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1. Introduction

Most modelling of biological problems is characterized by systems of ordinary differential
equations (ODEs). For example, the relationship of increasing and decreasing in the
population of two kind of animals (such as rabbits and foxes) can be described by the so-
called mathematical model of the prey-predator problem which is given by a system of
nonlinear equations:

dx(t)
dt

= x(t)
(
a − by(t)

)
, x(t0) = c1,

dy(t)
dt

= −y(t)(c + dx(t)), y(t0) = c2,

(1.1)

where x(t) and y(t) are, respectively, the populations of rabbits and foxes at the time t and
a, b, c, and d are known coefficients (for more details, see [1]). Problems of this nature have
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been solved using classical numerical techniques such as Runge-Kutta and are now published
in most textbooks on differential equations.

Authors in [2, 3] used the Adomian decomposition method (ADM) to handle the
systems of prey-predator problem. Yusufoğlu and Erbas [4] and Rafei et al. [5] employed
the variational iteration method (VIM) to compute an approximation to the solution of the
system of nonlinear differential equations governing the problem. Biazar et al. [6] used the
power series method (PSM) to handle the systems. All the solutions above are in the form of
convergent power series with polynomial base function.

In recent years, a great deal of attention has been devoted to study HAM, which was
first envisioned by Liao in his Ph.D. thesis [7] for solving a wide range of problems whose
mathematical models yield differential equation or system of differential equations [8–12].
HAM has successfully been applied to many situations. For example, Hayat and Sajid [13],
Hayat and Khan [14], and Hayat et al. [15, 16] used HAM to solve many kinds of modelling
in fluid problems. Xu and Liao [17] applied HAM to give the dual solutions of boundary
layer flow over an upstream moving plate. Abbasbandy [18] used HAM to present solitary
wave solutions to the Kuramoto-Sivashinsky equation. Sami Bataineh et al. [19] modified
the HAM (MHAM) to show that Taylor series converge to the exact solution by expanding
the coefficients variables using Taylor series. Alomari et al. [20] introduced a new reliable
algorithm based on an adaptation of the standard HAM to solve Chen system. In recent years,
this method has been successfully employed to solve many types of problems in science and
engineering [21–28].

In this paper, we are interested to find the approximate analytic solution of the system
of coupled nonlinear ODEs (1.1) by treating the HAM as an algorithm for approximating
the solution of the problem in a sequence of time intervals. We shall call this technique
as the multistage homotopy analysis method (MSHAM). The freedom of choosing the
linear operator and the auxiliary parameter � is still present in this modification. Different
from the series solution in [2–5], the solution we present here uses a combination of base
functions, namely, the polynomial and exponential functions, and it is effective for longer
time. Comparison with the classical fourth-order Runge-Kutta (RK4) shall be made.

2. Solution Procedure

Consider the following general system of first-order ordinary differential equations (ODEs):

y′i = fi
(
t, y1, y2, . . . , yn

)
, yi(t0) = yi,0, i = 1, 2, . . . , n, (2.1)

where fi are (linear or nonlinear) real-valued functions, t0 ∈ R is the initial condition, and
yi,0 ∈ R.

2.1. Solution by HAM

In HAM [8], system (2.1) is first written in the form

Ni

[
yi(t)

]
= 0, i = 1, 2, . . . , n, (2.2)
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where Ni are nonlinear operators, t denotes the independent variable, and yi(t) are the
unknown functions. By means of generalizing the traditional homotopy method, Liao [8]
constructs the so-called zeroth-order deformation equation:

(
1 − q

)
L
[
φi
(
t; q

)
− yi,0

]
= q�iNi

[
φi
(
t; q

)]
, (2.3)

where q ∈ [0, 1] is an embedding parameter, �i are the nonzero auxiliary parameters, L is an
auxiliary linear operator, yi,0(t) are the initial guesses of yi(t), and φi(t; q) are the unknown
functions. It is important to note that one has great freedom to choose auxiliary objects such
as �i and L in HAM. We note that, in the framework of HAM, the solution yi(t) can be
represented by many different base functions such as the polynomial functions, exponential
functions and rational functions, and so forth. Obviously, when q = 0 and q = 1, both
φi(t; 0) = yi,0(t) and φi(t; 1) = yi(t) hold. Thus, as q increases from 0 to 1, the solution φi(t; q)
varies from the initial guess yi,0(t) to the solution yi(t). Expanding φi(t; q) in Taylor series
with respect to q, one has

φi
(
t; q

)
= yi,0(t) +

∞∑

m=1

yi,m(t)qm, (2.4)

where

yi,m(t) =
1
m!

∂mφi(t; q)
∂qm

∣∣∣∣
q=0
. (2.5)

If the auxiliary linear operators, the initial guesses, the auxiliary parameters �i, and the
auxiliary function are so properly chosen, then the series (2.4) converges at q = 1 and

φi(t; 1) = yi,0(t) +
∞∑

m=1

yi,m(t), (2.6)

which must be one of the solutions of the original nonlinear equations, as proved by Liao [8].
Define the vector

−→yi,n(t) =
{
yi,0(t), yi,1(t), . . . , yi,n(t)

}
. (2.7)

Differentiating (2.3) m times with respect to the embedding parameter q and then setting
q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation:

L
[
yi,m(t) − χmyi,m−1(t)

]
= �iHi(t)Ri,m

(−→yi,m−1

)
, (2.8)
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where

Ri,m

(−→yi,m−1

)
=

1
(m − 1)!

∂m−1Ni[φi(t; q)]
∂qm−1

∣
∣
∣
∣
∣
q=0

,

χm =

⎧
⎨

⎩

0, m ≤ 1,

1, m > 1.

(2.9)

It should be emphasized that yi,m(t) (m ≥ 1) is governed by the linear (2.8) with the linear
boundary conditions that come from the original problem, which can be easily solved by
symbolic computation softwares such as Maple and Mathematica. Also,

yi(t) � ϕi,k(t) =
k∑

m=0

yi,m(t), (2.10)

2.2. Solution by MSHAM

The approximate solutions (2.10) are generally, as shall be shown in the numerical
experiments of this paper, not valid for large t. A simple way of ensuring validity of the
approximations for large t is to treat (2.3) and (2.8) as an algorithm for approximating the
solutions of (2.1) in a sequence of intervals: the solution from [t0, t) will be derived by
subdividing this interval into [t0, t1), [t1, t2), . . . , [tn−1, t) and applying the HAM solution on
each subinterval. The initial approximation in each interval is taken from the solution on the
previous interval:

yi,0(t) = yi(t∗) = c∗1, (2.11)

where t∗ is the left-end point of each subinterval.
Now we solve (2.8) for unknowns yi,j(t) (i = 1, 2, . . . ; j = 1, 2 . . . , m). In order to carry

out the iteration in every subinterval of equal length h, [t0, t1), [t1, t2), [t2, t3), . . . , [tj−1, t), we
need to know the values of the following:

y∗i,0 = yi(t∗), i = 1, 2, . . . . (2.12)

But, in general, we do not have these information at our disposal except at the initial point
t∗ = t0. A simple way for obtaining the necessary values could be by means of the previous
n-term approximations ϕ1,k, ϕ2,k, . . . , ϕi,k of the preceding subinterval given by (2.10), that is,

y∗1,0 = ϕ1,k(t∗), y∗2,0 = ϕ2,k(t∗), . . . , y∗i,0 = ϕi,k(t∗). (2.13)
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3. Application

In this part, we apply the MSHAM for the prey-predator problem subject to the initial
conditions

x(t∗) = c1, y(t∗) = c2. (3.1)

We note that when t∗ = 0,we have the initial condition of (1.1). Let the set of the base functions
be

{
tne−st | n ≥ 0, s ≥ 0

}
. (3.2)

So the solutions are

x(t) = d0,0 +
+∞∑

s=0

+∞∑

n=0

dnn,st
ne−st,

y(t) = b0,0 +
+∞∑

s=0

+∞∑

n=0

bnn,st
ne−st,

(3.3)

where dnn,s and bnn,s are the coefficients. It is straightforward to choose

x0(t) = c1, y0(t) = c2, (3.4)

as our initial approximations of x(t) and y(t), and the linear operator should be

L
[
φ
(
t; q

)]
=
∂φ

(
t; q

)

∂t
+ φ

(
t; q

) (3.5)

with the property

L
[
Ae−t

]
= 0, (3.6)

where A is the integration constant, which will be determined by the initial condition.
If q ∈ [0, 1] and � indicate the embedding and nonzero auxiliary parameters,

respectively, then the zeroth-order deformation problems are of the following form:

(
1 − q

)
L
[
x̂
(
t; q

)
− x0(t)

]
= q�Nx

[
x̂
(
t; q

)
, ŷ

(
t; q

)]
,

(
1 − q

)
L
[
ŷ
(
t; q

)
− y0(t)

]
= q�Ny

[
x̂
(
t; q

)
, ŷ

(
t; q

)]
,

(3.7)
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Table 1: The absolute error from the MSHAM0.001 and RK40.001 for Case 2 of the prey-predator problem.

t Δx Δy
2 5.7e–19 8.706789680e–11
4 2e–20 1.178335759e–11
6 1e–20 1.59470390e–12
8 1e–20 2.1581968e–13
10 2e–20 2.920801e–14
12 2e–20 3.95288e–15
14 3e–20 5.3496e–16
16 3e–20 7.240e–17
18 4e–20 9.80e–18
20 5e–20 1.33e–18

Table 2: The absolute error from the MSHAM0.001 and RK40.001 for Case 5 of the prey-predator problem.

t Δx Δy
2 9.485175571e–11 7.47597295716e–09
4 2.11031149193e–09 1.01672103021e–09
6 1.342878008923e–08 1.62013088126e–09
8 3.622447658889e–08 8.01736945777e–09
10 2.30556152717e–09 7.48322990044e–09
12 9.45333229572e–09 2.8908159395e–10
14 4.095583288261e–08 1.069711065660e–08
16 2.775596164304e–08 6.870599099914e–08
18 5.92867898748e–09 1.486248603235e–08
20 2.889428569743e–08 8.8012357714e–10
22 8.411291006490e–08 5.211185305325e–08
24 1.577852557681e–08 1.4199589913952e–07
26 1.343266168038e–08 2.232418357863e–08
28 7.258205361348e–08 2.93592979865e–09
30 6.16977299703e–09 2.3582971107456e–07

subject to the initial conditions

x̂
(
t∗; q

)
= c1, ŷ

(
t∗; q

)
= c2, (3.8)

in which we define the nonlinear operators Nx and Ny as

Nx

[
x̂
(
t; q

)
, ŷ

(
t; q

)]
=
∂x̂

(
t; q

)

∂t
− x̂

(
t; q

)(
a − bŷ

(
t; q

))
,

Ny

[
x̂
(
t; q

)
, ŷ

(
t; q

)]
=
∂ŷ

(
t; q

)

∂t
+ ŷ

(
t; q

)(
c − dx̂

(
t; q

))
.

(3.9)
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Figure 1: The �-curves for 5th-order of approximations. (a) and (b) The curves of x for Cases 1 and 5. (c)
and (d) The curves of y for Cases 1 and 5.

For q = 0 and q = 1, the above zeroth-order equations (3.7) have the solutions

x̂(t; 0) = x0(t), ŷ(t; 0) = y0(t), (3.10)

x̂(t; 1) = x(t), ŷ(t; 1) = y(t). (3.11)

When q increases from 0 to 1, then x̂(t; q) and ŷ(t; q) vary from x0(t) and y0(t) to x(t) and
y(t). Expanding x̂ and ŷ in Taylor series with respect to q, we have

x̂
(
t; q

)
= x0(t) +

∞∑

m=1

xm(t)qm,

ŷ
(
t; q

)
= y0(t) +

∞∑

m=1

ym(t)qm,

(3.12)
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Figure 2: Comparisons between the populations of rabbits x and foxes y at time t for (a) Case 1, (b) Case
2, (c) Case 3, (d) Case 4, and (e) Case 5, using the 4th-term classical HAM, 4th-term MSHAM (Δt = 0.01),
and RK4 (Δt = 0.001).

in which

xm(t) =
1
m!

∂mx̂(t; q)
∂qm

∣∣∣∣
q=0
, ym(t) =

1
m!

∂mŷ(t; q)
∂qm

∣∣∣∣
q=0
, (3.13)
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where � is chosen in such a way that these series are convergent at q = 1. Therefore, we have
through (3.11) that

x(t) = x0(t) +
∞∑

m=1

xm(t),

y(t) = y0(t) +
∞∑

m=1

ym(t).

(3.14)

Define the vectors

−→x(t) = {x0(t), x1(t), . . . , xn(t)},

−→y(t) =
{
y0(t), y1(t), . . . , yn(t)

}
.

(3.15)

Differentiating the zeroth-order equations (3.7) m times with respect to q, then setting q = 0,
and finally dividing by m!, we have the mth-order deformation equations:

L
[
xm(t) − χmxm−1(t)

]
= �Rx,m

(−→x(t),−→y(t)
)
,

L
[
ym(t) − χmym−1(t)

]
= �Ry,m

(−→x(t),−→y(t)
)
,

(3.16)

with the following boundary conditions:

xm(t∗) = 0, ym(t∗) = 0, (3.17)

for all m ≥ 1, where

Rx,m

(−→x(t),−→y(t)
)
= x′m−1 − axm−1 + b

m−1∑

i=0

xi(t)ym−1−i(t),

Ry,m

(−→x(t),−→y(t)
)
= y′m−1 + cxm−1 − d

m−1∑

i=0

yi(t)xm−1−i(t).

(3.18)
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This way, it is easy to solve the linear nonhomogeneous Equations (3.16) at general initial
conditions by using Maple, one after the other in the order m = 1, 2, 3, . . . . Thus we
successfully have

x1(t) = −�c1a + �c1bc2 −
e−t(−�c1a + �c1bc2)

e−t∗
,

y1(t) = �c2c − �c2dc1 −
e−t(�c2c − �c2dc1)

e−t∗
,

x2(t) =
(
−�2c1e

t∗bc2t
∗ − �c1e

ta + �c1e
tbc2 + �

2c1a
2et − �

2c1a
2et

∗ − 2�
2c1abc2e

t

+ 2�
2c1ae

t∗bc2 + �
2c1b

2c2
2e

t − �
2c1b

2c2
2e

t∗ + c1b�
2c2ce

t − c1b�
2c2ce

t∗

− c2
1b�

2c2de
t + c2

1b�
2c2de

t∗ + �c1e
t∗a − �

2c1ae
t∗t + �

2c1e
t∗at∗ − �c1bc2e

t∗

+ �
2c1e

t∗a2t∗ − 2�
2c1e

t∗abc2t
∗ + �

2c1e
t∗b2c2

2t
∗ + �

2c1e
t∗bc2ct

∗ − �
2c2

1e
t∗bc2dt

∗

+ �
2c1bc2e

t∗t − �
2c1a

2et
∗
t + 2�

2c1ae
t∗bc2t − �

2c1b
2c2

2e
t∗t

− �
2c1bc2ce

t∗t + �
2c2

1bc2de
t∗t
)
e−t,

y2(t) =
(
−2�

2c2cdc1e
t + �

2c2d
2c2

1e
t + 2�

2c2e
t∗cdc1 − �

2c2e
t∗d2c2

1 + c2d�
2c1ae

t

− c2
2d�

2c1be
t − c2d�

2c1e
t∗a + c2

2d�
2c1e

t∗b + et�c2c − et�c2dc1 + �
2c2e

t∗d2c2
1t
∗

+ �c2e
t∗dc1 − �

2c2e
t∗ct∗ + �

2c2e
t∗dc1t

∗ + �
2c2e

t∗c2t∗ − 2�
2c2e

t∗cdc1t
∗

+ �
2c2e

t∗dc1at
∗ − �

2c2
2e

t∗c1bdt
∗ + �

2c2e
t∗ct − �

2c2e
t∗dc1t − �

2c2e
t∗c2t

+ 2�
2c2e

t∗cdc1t − �
2c2e

t∗d2c2
1t − �

2c2dc1e
t∗at + �

2c2
2c1bde

t∗t

− �c2e
t∗c + �

2c2c
2et − �

2c2e
t∗c2

)
e−t,

...

(3.19)

By the same way we can get the first fourth term to be as analytical approximate solution as
x(t) �

∑4
i=0 xi(t) and y(t) �

∑4
i=0 yi(t) terms. Now we divide the interval [0, T] to subintervals

by time step Δt = 0.01; Then we start from the initial conditions and we get the solution on
the interval [0, 0.01). Further, we take c1 = x(0.01) and c2 = y(0.01) and t∗ = 0.01, so we
get the solution on the new interval [0.01, 0.02), and so on. Therefore, by choosing this initial
approximation on the starting of each interval, the solution on the whole interval should be
continuous. It is worth mentioning that if we take t∗ = 0 and we fixed c1 and c2, then the
solution will be the standard HAM solution which is not effective at large value of t.
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4. Analysis of Results

In this section, we compare the fourth term of the MSHAM solution using step size 0.01 with
RK4 using step size Δt = 0.001 for the following cases.

Case 1. a = 1, b = 1, c = 0.1, d = 1, and the initial conditions x(0) = 14 and y(0) = 18.

Case 2. a = 0.1, b = 1, c = 1, d = 1, and the initial conditions x(0) = 14 and y(0) = 18.

Case 3. a = 1, b = 1, c = 0.1, d = 1, and the initial conditions x(0) = 16 and y(0) = 10.

Case 4. a = 0.1, b = 1, c = 1, d = 1, and the initial conditions x(0) = 16 and y(0) = 10.

Case 5. a = 1, b = 1, c = 1, d = 1, and the initial conditions x(0) = 3 and y(0) = 2.

Figure 1 presents the �-curves for 5th-order of approximations of the prey-predator
problem at different cases. It is clear that � = −1 is in the convergent region which is
parallel to the x-axis. Figure 2 shows the MSHAM solutions in comparison with the RK4
and HAM solutions for the time span t ∈ [0, 30] using 16 Digits in Maple software. This
4th-term HAM solution is not accurate enough when compared with the RK4 solution but
the 4th-term MSHAM solution works very well. The results obtained in [2–5] are effective
for t ≤ 1 but the result in MSHAM is effective for t ∈ [0, 30], that means the MSHAM is
more effective than the methods in [2–5]. Moreover, the absolute errors between the new
algorithm and RK4 using the same benchmark for Cases 2 and 5 are presented in Tables 1
and 2, respectively. These show high accuracy of the new method since the absolute error is
up to 10−11 in Case 2 and 10−7 in Case 5, which is not possible to get if the linear operator is
∂φ(t; q)/∂t.

5. Conclusions

In this paper, a prey-predator problem was simulated accurately by MSHAM. MSHAM has
the advantages of giving an analytical form of the solution within each time interval which
is not possible in purely numerical techniques like RK4, which provides solution only at the
two ends of a given time interval, and provided that the interval is chosen small enough for
convergence. The method also gives the freedom to choose the auxiliary linear operator and
the auxiliary parameter �. The present technique offers an explicit time marching algorithm
that works accurately over such a bigger time span. The results presented in this paper
suggest that MSHAM is also readily applicable to more complex cases of nonlinear ordinary
differential equations.
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