Decay

Let us define ε̂ = min{1/2M2, ε̃} and consider ε ∈ (0, ε̂ ]. From Lemma 5.3, we have

(1 −M2ε)e(t) ≤ eε(t) ≤ (1 +M2ε)e(t) , (5.20)

and so

1
2
e(t) ≤ eε(t) ≤ 3

2
e(t). (5.21)

From (5.21), we get

−εM3e(t) ≤ −ε2
3
M3eε(t). (5.22)
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Hence from (5.22) and Lemma 5.4, we obtain

e′ε(t) ≤ −ε2
3
M3eε(t). (5.23)

that is,

d

dt

(
eε(t) exp

{
2ε
3
M3t

})
≤ 0. (5.24)

Integrating last inequality over [0,t], we get

eε(t) ≤ eε(0) exp
{
−2ε
3
M3t

}
. (5.25)

From (5.21) and (5.25), we have

e(t) ≤ 3e(0) exp
{
−2ε
3
M3t

}
. (5.26)

Hence, from (5.6) and (5.26), we obtain

E(t) ≤ l−1e(t) ≤ 3e(0)l−1 exp
{
−2ε
3
M3t

}
, t ≥ t0, ∀ε ∈ (0, ε̂], (5.27)

that is,

E(t) ≤ C exp(−ξt), ∀t ≥ t0, (5.28)

where C = 3e(0)l−1 and ξ = (2ε/3)M3.
Therefore, we have proved the exponential decay of solution.
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