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Let A be the class of analytic functions in the open unit disk U. We define Θα,β : A → A
by (Θα,βf)(z) := Γ(2 − α)zαDα

z(Γ(2 − β)zβDβ
zf(z)), (α, β /= 2, 3, 4 . . .), where D

γ
zf is the fractional

derivative of f of order γ . If α, β ∈ [0, 1], then a function f in A is said to be in the class SPα,β

if Θα,βf is a parabolic starlike function. In this paper, several properties and characteristics of the
class SPα,β are investigated. These include subordination, characterization and inclusions, growth
theorems, distortion theorems, and class-preserving operators. Furthermore, sandwich theorem
related to the fractional derivative is proved.
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1. Introduction and Definitions

Let A be the class of functions analytic in the open unit disk U := {z : |z| < 1} and let A[a, n]
be the subclass of A consisting of functions of the form

g(z) = a + anz
n + an+1z

n+1 + · · · , (1.1)

and A0 be the class of functions f inA of the form

f(z) = z +
∞∑

n=1

anz
n+1. (1.2)



2 International Journal of Differential Equations

Let T be the subclass of A0 consisting of functions f of the form

f(z) = z −
∞∑

n=1

anz
n+1, (an ≥ 0). (1.3)

A function f inA0 is said to be uniformly convex in U if f is a univalent convex function along
with the property that, for every circular arc γ contained in U, with center γ also in U, the
image curve f(γ) is a convex arc. The class of uniformly convex functions is denoted by UCV
(for details, see [1]). It is well known from [2, 3] that

f ∈ UCV ⇐⇒
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < Re
{
1 +

zf ′′(z)
f ′(z)

}
, (z ∈ U). (1.4)

Condition (1.4) implies that

1 +
zf ′′(z)
f ′(z)

(1.5)

lies in the interior of the parabolic region

R := {w : w = u + iv, v2 < 2u − 1}, (1.6)

for every value of z ∈ U. A function f in A0 is said to be in the class of parabolic starlike
functions, denoted by SP (cf. [3]), if

zf ′(z)
f(z)

∈ R, (z ∈ U). (1.7)

Let the function ϕ(a, b; z) be given by

ϕ(a, b; z) :=
∞∑

n=0

(a)n
(b)n

zn+1 (b /= 0,−1,−2, . . . ; z ∈ U), (1.8)

where (x)n is the Pochhammer symbol defined by

(x)n :=
Γ(x + n)
Γ(x)

=

⎧
⎨

⎩
1, n = 0,

x(x + 1)(x + 2) · · · (x + n − 1), n ∈ N := {1, 2, 3, . . .}.
(1.9)

Further, let (cf. [4, 5])

L(a, b)f(z) = ϕ(a, b; z)∗f(z) (f ∈ A). (1.10)
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In terms of Hadamard product or convolution, note that L(a, a) is the identity operator and

L(a, c) = L(a, b)L(b, c) (b, c /= 0,−1,−2, . . .). (1.11)

It is well known that if b > a > 0, then L maps A into itself. We also need the following
definitions of a fractional derivative.

Definition 1.1 (cf. [5, 6], see also [7, 8]). Let the function f(z) be analytic in a simply connected
domain of the z-plane containing the origin. The fractional derivative of f of order α is
defined by

Dα
zf(z) =

1
Γ(1 − α)

d

dz

∫z

0

f(ξ)
(z − ξ)α

dξ, 0 ≤ α < 1, (1.12)

where the multiplicity of (z − ξ)−α is removed by requiring log(z− ξ) to be real when z− ξ > 0.

Using Definition 1.1 and its known extensions involving fractional derivatives and
fractional integrals, Owa and Srivastava [5] introduced the operatorΩα : A → A defined by

Ωαf(z) = Γ(2 − α)zαDα
zf(z), α /= 2, 3, 4, . . .

=
∞∑

n=0

Γ(n + 2)Γ(2 − α)
Γ(n + 2 − α)

anz
n+1

= ϕ(2, 2 − α; z)∗f(z)

= L(2, 2 − α)f(z).

(1.13)

Note that Ω0f(z) = f(z).
Corresponding to the operatorΩα defined in (1.13), Srivastava andMishra [9] studied

the class SPα (0 ≤ α ≤ 1) of functions f ∈ A0 satisfying the inequality

∣∣∣∣
z(Ωαf(z))′

Ωαf(z)
− 1
∣∣∣∣ < Re

{
z(Ωαf(z))′

Ωαf(z)

}
, (z ∈ U). (1.14)

In Definition 1.2, we generalize the Owa-Srivastava operator defined in (1.13) as
follows.

Definition 1.2. Let f be inA. One defines an operator Θα,β : A → A by

(Θα,βf)(z) = Γ(2 − α)zαDα
z(Γ(2 − β)zβDβ

zf(z)), (α, β /= 2, 3, 4, . . .), (1.15)

where Dγ
zf is the fractional derivative of f of order γ .
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From Definition 1.2, we note that

Θα,βf(z) = Θβ,αf(z), Θ0,0f(z) = f(z),

Θα,0f(z) = Θ0,αf(z) = Ωαf(z), Θα,1f(z) = z(Ωαf(z))′,
(1.16)

Θα,βf(z) = Γ(2 − α)zαDα
z(Γ(2 − β)zβDβ

zf(z)), (α, β /= 2, 3, 4, . . .)

=
∞∑

n=0

Γ(n + 2)Γ(2 − α)
Γ(n + 2 − α)

Γ(n + 2)Γ(2 − β)
Γ(n + 2 − β)

anz
n+1

= ϕ(2, 2 − β; z)∗ϕ(2, 2 − α; z)∗f(z)

= ϕ(2, 2 − β; z)∗L(2, 2 − α)f(z)

= ϕ(2, 2 − β; z)∗Ωαf(z)

= L(2, 2 − β)Ωαf(z)

= Ωβ(Ωαf(z)) = Ωα(Ωβf(z)).

(1.17)

In the present paper, we study a class of analytic functions, related to UCV, SP, and
SPα, using the operator Θα,β defined in Definition 1.2.

Definition 1.3. Let SPα,β, where α, β ∈ [0, 1] be the class of functions f ∈ A0 satisfying the
inequality

∣∣∣∣
z(Θα,βf(z))′

Θα,βf(z)
− 1
∣∣∣∣ < Re

{
z(Θα,βf(z))′

Θα,βf(z)

}
, (z ∈ U). (1.18)

It follows that

SPα,β ≡ SPβ,α, SPα,0 ≡ SP0,α ≡ SPα,

SP1,0 ≡ SP0,1 ≡ UCV, SP0,0 ≡ SP.
(1.19)

Remark 1.4. f(z) ∈ SP1,1 if and only if zf ′(z) is uniformly convex function.

Using the definition of Θα,β, we start with proving sandwich theorem related to
the fractional derivative. Then, we investigate several properties and characteristics of the
general class SPα,β using similar techniques to [9]. These include subordination, inclusions
and characterization, growth theorems, and class-preserving operators (like the Hadamard
product and various integral transforms).

2. Sandwich Theorem

In order to prove our sandwich result, we need first to recall the principle of subordination
between analytic functions, let the functions f and F be inA. We say that f is subordinate to
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F or F is superordinate to f in U, written as f ≺ F, if F is univalent in U,

f(0) = F(0), f(U) ⊆ F(U). (2.1)

Let p, h ∈ A and let φ(s, t; z) : C
2 × U → C. If p and φ(p(z), zp′(z); z) are univalent and p

satisfies the first-order differential superordination,

h(z) ≺ φ(p(z), zp′(z); z), (2.2)

then p is a solution of the differential superordination (2.2). An analytic function q is called a
subordination if q ≺ p for all p satisfying (2.2). A univalent subordinant q̃ that satisfies q ≺ q̃
for all subordinations q of (2.2) is said to be the best subordinant. An analytic function q is
said to be dominant if p ≺ q for all p satisfying

φ(p(z), zp′(z); z) ≺ h(z). (2.3)

A univalent dominant q̃ that satisfies q̃ ≺ q for all dominants q of (2.3) is said to be the best
dominant.

We also need the following definition and lemma.

Definition 2.1 (see [10, page 817, Definition 2]). Denoted by Q, the set of all functions f(z)
that are analytic and injective on U − E(f), where

E(f) =
{
ζ ∈ ∂U : lim

z→ ζ
f(z) = ∞

}
, (2.4)

and are such that f ′(ζ)/= 0 for ζ ∈ ∂U − E(f).

Lemma 2.2 (see [11]). Let q1, q2 be two nonzero univalent functions in U, and let λ/= 0, μ ∈ C.
Further assume that R[μλqi(z)] ≥ 0 and for (i = 1, 2), zq′i(z)/qi(z) is starlike univalent in
U. If g ∈ A0, zkg(k)(z)/g(k−1)(z) ∈ A[1, 1] ∩ Q (k ∈ N, g(k) is the kth derivative of g) and
zg(k+1)(z)/g(k)(z) + (μzk/λ − z)g(k)(z)/g(k−1)(z) + k is univalent in U, then

μq1(z) + λ
zq′1(z)
q1(z)

≺ λ

(
zg(k+1)(z)
g(k)(z)

+
(μzk/λ − z)g(k)(z)

g(k−1)(z)
+ k

)
≺ μq2(z) + λ

zq′2(z)
q2(z)

(2.5)

implies

q1(z) ≺
zkg(k)(z)
g(k−1)(z)

≺ q2(z), (2.6)

and q1, q2 are, respectively, the best subordinant and the best dominant.
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As an application of Lemma 2.2, we prove the following theorem.

Theorem 2.3. Let q1, q2 be two nonzero univalent functions in U, and let k ∈ N, α/= 2, 3, 4, . . . ,
and 0 < β < 1. Further, assume that zq′1(z)/q1(z) and zq′2(z)/q2(z) are starlike univalent in U. If
f ∈ A0,

Φ(α, β, k; z) = k +
zD

β+k+1
z (Γ(2 − α)zαDα

zf(z))

(1 − β − k)Dβ+k
z (Γ(2 − α)zαDα

zf(z))
is univalent in U,

Ψ(α, β, k; z) =
zk+1D

β+k
z (Γ(2 − α)zαDα

zf(z))

(2 − β − k)Dβ+k−1
z (Γ(2 − α)zαDα

zf(z))
∈ A[1, 1] ∩Q,

(2.7)

then

zq′1(z)
q1(z)

≺ Φ(α, β, k; z) ≺
zq′2(z)
q2(z)

(2.8)

implies

q1(z) ≺ Ψ(α, β, k; z) ≺ q2(z), (2.9)

and q1, q2 are, respectively, the best subordinant and the best dominant.

Proof. Let g(z) = Θα,βf(z) be defined as in Definition 1.2, where f ∈ A0, 0 < β < 1 and
(α/= 2, 3, 4, . . .). Then from (1.17), we have for k ∈ N,

g(k)(z) =
dk

dzk
(Θα,βf(z))

= L(2, 2 − α)
(

dk

dzk
(Ωβf(z))

)

= L(2, 2 − α)Ωβ+kf(z)

= Θα,β+kf(z).

(2.10)

This yields

zkg(k)(z)
g(k−1)(z)

=
zkΘα,β+kf(z)
Θα,β+k−1f(z)

=
zk+1D

β+k
z (Γ(2 − α)zαDα

zf(z))

(2 − β − k)Dβ+k−1
z (Γ(2 − α)zαDα

zf(z))
,

zg(k+1)(z)
g(k)(z)

=
zΘα,β+k+1f(z)
Θα,β+kf(z)

= k +
zD

β+k+1
z (Γ(2 − α)zαDα

zf(z))

(1 − β − k)Dβ+k
z (Γ(2 − α)zαDα

zf(z))
.

(2.11)

By applying Lemma 2.2 for λ = 1 and μ = 0, we get the result.



International Journal of Differential Equations 7

Putting α = 0 in Theorem 2.3, we get the following corollary.

Corollary 2.4. Let q1, q2 be two nonzero univalent functions in U, and let k ∈ N, 0 < β < 1. Further,
assume that zq′1(z)/q1(z) and zq′2(z)/q2(z) are starlike univalent in U. If f ∈ A0,

Φ(β, k; z) = k +
zD

β+k+1
z f(z)

(1 − β − k)Dβ+k
z f(z)

is univalent in U,

Ψ(β, k; z) =
zk+1D

β+k
z f(z)

(2 − β − k)Dβ+k−1
z f(z)

∈ A[1, 1] ∩Q,

(2.12)

then

zq′1(z)
q1(z)

≺ Φ(β, k; z) ≺
zq′2(z)
q2(z)

(2.13)

implies

q1(z) ≺ Ψ(β, k; z) ≺ q2(z), (2.14)

and q1, q2 are, respectively, the best subordinant and the best dominant.

In particular, for k = 1, Corollary 2.4 reduces to the following remark.

Remark 2.5. Let q1, q2 be two nonzero univalent functions in U, and assume that zq′1(z)/q1(z)
and zq′2(z)/q2(z) are starlike univalent in U. For 0 < β < 1, if f ∈ A0, 1 −
(zDβ+2

z f(z)/βDβ+1
z f(z)) is univalent in U and z2D

β+1
z f(z)/(1 − β)Dβ

zf(z) ∈ A[1, 1] ∩Q, then

zq′1(z)
q1(z)

≺ 1 − 1
β

(
zD

β+2
z f(z)

D
β+1
z f(z)

)
≺

zq′2(z)
q2(z)

(2.15)

implies

q1(z) ≺
1

1 − β

(
z2D

β+1
z f(z)

D
β
zf(z)

)
≺ q2(z), (2.16)

and q1, q2 are, respectively, the best subordinant and the best dominant.

Remark 2.6. Taking α = 1 in Theorem 2.3 yields that Corollary 2.4 and Remark 2.5 are also
hold true for f(z) = zg ′(z), where g ∈ A0.
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3. Some Properties of the Class SPα,β

We need the following results in our investigation of the class SPα,β.

Lemma 3.1 (see [12]). Let F andG be univalent convex functions in U. Then the Hadamard product
F∗G is also univalent convex in U.

Lemma 3.2 (see [13]). Let F and G be univalent convex functions in U. Also let f ≺ F and g ≺ G.
Then f∗g ≺ F∗G.

Lemma 3.3 (see [12]). Let each of the functions f and g be univalent starlike of order 1/2. Then, for
every function F ∈ A,

f(z)∗g(z)F(z)
f(z)∗g(z) ∈ CH{F(U)}, (z ∈ U), (3.1)

where CH denotes the closed convex hull.

Theorem 3.4. If (0 ≤ μ < α ≤ 1) and 0 ≤ β ≤ 1, then

SPα,β ⊂ SPμ,β. (3.2)

Proof. Let f ∈ SPα,β. Then

Θμ,βf = L(2, 2 − μ)Ωβf = L(2 − α, 2 − μ)Θα,βf

= ϕ(2 − α, 2 − μ; z)∗Θα,βf,

z(Θμ,βf)′ = L(2, 1)L(2 − α, 2 − μ)Θα,βf = ϕ(2 − α, 2 − μ; z)∗{z(Θα,βf)′}.

(3.3)

Also it is known that (cf. [14])

ϕ(2 − α, 2 − μ; z) ∈ S∗
(
1
2

)
. (3.4)

Since R is a convex region, using Lemma 3.3, we get

z(Θμ,βf)′

Θμ,βf
=

ϕ(2 − α, 2 − μ; z)∗(z(Θα,βf)′/Θα,βf)Θα,βf

ϕ(2 − α, 2 − μ; z)∗Θα,βf
∈ R. (3.5)

Thus, f ∈ SPμ,β. This completes the proof of Theorem 3.4.

Corollary 3.5. Let 0 < α < 1 and 0 ≤ β ≤ 1. Then

SP1,1 ⊂ SPα,1 ⊂ (SP0,1 ≡ UCV) ⊂ (SPα,0 ≡ SPα) ⊂ (SP0,0 ≡ SP),

SP1,β ⊂ SPα,β ⊂ SPβ.
(3.6)

In particular, the functions in SPα,β are parabolic starlike and they are uniformly convex when β = 1.
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Corollary 3.6. Let 0 ≤ λ < α ≤ 1 and 0 ≤ μ < β ≤ 1. Then SPα,β ⊂ SPλ,μ.

It can be verified that the Riemann map q of U onto the region R, satisfying q(0) = 1
and q′(0) > 0, is given by

q(z) = 1 +
2
π2

(
log

1 +
√
z

1 −
√
z

)2

= 1 +
8
π2

∞∑

n=1

(
1
n

n−1∑

k=0

1
2k + 1

)
zn

=
∞∑

n=0

Bnz
n = 1 +

8
π2

(
z +

2
3
z2 +

23
45

z3 +
44
105

z4 + · · ·
)
, (z ∈ U).

(3.7)

We define the function H by

H(z) :=
1
z

{
L(2, 2 − α)L(2, 2 − β)z exp

(∫z

0

q(s) − 1
s

ds

)}
, (z ∈ U). (3.8)

Theorem 3.7. Let α, β ∈ [0, 1) and let H(z) be defined by (3.8). Then H(z) is a convex univalent
function. Furthermore, if f ∈ SPα,β, then

f(z)
z

≺ H(z). (3.9)

Proof. We first note that

H(z) =
ϕ(2, 2 − α; z)

z
∗
ϕ(2, 2 − β; z)

z
∗ exp

(∫z

0

q(s) − 1
s

ds

)
, (z ∈ U), (3.10)

where each member of the Hadamard product in (3.10) is known to be a convex univalent
function (cf. [2, 14]). Therefore, by Lemma 3.1, H(z) is a univalent convex function. Next, if
f ∈ SPα,λ, then

z(Θα,βf(z))′

Θα,βf(z)
≺ q(z). (3.11)

Thus, there exists a function ω satisfying the Schwarz Lemma such that

Θα,βf(z)
z

= exp
(∫z

0

q(ω(s)) − 1
s

ds

)
, (z ∈ U). (3.12)

Since q(z) − 1 is a univalent convex function, a result of [15] (see also [16, page 50]) yields

Θα,βf(z)
z

≺ exp
(∫z

0

q(s) − 1
s

ds

)
. (3.13)



10 International Journal of Differential Equations

It now follows from a known result of [14, page 508, Theorem 2] that

f(z)
z

≺ H(z). (3.14)

The proof of Theorem 3.7 is evidently completed.

Remark 3.8. (i) Letting α or β equal to zero in Theorem 3.7, we immediately obtain a
subordination result due to Srivastava and Mishra (see [9]).

(ii) Taking α = 1, β = 0 in Theorem 3.7, we get a result of [2, page 169, Theorem 3].

Theorem 3.9. Let α, β ∈ [0, 1). If f ∈ SPα,β, then

H(−r) ≤
∣∣∣∣
f(z)
z

∣∣∣∣ ≤ H(r), (|z| = r), (3.15)
∣∣∣∣arg

(
f(z)
z

)∣∣∣∣ ≤ max
θ∈[0,2π]

{arg(H(reiθ))}, (z = reiθ), (3.16)

where H(z) is defined by (3.8). Equality holds true in (3.15) and (3.16) for some z/= 0 if and only if
f is a rotation of zH(z).

Proof. Let f ∈ SPα,β. Then, by Theorem 3.7 and the Lindelöf principle of subordination, we get

inf
|z|=r

Re{H(z)} ≤ inf
|z|≤r

Re
{
f(z)
z

}
≤ sup

|z|≤r
Re
{
f(z)
z

}

≤ sup
|z|≤r

∣∣∣∣
f(z)
z

∣∣∣∣ ≤ sup
|z|≤r

Re{H(z)}.
(3.17)

Since H(z) is a univalent convex function and has real coefficients, H(U) is a convex region
symmetric with respect to real axis. Hence,

inf
|z|≤r

Re{H(z)} = inf
−r≤x≤r

H(x) = H(−r),

sup
|z|≤r

Re{H(z)} = sup
−r≤x≤r

H(x) = H(r).
(3.18)

Thus, (3.17) gives the assertion (3.15) of Theorem 3.9. Also, we readily have the assertion
(3.16) of Theorem 3.9. The sharpness in (3.15) and (3.16) is also a consequence of the principle
of subordination. This completes the proof of Theorem 3.9.

Corollary 3.10. Let f ∈ SPα,β, where α, β ∈ [0, 1]. Then,

{w : |w| ≤ H(−1)} ⊆ f(U). (3.19)

The result is sharp.
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Remark 3.11. (i) Letting α or β equal to zero in Theorem 3.9, we obtain a result due to
Srivastava and Mishra (see [9]).

(ii) Taking α = 1, β = 0 in Theorem 3.9, we get a result of [2, page 170, Corollary 3].

Next, we investigate characterization for f to be in the class SPα,β ∩T. We need first the
following lemma.

Lemma 3.12. If Θα,βf ∈ T, where α, β ∈ [0, 1], then

∞∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an ≤ 1. (3.20)

Proof. Suppose
∑∞

n=1((n + 1)((n + 1)!)2/(2 − α)n(2 − β)n)an > 1. We can write

∞∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an = 1 + ε, (ε > 0). (3.21)

Then, there exists an integer N such that

N∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an > 1 +

ε

2
. (3.22)

For (1/(1 + ε/2))1/N < z < 1, we have

(Θα,βf)′(z) = 1 −
∞∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
anz

n

≤ 1 −
N∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
anz

n

≤ 1 − zN
N∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an

< 1 − zN
(
1 +

ε

2

)

< 0.

(3.23)

Since (Θα,βf)′(0) = 1 > 0, there exists a real number z0, 0 < z0 < 1, such that (Θα,βf)′(z0) = 0.
Hence, Θα,βf is not univalent.

Theorem 3.13. Let α, β ∈ [0, 1]. Then, a function f ∈ SPα,β ∩ T if and only if

∞∑

n=1

(2n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an < 1. (3.24)
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Proof. First, consider

∣∣∣∣
z(Θα,βf)′(z)
Θα,βf(z)

− 1
∣∣∣∣ − Re

{
z(Θα,βf)′(z)
Θα,βf(z)

− 1
}

≤ 2
∣∣∣∣
z(Θα,βf)′(z)
Θα,βf(z)

− 1
∣∣∣∣

≤
∑∞

n=1(2n((n + 1)!)2/(2 − α)n(2 − β)n)|an| |z|n+1

1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)|an| |z|n+1

≤
∑∞

n=1(2n((n + 1)!)2/(2 − α)n(2 − β)n)an

1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)an

,

(3.25)

where 1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)|an| |z|n+1 > 0. Hence, if (3.24) holds, then the
above expression is less than 1, and consequently

∣∣∣∣
z(Θα,βf)′(z)
Θα,βf(z)

− 1
∣∣∣∣ < Re

{
z(Θα,βf)′(z)
Θα,βf(z)

}
. (3.26)

Conversely, if f ∈ SPα,β ∩ T and z is real, we get

1 −
∑∞

n=1((n + 1)((n + 1)!)2/(2 − α)n(2 − β)n)anz
n

1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)anzn

>

∑∞
n=1(n((n + 1)!)2/(2 − α)n(2 − β)n)anz

n

1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)anzn
.

(3.27)

Let z → 1− along the real axis, then we get

1 −
∑∞

n=1((2n + 1)((n + 1)!)2/(2 − α)n(2 − β)n)an

1 −
∑∞

n=1(((n + 1)!)2/(2 − α)n(2 − β)n)an

> 0. (3.28)

Using Lemma 3.12, we have

1 −
∞∑

n=1

((n + 1)!)2

(2 − α)n(2 − β)n
an > 1 −

∞∑

n=1

(n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an ≥ 0. (3.29)

Therefore, the denominator in (3.28) is positive, and hence (3.24) holds. This completes the
proof of Theorem 3.13.

Remark 3.14. Theorem 3.13 is sharp for functions of the form

Θα,βfn(z) = z −
(2 − α)n(2 − β)n

(2n + 1)((n + 1)!)2
zn+1, (n ≥ 1). (3.30)
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Corollary 3.15. If α ∈ [0, 1], then

f ∈ SPα ∩ T ⇐⇒
∞∑

n=1

(n + 1)!(2n + 1)
(2 − α)n

an < 1. (3.31)

In particular, f ∈ SP ∩ T if and only if
∑∞

n=1(2n + 1)an < 1 and f ∈ UCV ∩ T if and only if∑∞
n=1(2n + 1)(n + 1)an < 1.

Corollary 3.16. If f ∈ SPα,β ∩ T, where α, β ∈ [0, 1], then

an ≤
(2 − α)n(2 − β)n

(2n + 1)((n + 1)!)2
, (n ≥ 1). (3.32)

Corollary 3.17. If f ∈ SPα,β ∩ T, where α, β ∈ [0, 1], then

|z| −
(2 − α)(2 − β)

12
|z|2 < |f(z)| < |z| +

(2 − α)(2 − β)
12

|z|2, (z ∈ U). (3.33)

Proof. Let f ∈ SPα,β ∩ T, where α, β ∈ [0, 1]. Clearly,

12
(2 − α)(2 − β)

∞∑

n=1

an ≤
∞∑

n=1

(2n + 1)((n + 1)!)2

(2 − α)n(2 − β)n
an < 1. (3.34)

Therefore,

|f(z)| ≥ |z| − |z|2
∞∑

n=1

an > |z| −
(2 − α)(2 − β)

12
|z|2,

|f(z)| ≤ |z| + |z|2
∞∑

n=1

an < |z| −
(2 − α)(2 − β)

12
|z|2.

(3.35)

Remark 3.18. Under the hypothesis of Corollary 3.17, f(z) lies in a disc centered at the origin
with radius r given by

r = 1 +
(2 − α)(2 − β)

12
. (3.36)

In particular, we have

(i) if f ∈ SP ∩ T, then f(z) lies in a disc centered at the origin with radius 4/3;

(ii) if f ∈ SPα ∩ T, then f(z) lies in a disc centered at the origin with radius (8 − α)/6;

(iii) if f ∈ UCV ∩ T, then f(z) lies in a disc centered at the origin with radius 7/6;

(iv) if f ∈ SP1,1 ∩ T, then f(z) lies in a disc centered at the origin with radius 13/12.
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Consequently, let Θα1,α2,...,αk be defined by

Θα1,α2,...,αkf(z) = (Ωα1 ◦Ωα2 ◦ · · · ◦Ωαk)f(z), αj ∈ [0, 1]. (3.37)

Then, f belonging to the corresponding class SP 1,1,...,1︸︷︷︸
k-times

∩ T implies f(z) lies in a disc centered

at the origin with radius rk given by

rk = 1 +
1

3 × 2k
. (3.38)

4. Class-Preserving Operators and Transforms

Theorem 4.1. LetΘλ,βf be univalent starlike function of order 1/2 (f ∈ A0) and let g ∈ SPα,β (λ ≤
α). Then,

Θλ,βf∗Θα,βg ∈ SPα,β. (4.1)

In particular, if Θα,βf is univalent starlike function of order 1/2 and g ∈ SPα,β, then

Θα,βf∗Θα,βg ∈ SPα,β. (4.2)

Proof. Let Θλ,βf be univalent starlike function of order 1/2 (f ∈ A0) and g ∈ SPα,β (λ ≤ α).
By definition,

f ∈ S∗
(
1
2

)
, Θα,βg ∈ SP ⊂ S∗

(
1
2

)
. (4.3)

The commutative and associative properties of the Hadamard product yield

z(Θλ,βf∗Θα,βg)′ = L(2, 1)(Θλ,βf∗Θα,βg)

= Θλ,βf∗L(2, 1)Θα,βg

= Θλ,βf∗{z(Θα,βg)′}.

(4.4)

Therefore, using Lemma 3.3, we get

z(Θλ,βf∗Θα,βg)′

Θλ,βf∗Θα,βg
=

Θλ,βf∗((z(Θα,βg)′/Θα,βg)Θα,βg)
Θλ,βf∗Θα,βg

∈ R, (z ∈ U). (4.5)

This completes the proof of Theorem 4.1.
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Taking α = 1 and β = 0 in Theorem 4.1, then we have the following corollary.

Corollary 4.2. If Ωλf(z) ∈ S∗(1/2) and g(z) ∈ UCV, then Ωλf(z)∗zg ′(z) ∈ UCV. In particular,
if Ωλf(z) ∈ SP and g(z) ∈ UCV, then Ωλf(z)∗zg ′(z) ∈ UCV. Moreover, if Ωλf(z) ∈ UCV and
g(z) ∈ UCV, then Ωλf(z)∗zg ′(z) ∈ UCV.

Taking λ = 0 or 1, α = 1, and β = 0 in Theorem 4.1, thenwe have the following corollary.

Corollary 4.3. If f(z) ∈ S∗(1/2) and g(z) ∈ UCV, then f(z)∗zg ′(z) ∈ UCV. In particular, if
f(z) ∈ SP and g(z) ∈ UCV, then f(z)∗zg ′(z) ∈ UCV. Moreover, if f(z) ∈ UCV and g(z) ∈ UCV,
then f(z)∗zg ′(z) ∈ UCV.

Corollary 4.4 (see [9]). If Ωλf ∈ S∗(1/2) and g ∈ SPμ(λ ≤ μ), then

Ωλf∗Ωμg ∈ SPμ. (4.6)

In particular, if Ωλf ∈ S∗(1/2) and g ∈ SPλ, then

Ωλf∗Ωλg ∈ SPλ. (4.7)

Corollary 4.5 (see [3]). If f ∈ S∗(1/2) and g ∈ SP, then f∗g ∈ SP. In particular, if f ∈ SP and
g ∈ SP, then f∗g ∈ SP.

Theorem 4.6. Let f ∈ SPβ and g ∈ SPα,β, where α, β ∈ [0, 1]. Then, f∗g ∈ SPα,β.

Proof. The proof of Theorem 4.6 is similar to that of Theorem 4.1. Let f ∈ SPβ and g ∈ SPα,β.
We first note that

z(Θα,β(f∗g)(z))′ = Ωαg(z)∗z(Ωβf(z))′,

Θα,β(f∗g)(z) = Ωαg(z)∗Ωβf(z).
(4.8)

Therefore, using Lemma 3.3, we get

z(Θα,β(f∗g)(z))′

Θα,β(f∗g)(z)
=

Ωαg(z)∗(z(Ωβf(z))′/Ωβf(z))Ωβf(z)
Ωαg(z)∗Ωβf(z)

∈ R, (z ∈ U). (4.9)

Thus, f∗g ∈ SPα,β. This completes the proof of Theorem 4.6.

Corollary 4.7. The class SPα (0 ≤ α ≤ 1) is closed under convolution, and in particular the classes
SP and UCV are so.

Theorem 4.8. Let f ∈ SP1,β (0 ≤ β ≤ 1) and g ∈ SPα,β (0 ≤ α ≤ 1). Then, f∗g ∈ SP1,β. In
particular, the class SP1,β (0 ≤ β ≤ 1) is closed under convolution.



16 International Journal of Differential Equations

Proof. The proof of Theorem 4.8 is similar to that of Theorem 4.6. Let f ∈ SP1,β and g ∈ SPα,β.
We first note that

z(Θ1,β(f∗g)(z))′ = zf ′(z)∗z(Ωβg(z))′,

Θ1,β(f∗g)(z) = zf ′(z)∗Ωβg(z).
(4.10)

Therefore, using Lemma 3.3, we get

z(Θ1,β(f∗g)(z))′

Θ1,β(f∗g)(z)
=

zf ′(z)∗(z(Ωβg(z))′/Ωβg(z))Ωβg(z)
zf ′(z)∗Ωβg(z)

∈ R, (z ∈ U). (4.11)

Thus, f∗g ∈ SP1,β. By taking α = 1, we see that the class SP1,β (0 ≤ β ≤ 1) is closed under
convolution. This completes the proof of Theorem 4.8.

Theorem 4.9. Let fj ∈ SPα,β (j = 1, 2, . . . , n). Also let

μj > 0,
n∑

j=1

μj = 1. (4.12)

Define a function g by

Θα,βg =
n∏

j=1

(Θα,βfj)
μj
. (4.13)

Then, g ∈ SPα,β.

Proof. Let fj ∈ SPα,β (j = 1, 2, . . . , n) and let g be defined by (4.13). Direct calculation gives

∣∣∣∣
z(Θα,βg)′

Θα,βg
− 1
∣∣∣∣ =

∣∣∣∣∣

n∑

j=1

μj

z(Θα,βfj)
′

Θα,βfj
− 1

∣∣∣∣∣

<
n∑

j=1

μjRe
(
z(Θα,βfj)

′

Θα,βfj

)

= Re
(
z(Θα,βg)′

Θα,βg

)
.

(4.14)

Thus, by Definition 1.3, g ∈ SPα,β. This completes the proof of Theorem 4.9.

Theorem 4.10. Let f ∈ SPα,β, where α, β ∈ [0, 1]. Then, the function F(z) defined by the integral
transform

F(z) :=
c + 1
zc

∫z

0
tc−1f(t)dt, (z ∈ U; c > −1) (4.15)

is also in the class SPα,β.
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Proof. We begin by noting that

F(z) = L(c + 1, c + 2)f(z),

z(Θα,βF(z))′ = L(2, 1)L(2, 2 − α)L(2, 2 − β)L(c + 1, c + 2)f(z)

= L(c + 1, c + 2)(z(Θα,βf(z))′)

= ϕ(c + 1, c + 2; z)∗(z(Θα,βf(z))′).

(4.16)

Using a result of Bernardi [17], it can be verified that

ϕ(c + 1, c + 2; z) ∈ S∗
(
1
2

)
. (4.17)

Also, by hypothesis, Θα,βf(z) ∈ SP ⊂ S∗(1/2). Thus, using Lemma 3.3, we get

z(Θα,βF(z))′

Θα,βF(z)
=

ϕ(c + 1, c + 2; z)∗(z(Θα,βf(z))′/Θα,βf(z))Θα,βf(z)
ϕ(c + 1, c + 2; z)∗Θα,βf(z)

∈ R, (4.18)

which completes the proof of Theorem 4.10.
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