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1. Introduction

The nonlinear Schrodinger (NLS) equation is the principal equation to be analyzed and
solved in many fields, see [1–5], for examples. In the last two decades, there are a lot of
NLS problems depending on additive or multiplicative noise in the random case [6, 7] or a
lot of solution methodologies in the deterministic case.

Wang et al. [8] obtained the exact solutions to NLS using what they called the
subequation method. They got four kinds of exact solutions of

i
∂u

∂t
+

1
2
∂2u

∂x2
+ α|u|pu + β|u|2pu = 0, (1.1)

for which no sign to the initial or boundary conditions type is made. Xu and Zhang [9]
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followed the same previous technique in solving the higher-order NLS:

i
∂u

∂x
− 1

2
α
∂2u

∂t2
+ β|u|2u + iε

∂3u

∂t3
+ iδ|u|2 ∂u

∂t
+ iγu2 ∂u

∗

∂t
= 0. (1.2)

Sweilam [10] solved

i
∂u

∂t
+
∂2u

∂x2
+ q|u|2u = 0, t > 0, L0 < x < L1, (1.3)

with initial condition u(x, 0) = g(x) and boundary conditions ux(L0, t) = ux(L1, t) = 0, which
gives rise to solitary solutions using variational iteration method. Zhu [11] used the extended
hyperbolic auxiliary equation method in getting the exact explicit solutions to the higher-
order NLS:

iqz −
β1

2
qtt + γ1

∣
∣q
∣
∣

2
q = i

β2

6
qttt +

β3

24
qtttt − γ2

∣
∣q
∣
∣

4
q, (1.4)

without any conditions. Sun et al. [12] solved the NLS:

i
∂ψ

∂t
+
∂2ψ

∂x2
+ a

∣
∣ψ

∣
∣

2
ψ = 0, (1.5)

with the initial condition ψ(x, 0) = ψ0(x) using Lie group method. By using coupled
amplitude phase formulation, Porsezian and Kalithasan [13] constructed the quartic
anharmonic oscillator equation from the coupled higher-order NLS. Two-dimensional grey
solitons to the NLS were numerically analyzed by Sakaguchi and Higashiuchi [14]. The
generalized derivative NLS was studied by Huang et al. [15] introducing a new auxiliary
equation expansion method. Abou Salem and Sulem [16] studied the effective dynamics
of solitons for the generalized Schrodinger equation in a random potential. El-Tawil [17]
considered a nonlinear Schrodinger equation with random complex input and complex initial
conditions. Colin et al. [18] considered three components of nonlinear Schrodinger equations
related to the Raman amplification in a plasma. In [19], Jia-Min and Yu-Lu constructed an
appropriate transformations and an extended elliptic subequation approach to find some
exact solutions for variable coefficient cubic-quintic nonlinear Schrodinger equation with an
external potential.

In this paper, a straight forward solution algorithm is introduced using the
transformation from a complex solution to a coupled equations in two real solutions,
eliminating one of the solutions to get separate independent and higher-order equations, and
finally introducing a perturbative approximate solution to the system.

2. The Linear Case

Consider the nonhomogeneous linear Schrodinger equation:

i
∂u(t, z)
∂z

+ α
∂2u(t, z)
∂t2

= F1(t, z) + i F2(t, z), (t, z) ∈ (0, T) × (0,∞), (2.1)
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where u(t, z) is a complex valued function which is subjected to

I.C. : u(t, 0) = f1(t) + if2(t), a complex valued function,

B.C. : uz(0, z) = 0, uz(T, z) = 0.
(2.2)

Let u(t, z) = ψ(t, z) + iφ(t, z), ψ, φ: real valued functions. Substituting (2.2) in (2.1), the
following coupled equations are got as follows:

∂φ(t, z)
∂z

= α
∂2ψ(t, z)
∂t2

+G1(t, z),

∂ψ(t, z)
∂z

= α
∂2φ(t, z)
∂t2

+G2(t, z),

(2.3)

where ψ(t, 0) = f1(t), φ(t, 0) = f2(t), G1(t, z) = −F1(t, z), G2(t, z) = F2(t, z), and all
corresponding other I.C. and B.C. are zeros.

Eliminating one of the variables in (2.3), one can get the following independent
equations:

∂4ψ(t, z)
∂t4

+
1
α2

∂2ψ(t, z)
∂z2

=
1
α2
ψ̃1(t, z),

∂4φ(t, z)
∂t4

+
1
α2

∂2φ(t, z)
∂z2

=
1
α2
ψ̃2(t, z),

(2.4)

where

ψ̃1(t, z) =
∂G2

∂z
− α∂

2G1

∂t2
,

ψ̃2(t, z) = α
∂G2

∂t2
+
∂G1

∂z
.

(2.5)

Using the eigenfunction expansion technique [20], the following solutions for (2.4) are
obtained:

ψ(t, z) =
∞∑

n=0

Tn(z) sin
(nπ

T

)

t,

φ(t, z) =
∞∑

n=0

τn(z) sin
(nπ

T

)

t,

(2.6)

where Tn(z) and τn(z) can be got through the applications of initial conditions and then
solving the resultant second-order differential equations using the method of the variational
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parameter [21]. The final expressions can be got as follows

Tn(z) = (C1 +A1(z)) sin βnz + (C2 + B1(z)) cos βnz,

τn(z) = (C3 +A2(z)) sin βnz + (C4 + B2(z)) cos βnz,
(2.7)

where

βn = α
(nπ

T

)2
,

A1(z) =
1
βn

∫

ψ̃1n(z;n) cos
(

βn
)

zdz,

B1(z) =
−1
βn

∫

ψ̃1n(z;n) sin
(

βn
)

zdz,

A2(z) =
1
βn

∫

ψ̃2n(z;n) cos
(

βn
)

zdz,

B2(z) =
−1
βn

∫

ψ̃2n(z;n) sin
(

βn
)

zdz,

(2.8)

in which

ψ̃1n(z;n) =
2
T

∫T

0
ψ̃1(t, z) sin

(nπ

T
t
)

dt,

ψ̃2n(z;n) =
2
T

∫T

0
ψ̃2(t, z) sin

(nπ

T
t
)

dt.

(2.9)

The following conditions should also be satisfied:

C2 =
2
T

∫T

0
f1(t) sin

(nπ

T

)

dt − B1(0),

C4 =
2
T

∫T

0
f2(t) sin

(nπ

T

)

dt − B2(0).

(2.10)

Finally, the following solution is obtained:

u(t, z) =
(

ψ(t, z) + iφ(t, z)
)

, (2.11)

or

|u(t, z)|2 =
(

ψ2(t, z) + φ2(t, z)
)

. (2.12)
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Figure 1: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).
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Figure 2: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

3. The Nonlinear Case

Consider the homogeneous nonlinear Schrodinger equation:

i
∂u(t, z)
∂z

+ α
∂2u(t, z)
∂t2

+ ε|u(t, z)|2u(t, z) + iγu(t, z) = F1(t, z) + iF2(t, z),

(t, z) ∈ (0, T) × (0,∞),

(3.1)

where u(t, z) is a complex-valued function which is subjected to the initial and boundary
conditions (2.2).
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Figure 3: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).
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Figure 4: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

Lemma 3.1. The solution of (3.1) with the constraints (2.2) is a power series in ε if the solution
exists.

Proof. At ε = 0, the following linear equation is got:

i
∂u(t, z)
∂z

+ α
∂2u(t, z)
∂t2

+ iγu(t, z) = F(t, z), (t, z) ∈ (0, T) × (0,∞), (3.2)
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Figure 5: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).
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Figure 6: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

which has the solution, see the previous section,

u0(t, z) = e−γz(w0(t, z) + iv0(t, z)). (3.3)
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Figure 7: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

2 4 6 8 10

1

2

3

4

5

6

|u
(0
) |

t

z = 0
z = 2

z = 5
z = 10

Figure 8: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

Following Pickard approximation, (3.13) can be rewritten as

i
∂un(t, z)

∂z
+ α

∂2un(t, z)
∂t2

+ iγun(t, z) = F(t, z) − ε|un−1(t, z)|2un−1(t, z), n ≥ 1. (3.4)

At n = 1, the iterative equation takes the following form:

i
∂u1(t, z)

∂z
+ α

∂2u1(t, z)
∂t2

+ iγu1(t, z) = F(t, z) − ε|u0(t, z)|2u0(t, z) = F(t, z) + εh1(t, z), (3.5)
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Figure 9: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

which can be solved as a linear case with zero initial and boundary conditions. The following
general solution can be obtained:

w1(t, z) =
∞∑

n=0
(T0n + εT1n) sin

(nπ

T

)

t,

v1(t, z) =
∞∑

n=0
(τ0n + ετ1n) sin

(nπ

T

)

t,

u1(t, z) = e−γz(w1(t, z) + iv1(t, z))

= u(0)1 + εu(1)1 .

(3.6)

At n = 2, the following equation is obtained:

i
∂u2(t, z)

∂z
+ α

∂2u2(t, z)
∂t2

+ iγu2(t, z) = F(t, z) − ε|u1(t, z)|2u1(t, z) = F(t, z) + εh2(t, z), (3.7)

which can be solved as a linear case with zero initial and boundary conditions. The following
general solution can be obtained:

u2(t, z) = u
(0)
2 + εu(1)2 + ε2u

(2)
2 + ε3u

(3)
2 + ε4u

(4)
2 . (3.8)

Continuing like this, one can get

un(t, z) = u
(0)
n + εu(1)n + ε2u

(2)
n + ε3u

(3)
n + · · · + ε(n+m)u

(n+m)
n . (3.9)
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Figure 10: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

As n → ∞, the solution (if exists) can be reached as u(t, z) = limn→∞un(t, z). Accordingly,
the solution is a power series in ε.

According to the previous lemma, one can assume the solution of (3.1) as the
following:

u(t, z) =
∞∑

n=0

εnun. (3.10)

Let u(t, z) = ψ(t, z) + iφ(t, z), ψ, φ: real valued functions. The following coupled equations are
got:

∂φ(t, z)
∂z

= α
∂2ψ(t, z)
∂t2

+ ε
(

ψ2 + φ2
)

ψ − γφ − F1,

∂ψ(t, z)
∂z

= −α
∂2φ(t, z)
∂t2

− ε
(

ψ2 + φ2
)

φ − γψ + F2,

(3.11)

where ψ(t, 0) = f1(t), φ(t, 0) = f2(t), and all corresponding other I.C. and B.C. are zeros.
As a perturbation solution, one can assume that

ψ(t, z) = ψ0 + εψ1 + ε2ψ2 + · · · ,

φ(t, z) = φ0 + εφ1 + ε2φ2 + · · · ,
(3.12)

where ψ0(t, 0) = f1(t), φ0(t, 0) = f2(t), k and all corresponding other I.C. and B.C. are zeros.
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Substituting (3.12) into (3.11) and then equating the equal powers of ε, one can get the
following set of coupled equations:

∂φ0(t, z)
∂z

= α
∂2ψ0(t, z)

∂t2
− γφ0 − F1, (3.13)

∂ψ0(t, z)
∂z

= −α
∂2φ0(t, z)

∂t2
− γψ0 + F2, (3.14)

∂φ1(t, z)
∂z

= α
∂2ψ1(t, z)

∂t2
− γφ1 +

(

ψ3
0 + ψ0φ

2
0

)

, (3.15)

∂ψ1(t, z)
∂z

= −α
∂2φ1(t, z)

∂t2
− γψ1 −

(

φ3
0 + φ0ψ

2
0

)

, (3.16)

∂φ2(t, z)
∂z

= α
∂2ψ2(t, z)

∂t2
− γφ2 +

(

3ψ2
0ψ1 + 2ψ0φ0φ1 + ψ1φ

2
0

)

, (3.17)

∂ψ2(t, z)
∂z

= −α
∂2φ2(t, z)

∂t2
− γψ2 −

(

3φ2
0φ1 + 2φ0ψ0ψ1 + φ1ψ

2
0

)

, (3.18)

and so on. The prototype equations to be solved are

∂φi(t, z)
∂z

= α
∂2ψi(t, z)

∂t2
− γφi +G(1)

i , i ≥ 1,

∂ψi(t, z)
∂z

= −α
∂2φi(t, z)

∂t2
− γψi +G(2)

i , i ≥ 1,

(3.19)

where ψi(t, 0) = δi,0f1(t), φi(t, 0) = δi,0f2(t) and all other corresponding conditions are zeros.
The nonhomogeneity functions G(1)

i and G
(2)
i are functions computed from previous steps.

Following the solution algorithm described in the previous section for the linear case,
the general symbolic algorithm in Figure 39 can be simulated through the use of a symbolic
package, mathematica-5 is used in this paper.

3.1. The Zero-Order Approximation

In this case,

u(0)(t, z) =
(

ψ0 + iφ0
)

, (3.20)
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Figure 11: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

|u
(0
) |

z

t = 2
t = 3

t = 4
t = 5

Figure 12: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

where

ψ0(t, z) = e−γz
∞∑

n=0

T0n sin
(nπ

T

)

t,

φ0(t, z) = e−γz
∞∑

n=0

τ0n sin
(nπ

T

)

t,

(3.21)



Differential Equations and Nonlinear Mechanics 13

0
2

4
6

8
10 0

2

4

6

8

10

0
1
2
3
4
5

|u
(0
) |

t

z

Figure 13: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).
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Figure 14: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

in which

T0n(z) = A01(z) sin βnz + (C02 + B01(z)) cos βnz,

τ0n(z) = A02(z) sin βnz +
(

C̃02 + B02(z)
)

cos βnz,
(3.22)

where the constants and variables A01(z), C02, B01(z), A02(z), C̃02, and B02(z) can be got by
the aid of Section 2.
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Figure 15: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).
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Figure 16: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

The absolute value of the zero-order approximation is got from

∣
∣
∣u(0)(t, z)

∣
∣
∣

2
= ψ0

2 + φ0
2. (3.23)

3.2. The First-Order Approximation

u(1)(t, z) = u(0) + ε
(

ψ1 + iφ1
)

, (3.24)



Differential Equations and Nonlinear Mechanics 15

2 4 6 8 10

0.5

1

1.5

2

|u
(0
) |

t

z = 0
z = 1

z = 2
z = 4

Figure 17: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

where

ψ1(t, z) = e−γz
∞∑

n=0

T1n(z) sin
(nπ

T

)

t,

φ1(t, z) = e−γz
∞∑

n=0

τ1n(z) sin
(nπ

T

)

t,

(3.25)

in which

T1n(z) = A11(z) sin βnz + (C12 + B11(z)) cos βnz,

τ1n(z) = A12(z) sin βnz +
(

C̃12 + B12(z)
)

cos βnz,
(3.26)

where the constants and variables A11(z), B11(z), A12(z), and B12(z) can be evaluated in a
similar manner as the zero-order approximation whereas C̃12 = −B12(0) and C12 = −B11(0).

The absolute value of the first-order approximation can be got using

∣
∣
∣u(1)(t, z)

∣
∣
∣

2
=
∣
∣
∣u(0)(t, z)

∣
∣
∣

2
+ 2ε

(

ψ0ψ1 + φ0φ1
)

+ ε2
(

ψ1
2 + φ1

2
)

. (3.27)

3.3. The Second-Order Approximation

u(2)(t, z) = u(1)(t, z) + ε2(ψ2 + iφ2
)

, (3.28)
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Figure 18: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).
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Figure 19: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

where

ψ2(t, z) = e−γz
∞∑

n=0

T2n(z) sin
(nπ

T

)

t,

φ2(t, z) = e−γz
∞∑

n=0

τ2n(z) sin
(nπ

T

)

t,

(3.29)
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Figure 20: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).
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Figure 21: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

in which

T2n(z) = A21(z) sin βnz + (C22 + B21(z)) cos βnz,

τ2n(z) = A22(z) sin βnz +
(

C̃22 + B22(z)
)

cos βnz,
(3.30)
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Figure 22: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).
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Figure 23: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).

where the constants and variables A21(z), C22, B21(z), A22(z), C̃22, and B22(z) can be
evaluated similarly as the previous approximation.

The absolute value of the second-order approximation can be got using

∣
∣
∣u(2)(t, z)

∣
∣
∣

2
=
∣
∣
∣u(1)(t, z)

∣
∣
∣

2
+ 2ε2(ψ0ψ2 + φ0φ2

)

+ 2ε3(ψ1ψ2 + φ1φ2
)

+ ε4
(

ψ2
2 + φ2

2
)

. (3.31)

4. Case Studies

To examine the proposed solution algorithm, see Figure 39, some case studies are illustrated.
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Figure 24: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).
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Figure 25: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

4.1. One Input Is On

Case Study 1

Taking f1(t) = 0, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 0, and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 1, 2, and 3.

Case Study 2

Taking f1(t) = 0, f2(t) = 0, F1(t, z) = 0, F2(t, z) = 1 and following the solution algorithm, it
has been noticed that the same results for the case study 1 are got.
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Figure 26: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).
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Figure 27: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

Case Study 3

Taking f1(t) = 1, f2(t) = 0, F1(t, z) = 0, F2(t, z) = 0 and following the solution algorithm, the
selective results for the first-zero approximation are got in Figures 4, 5, and 6.

One can notice the decrease of the solution level and its higher variability.
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Figure 28: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 02 with considering only one term in
the series (M = 1).

Case Study 4

Taking f1(t) = 0, f2(t) = 1, F1(t, z) = 0, F2(t, z) = 0 and following the solution algorithm, it
has been noticed that the same results for the case study 3 are got:

4.2. Two Inputs Are On

Case Study 5

Taking f1(t) = 0, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 1 and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 7, 8, and 9.

One can notice that the solution level becomes a little bit higher than that of case
study 2.

Case Study 6

Taking f1(t) = 1, f2(t) = 1, F1(t, z) = 0, F2(t, z) = 0 and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 10, 11, and 12.

One can notice the little increase of the solution level than that of case studies 3 and 4.

Case Study 7

Taking f1(t) = 1, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 0 and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 13, 14, and 15.

One can notice the small perturbations at small values of z.
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Figure 29: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of z, considering
only one term in the series (M = 1).
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Figure 30: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 02 for different values of t, considering
only one term in the series (M = 1).

4.3. Three Inputs Are On

Case Study 8

Taking f1(t) = 1, f2(t) = 1, F1(t, z) = 1, F2(t, z) = 0 and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 16, 17, and 18.

One can notice the increase of the depth of the perturbations.
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Figure 31: The zero-order approximation of |u(0)| at α = 1, T = 10, γ = 0 with considering only one term in
the series (M = 1).
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Figure 32: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 0 for different values of z, considering
only one term in the series (M = 1).

Case Study 9

Taking f1(t) = 1, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 1 and following the solution algorithm, the
selective results for the zero-order approximation are got in Figures 19, 20, and 21.

One can notice that the perturbations become smaller than that of case study 8.
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Figure 33: The zero-order approximation |u(0)| at α = 1, T = 10, γ = 0 for different values of t, considering
only one term in the series (M = 1).
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Figure 34: The first-order approximation of |u(1)| at α = 1, T = 10, γ = 0, ε = 01 with considering only one
term in the series (M = 1).

4.4. Four Inputs Are On

Case Study 10

Taking the case of f1(t) = 1, f2(t) = 1, F1 = 1, F2 = 1, the following final results for the
zero-order approximation are obtained in Figures 22, 23, and 24.

One can notice the little increase in the solution level.
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Figure 35: The first-order approximation of |u(1)| at α = 1, T = 10, γ = 0, ε = 05 with considering only one
term in the series (M = 1).

0
2

4
6

8
10 0

2

4

6

8

10

0
2
4
6
8

|u
(1
) |

t

z

Figure 36: The first-order approximation of |u(1)| at α = 1, T = 10, γ = 0, ε = 1 with considering only one
term in the series (M = 1).

4.5. Exponential Nonhomogeneity

Case Study 11

Taking the case of f1(t) = 1, f2(t) = 0, F1(t, z) = e−t, F2(t, z) = 0, the following final results for
the zero-order approximation are obtained in Figures 25, 26, and 27.

One can notice the low solution level and high perturbations.
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Figure 37: The first-order approximation |u(1)| at α = 1, T = 10, γ = 0, ε = 05 for different values of z,
considering only one term in the series (M = 1).

2 4 6 8 10

1

2

3

4

5

|u
(0
) |

z

t = 2
t = 3

t = 4
t = 5

Figure 38: The first-order approximation |u(1)| at α = 1, T = 10, γ = 0, ε = 05 for different values of t,
considering only one term in the series (M = 1).

4.6. Exponential Initial Condition

Case Study 12

Taking the case of f1(t) = e−t, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 0, the following final results for
the zero-order approximation are obtained in Figures 28, 29, and 30.
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The original equation

i
∂u(t, z)
∂z

+ α
∂2u(t, z)
∂t2

+ ε |u(t, z)|2 u(t, z) + iγu(t, z)

= F1(t, z) + iF2(t, z)

u(t, z) = ψ(t, z) + iφ(t, z)

Coupled non-liner equations

∂φ(t, z)
∂z

= α
∂2ψ(t, z)
∂t2

+ ε(ψ2 + φ2)ψ − γφ − F1,

∂ψ(t, z)
∂z

= −α
∂2φ(t, z)
∂t2

− ε(ψ2 + φ2)φ − γψ + F2,

Perturbation solution
ψ(t, z) = ψ0 + εψ1 + ε2ψ2 + · · ·

φ(t, z) = φ0 + εφ1 + ε2φ2 + · · ·

Set of coupled linear equations

∂φi(t, z)
∂z

= α
∂2ψi(t, z)

∂t2
+G(1)

i , i ≥ 1, ψi(t, 0) = δi,0f1(t),

∂ψi(t, z)
∂z

= −α
∂2φi(t, z)

∂t2
G

(2)
i , i ≥ 1, φi(t, 0) = δi,0f2(t).

The ith order approximation

u(i) = u(i−1) + εi(ψi + φi), i ≥ 1,

u(0) = ψ0 + φ0.

Figure 39: The general solution algorithm.

One can notice that a higher solution level is got compared with case study 11 and less
perturbations are got at small values of z.

4.7. First-Order Approximation

Case Study 13

Taking the case of f1(t) = 1, f2(t) = 0, F1(t, z) = 1, F2(t, z) = 0, the following final results for
the zero and first-order approximations are obtained in Figures 31–38.

One can notice the oscillations of the solution level compared with case 7.
One can notice that the solution level increases with the increase of ε.
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5. Conclusions

The perturbation technique introduces an approximate solution to the NLS equation with a
perturbative nonlinear term for a finite time interval. Using mathematica, the difficult and
huge computations problems were fronted to some extent for limited series terms. To get
more improved orders, it is expected to face a problem of computation. With respect to
the solution level, the effect of the nonhomogeneity is higher than the effect of the initial
condition. The initial conditions also cause perturbations for the solution at small values of
the space variable. The solution level increases with the increase of ε.
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