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We discuss the existence of solutions for a nonlinear antiperiodic boundary value problem of
integrodifferential equations of fractional order q ∈ (1, 2]. The contraction mapping principle and
Krasnoselskii’s fixed point theorem are applied to establish the results.

1. Introduction

Recently, the subject of fractional differential equations has emerged as an important area
of investigation. Fractional differential equations arise in many engineering and scientific
disciplines as the fractional derivatives describe numerous events and processes in the
fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer
rheology, and so forth. For some recent development on the subject, see [1–15] and the
references therein.

Integrodifferential equations arise inmany engineering and scientific disciplines, often
as approximation to partial differential equations, which represent much of the continuum
phenomena. Many forms of these equations are possible. For details, see [16–20] and the
references therein.

Antiperiodic boundary value problems have recently received considerable attention
as antiperiodic boundary conditions appear in numerous situations, for instance, see [21–25].

In this paper, we prove some existence and uniqueness results for the following
antiperiodic fractional boundary value problem:

cDqx(t) = f
(
t, x(t),

(
χx

)
(t)

)
, t ∈ [0, T], T > 0, 1 < q ≤ 2,

x(0) = −x(T), x′(0) = −x′(T),
(1.1)
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where cDq denotes the Caputo fractional derivative of order q, f : [0, T] × X × X → X, and
for γ : [0, T] × [0, T] → [0,∞),

(
χx

)
(t) =

∫ t

0
γ(t, s)x(s)ds, (1.2)

with γ0 = max{∫ t0γ(t, s)ds : (t, s) ∈ [0, T] × [0, T]}. Here, (X, ‖ · ‖) is a Banach space and
C = C([0, T], X) denotes the Banach space of all continuous functions from [0, T] → X
endowed with a topology of uniform convergence with the norm denoted by ‖ · ‖.

2. Preliminaries

First of all, we recall some basic definitions [26–28].

Definition 2.1. For a function g : [0,∞) → R, the Caputo derivative of fractional order q is
defined as

cDqg(t) =
1

Γ
(
n − q

)
∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.1)

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.2)

provided that the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a function g(t) is
defined by

Dqg(t) =
1

Γ
(
n − q

)
(

d

dt

)n∫ t

0

g(s)

(t − s)q−n+1
ds, n =

[
q
]
+ 1, (2.3)

provided that the right-hand side is pointwise defined on (0,∞).

Lemma 2.4 (see [8]). For q > 0, the general solution of the fractional differential equation cDqx(t) =
0 is given by

x(t) = c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).
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In view of Lemma 2.4, it follows that

Iq cDqx(t) = x(t) + c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.5)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).
Now, we state a known result due to Krasnoselskii [29] which is needed to prove the

existence of at least one solution of (1.1).

Theorem 2.5. Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be the
operators such that (i)Ax + By ∈ M whenever x, y ∈ M; (ii)A is compact and continuous; (iii)B is
a contraction mapping. Then there exists z ∈ M such that z = Az + Bz.

Lemma 2.6. For any ω ∈ C[0, T], the unique solution of the boundary value problem

cDqx(t) = ω(t), 0 < t < T, 1 < q ≤ 2,

x(0) = −x(T), x′(0) = −x′(T)
(2.6)

is given by

x(t) =
∫T

0
G(t, s)ω(s)ds, (2.7)

where G(t, s) is the Green’s function given by

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t − s)q−1 − (1/2)(T − s)q−1

Γ
(
q
) +

(T − 2t)(T − s)q−2

4Γ
(
q − 1

) , s ≤ t,

− (T − s)q−1

2Γ
(
q
) +

(T − 2t)(T − s)q−2

4Γ
(
q − 1

) , t ≤ s.

(2.8)

Proof. Using (2.5), for some constants b1, b2 ∈ R, we have

x(t) = Iqω(t) − b1 − b2t =
∫ t

0

(t − s)q−1

Γ
(
q
) ω(s)ds − b1 − b2t. (2.9)

In view of the relations cDqIqx(t) = x(t) and Iq Ipx(t) = Iq+px(t) for q, p > 0, x ∈ L(0, 1), we
obtain

x′(t) =
∫ t

0

(t − s)q−2

Γ
(
q − 1

) ω(s)ds − b2. (2.10)
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Applying the boundary conditions x(0) = −x(T), x′(0) = −x′(T),we find that

b1 =
1

2Γ
(
q
)
∫T

0
(T − s)q−1ω(s)ds − T

4Γ
(
q − 1

)
∫T

0
(T − s)q−2ω(s)ds,

b2 =
1

2Γ
(
q − 1

)
∫T

0
(T − s)q−2ω(s)ds.

(2.11)

Thus, the unique solution of (2.6) is

x(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) ω(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) ω(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) ω(s)ds

=
∫T

0
G(t, s)ω(s)ds,

(2.12)

where G(t, s) is given by (2.8). This completes the proof.

3. Main Results

To prove the main results, we need the following assumptions:

(A1) ‖f(t, x(t), (χx)(t)) − f(t, y(t), (χy)(t))‖ ≤ L1‖x − y‖ + L1‖χx − χy‖, for all t ∈ [0, T],
x, y ∈ X;

(A2) ‖f(t, x(t), (χx)(t))‖ ≤ μ(t), for all (t, x, χx) ∈ [0, T] ×X ×X and μ ∈ L1([0, T], R+).

Theorem 3.1. Let f : [0, T]×X×X → X be a jointly continuous function satisfying the assumption
(A1) with (L1 + γ0L1) ≤ Γ(q + 1)/Tq(3 + q/2). Then the antiperiodic boundary value problem (1.1)
has a unique solution.

Proof. Define Θ : C → C by

(Θx)(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f

(
s, x(s),

(
χx

)
(s)

)
ds

− 1
2

∫T

0

(T − s)q−1

Γ
(
q
) f

(
s, x(s),

(
χx

)
(s)

)
ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f
(
s, x(s),

(
χx

)
(s)

)
ds, t ∈ [0, T].

(3.1)
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Setting supt∈[0,T]‖f(t, 0, 0)‖ = M and choosing r ≥ (MTq/Γ(q + 1))(3 + q/2), we show that
ΘBr ⊂ Br,where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(Θx)(t)‖ ≤
∫ t

0

(t − s)q−1

Γ
(
q
)

∥
∥f

(
s, x(s),

(
χx

)
(s)

)∥∥ds

+
1
2

∫T

0

(T − s)q−1

Γ
(
q
)

∥∥f
(
s, x(s),

(
χx

)
(s)

)∥∥ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2

Γ
(
q − 1

)
∥
∥f

(
s, x(s),

(
χx

)
(s)

)∥∥ds

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

[∥∥f
(
s, x(s),

(
χx

)
(s)

) − f(s, 0, 0)
∥∥ +

∥∥f(s, 0, 0)
∥∥]ds

+
1
2

∫T

0

(T − s)q−1

Γ
(
q
)

[∥∥f
(
s, x(s),

(
χx

)
(s)

) − f(s, 0, 0)
∥∥ +

∥∥f(s, 0, 0)
∥∥]ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2

Γ
(
q − 1

)
[∥∥f

(
s, x(s),

(
χx

)
(s)

) − f(s, 0, 0)
∥∥ +

∥∥f(s, 0, 0)
∥∥]ds

≤
((

L1 + γ0L1

)
r +M

)[ 1
Γ
(
q
)
∫ t

0
(t − s)q−1ds +

1
2Γ

(
q
)
∫T

0
(T − s)q−1ds

+
1

4Γ
(
q − 1

) |T − 2t|
∫T

0
(T − s)q−2ds

]

≤
((

L1 + γ0L1

)
r +M

)[ Tq

2Γ
(
q + 1

)
(
3 +

q

2

)]

≤ r.

(3.2)

Now, for x, y ∈ C and for each t ∈ [0, T],we obtain

∥∥(Θx)(t) − (
Θy

)
(t)

∥∥ ≤
∫ t

0

(t − s)q−1

Γ
(
q
)

∥∥f
(
s, x(s),

(
χx

)
(s)

) − f
(
s, y(s),

(
χy

)
(s)

)∥∥ds

+
1
2

∫T

0

(T − s)q−1

Γ
(
q
)

∥∥f
(
s, x(s),

(
χx

)
(s)

) − f
(
s, y(s),

(
χy

)
(s)

)∥∥ds

+
1
4
|T − 2t|

∫T

0

(T − s)q−2

Γ
(
q − 1

)
∥∥f

(
s, x(s),

(
χx

)
(s)

) − f
(
s, y(s),

(
χy

)
(s)

)∥∥ds



6 International Journal of Differential Equations

≤
(
L1 + γ0L1

)∥
∥x − y

∥
∥
[

1
Γ
(
q
)
∫ t

0
(t − s)q−1ds +

1
2Γ

(
q
)
∫T

0
(T − s)q−1ds

+
1

4Γ
(
q − 1

) |T − 2t|
∫T

0
(T − s)q−2ds

]

≤

(
L1 + γ0L1

)
Tq

2Γ
(
q + 1

)
(
3 +

q

2

)∥
∥x − y

∥
∥

≤ ΛL1,L1,γ0,T,q

∥
∥x − y

∥
∥,

(3.3)

where ΛL1,L1,γ0,T,q
= ((L1 + γ0L1)Tq/2Γ(q+1))(3+q/2),which depends only on the parameters

involved in the problem. As ΛL1,L1,γ0,T,q
< 1, therefore Θ is a contraction. Thus, the conclusion

of the theorem follows by the contraction mapping principle (Banach fixed point theorem).

Theorem 3.2. Let f : [0, T] × X × X → X be a jointly continuous function mapping bounded
subsets of [0, 1] × X × X into relatively compact subsets of X, and the assumptions (A1)-(A2) hold
with ((L1 + γ0L1)Tq/2Γ(q + 1))(1 + q/2) < 1. Then the antiperiodic boundary value problem (1.1)
has at least one solution on [0, T].

Proof. Let us fix

r ≥
∥∥μ

∥∥
L1T

q

2Γ
(
q + 1

)
(
3 +

q

2

)
, (3.4)

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1f

(
s, x(s),

(
χx

)
(s)

)
ds,

(Ψx)(t) = −1
2

∫T

0

(T − s)q−1

Γ
(
q
) f

(
s, x(s),

(
χx

)
(s)

)
ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f
(
s, x(s),

(
χx

)
(s)

)
ds.

(3.5)

For x, y ∈ Br, we find that

∥∥Φx + Ψy
∥∥ ≤

∥∥μ
∥∥
L1
Tq

2Γ
(
q + 1

)
(
3 +

q

2

)
≤ r. (3.6)
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Thus, Φx + Ψy ∈ Br. It follows from the assumption (A1) that Ψ is a contraction mapping
for ((L1 + γ0L1)Tq/2Γ(q + 1))(1 + q/2) < 1. Continuity of f implies that the operator Φ is
continuous. Also, Φ is uniformly bounded on Br as

‖Φx‖ ≤
∥
∥μ

∥
∥
L1T

q

Γ
(
q + 1

) . (3.7)

Now we prove the compactness of the operator Φ. In view of (A1), we define
sup(t,x,χx)∈Ω‖f(t, x, (χx))‖ = fmax, Ω = [0, T] × Br × Br , and consequently we have

‖(Φx)(t1) − (Φx)(t2)‖ =

∥
∥
∥
∥
∥

1
Γ
(
q
)
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
f
(
s, x(s),

(
χx

)
(s)

)
ds

+
∫ t2

t1

(t2 − s)q−1f
(
s, x(s),

(
χx

)
(s)

)
ds

∥∥∥∥∥

≤ fmax

Γ
(
q + 1

)
∣∣∣2(t2 − t1)q + t

q

1 − t
q

2

∣∣∣,

(3.8)

which is independent of x. SoΦ is relatively compact on Br . Hence, by Arzela Ascoli theorem,
Φ is compact on Br. Thus all the assumptions of Theorem 2.5 are satisfied and the conclusion
of Theorem 2.5 implies that the antiperiodic boundary value problem (1.1) has at least one
solution on [0, T].

Example 3.3. Consider the following antiperiodic boundary value problem:

cDqx(t) =
1

(t + 4)2
‖x‖

1 + ‖x‖ +
∫ t

0

e−(s−t)

16
x(s)ds, t ∈ [0, 1], 1 < q ≤ 2,

x(0) = −x(1), x′(0) = −x′(1).

(3.9)

Here, f(t, x) = (1/(t + 4)2)(‖x‖/(1 + ‖x‖)), γ(t, s) = e−(s−t)/16, T = 1. Clearly,

∥∥f
(
t, x, χx

) − f
(
t, y, χy

)∥∥ ≤ 1
16

(∥∥x − y
∥∥ +

∥∥χx − χy
∥∥). (3.10)

So (A1) is satisfied with L1 = L1 = 1/16. Further

(
L1 + γ0L1

)
Tq

Γ
(
q + 1

)
(
3 +

q

2

)
< 1 ⇐⇒

(
3 + q/2

)

Γ
(
q + 1

) <
16
e
. (3.11)

Thus, by Theorem 3.1, the boundary value problem (3.9) has a unique solution on [0, 1].



8 International Journal of Differential Equations

References

[1] V. Daftardar-Gejji and S. Bhalekar, “Boundary value problems for multi-term fractional differential
equations,” Journal of Mathematical Analysis and Applications, vol. 345, no. 2, pp. 754–765, 2008.

[2] A. Yang and W. Ge, “Positive solutions for boundary value problems of N-dimension nonlinear
fractional differential system,” Boundary Value Problems, vol. 2008, Article ID 437453, 15 pages, 2008.

[3] S. Z. Rida, H. M. El-Sherbiny, and A. A. M. Arafa, “On the solution of the fractional nonlinear
Schrödinger equation,” Physics Letters A, vol. 372, no. 5, pp. 553–558, 2008.

[4] B. Ahmad, “Some existence results for boundary value problems of fractional semilinear evolution
equations,” Electronic Journal of Qualitative Theory of Differential Equations, no. 28, pp. 1–7, 2009.

[5] B. Ahmad and J. J. Nieto, “Existence of solutions for nonlocal boundary value problems of higher-
order nonlinear fractional differential equations,” Abstract and Applied Analysis, vol. 2009, Article ID
494720, 9 pages, 2009.

[6] B. Ahmad and S. Sivasundaram, “Existence results for nonlinear impulsive hybrid boundary value
problems involving fractional differential equations,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 3,
pp. 251–258, 2009.

[7] Y.-K. Chang and J. J. Nieto, “Some new existence results for fractional differential inclusions with
boundary conditions,”Mathematical and Computer Modelling, vol. 49, no. 3-4, pp. 605–609, 2009.

[8] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge
Academic, Cambridge, UK, 2009.

[9] X. Su and S. Zhang, “Solutions to boundary-value problems for nonlinear differential equations of
fractional order,” Electronic Journal of Differential Equations, vol. 2009, no. 26, p. 115, 2009.

[10] V. Gafiychuk, B. Datsko, V. Meleshko, and D. Blackmore, “Analysis of the solutions of coupled
nonlinear fractional reaction-diffusion equations,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp. 1095–
1104, 2009.

[11] M. Benchohra, A. Cabada, and D. Seba, “An existence result for nonlinear fractional differential
equations on Banach spaces,” Boundary Value Problems, vol. 2009, Article ID 628916, 11 pages, 2009.

[12] A. M. A. El-Sayed and H. H. G. Hashem, “Monotonic solutions of functional integral and differential
equations of fractional order,” Electronic Journal of Qualitative Theory of Differential Equations, no. 7, pp.
1–8, 2009.

[13] M. Benchohra and S. Hamani, “The method of upper and lower solutions and impulsive fractional
differential inclusions,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 433–440, 2009.

[14] A. Arara, M. Benchohra, N. Hamidi, and J. J. Nieto, “Fractional order differential equations on an
unbounded domain,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 2, pp. 580–586,
2010.

[15] Y. Tian and A. Chen, “The existence of positive solution to three-point singular boundary value
problem of fractional differential equation,” Abstract and Applied Analysis, vol. 2009, Article ID 314656,
18 pages, 2009.

[16] B. Ahmad and B. S. Alghamdi, “Approximation of solutions of the nonlinear Duffing equation
involving both integral and non-integral forcing terms with separated boundary conditions,”
Computer Physics Communications, vol. 179, no. 6, pp. 409–416, 2008.

[17] B. Ahmad, “On the existence of T-periodic solutions for Duffing type integro-differential equations
with p-Laplacian,” Lobachevskii Journal of Mathematics, vol. 29, no. 1, pp. 1–4, 2008.

[18] S. Mesloub, “On a mixed nonlinear one point boundary value problem for an integrodifferential
equation,” Boundary Value Problems, vol. 2008, Article ID 814947, 8 pages, 2008.

[19] B. Ahmad and J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional
integrodifferential equations with integral boundary conditions,” Boundary Value Problems, vol. 2009,
Article ID 708576, 11 pages, 2009.

[20] Y. K. Chang and J. J. Nieto, “Existence of solutions for impulsive neutral integrodifferential
inclusions with nonlocal initial conditions via fractional operators,” Numerical Functional Analysis and
Optimization, vol. 30, no. 3, pp. 227–244, 2009.

[21] Y. Chen, J. J. Nieto, andD. O’Regan, “Anti-periodic solutions for fully nonlinear first-order differential
equations,”Mathematical and Computer Modelling, vol. 46, no. 9-10, pp. 1183–1190, 2007.

[22] B. Liu, “An anti-periodic LaSalle oscillation theorem for a class of functional differential equations,”
Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 1081–1086, 2009.

[23] B. Ahmad and V. Otero-Espinar, “Existence of solutions for fractional differential inclusions with
antiperiodic boundary conditions,” Boundary Value Problems, vol. 2009, Article ID 625347, 11 pages,
2009.



International Journal of Differential Equations 9

[24] B. Ahmad and J. J. Nieto, “Existence of solutions for anti-periodic boundary value problems involving
fractional differential equations via Leray-Schauder degree theory,” to appear in Topological Methods
in Nonlinear Analysis.

[25] Y. Q. Chen, D. O’Regan, F. L. Wang, and S. L. Zhou, “Antiperiodic boundary value problems for finite
dimensional differential systems,” Boundary Value Problems, vol. 2009, Article ID 541435, 11 pages,
2009.

[26] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,
Academic Press, San Diego, Calif, USA, 1999.

[27] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[28] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential

Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.
[29] D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, UK, 1980.


