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We present new oscillation criteria for the differential equation of the form [r(t)U(t)]′+p(t)k2(x(t),
x′(t))|x(t)|νU(t) + q(t)φ(x(g1(t)), x′(g2(t)))f(x(t)) = 0, where U(t) = k1(x(t), x′(t))|x′(t)|α−1x′(t),
α ≤ β, ν = (β − α)/(α + 1). Our research is different from most known ones in the sense that H
function is not employed in our results, though Riccati’s substitution and its generalized forms
are used. Our criteria which are established under quite general assumptions are an extension for
previous results. In particular, by taking β = α, the above-mentioned equation can be reduced into
the various types of equations concerned by people currently.

Copyright q 2009 H.-Z. Qin and Y. Ren. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The existence of the oscillatory solutions of the nonlinear differential equation with damping,

[
r(t)x′(t)

]′ + p(t)x′(t) + q(t)g(x(t)) = 0, t ≥ t0, (1.1)

has received considerable attention from researchers for a long time.
People previously focused on the cases r(t) > 0, p(t) ≥ 0, q(t) > 0. In recent years,

people concerned that r(t) > 0, p(t), q(t) may change sign for t ∈ [t0,∞), regarding work in
this area can be seen in literature [1–4].

Recently, Li [5] has extended (1.1) to more general equations of the form

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)g(x(t))f
(
x′(t)

)
= 0, t ≥ t0. (1.2)
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Yamaoka [6] has studied the following class of particular equation:

(∣∣x′(t)
∣∣p−2x′(t)

)′
+
2p − 1
t

∣∣x′(t)
∣∣p−2x′(t) + q(t)g(x(t)) = 0, t ≥ t0, p > 1. (1.3)

Tiryaki and Zafer [1] and other authors [2, 7] have considered the following equation of the
form

(
r(t)h(x(t))x′(t)

)′ + p(t)x′(t) + q(t)g(x(t)) = 0. (1.4)

Zheng [8] has discussed the oscillation problem for the following equation:

(
r(t)h(x(t))ψ

(
x′(t)

))′ + p(t)ψ
(
x′(t)

)
+ q(t)g(x(t)) = 0. (1.5)

It is worth noting that (1.1), (1.2), and (1.3) can transform into an undamping equation.
For example, the equation

(
r(t)
∣∣x′(t)

∣∣α−1x′(t)
)′

+ p(t)
∣∣x′(t)

∣∣α−1x′(t) + q(t)g(x(t)) = 0 (1.6)

can transform into the undamping equation

(
r̃(t)
∣∣x′(t)

∣∣α−1x′(t)
)′

+ q̃(t)g(x(t))f
(
x′(t)

)
= 0, t ≥ t0, (1.7)

where r̃(t) = r(t)e
∫ t
T (p(s)/r(s))ds, q̃(t) = q(t)e

∫ t
T (p(s)/r(s))ds. Although (1.4) and (1.5) can

not be transformed into the undamping equation, but from the conditions 0 < c ≤
h(x) ≤ c1 < ∞ given by [1, 8, 9], if h(t) is changed into c or c1, the above-mentioned
equations consistent with (1.6). This shows that under the above conditions, there is no
essential difference between (1.4), (1.5), and the undamping equation. We note that the
condition

∫∞
t0
(1/r(s))1/αds = ∞ must be used for (1.5); however, at this point the condition

∫∞
t0
(1/r̃(s))1/αds = ∞ cannot be guaranteed.

We have removed the condition
∫∞
t0
(1/r(s))1/αds = ∞, considered the oscillation

problem for the following equation:

[
r(t)χ

(
x′(t)

)]′ + q(t)φ
(
x
(
g1(t)

)
, x′(g2(t)

))
f(x(t)) = 0, (1.8)

applied the results to the above-mentioned equation, and obtained a very good result.
In this paper, we consider the oscillatory behavior of the following differential

equation of the form:

[r(t)U(t)]′ + p(t)k2
(
x(t), x′(t)

)|x(t)|(β−α)/(α+1)U(t) + q(t)φ
(
x
(
g1(t)

)
, x′(g2(t)

))
f(x(t)) = 0,

(1.9)

whereU(t) = k1(x(t), x′(t))|x′(t)|α−1x′(t).
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Today, Riccati transformation, and its generalized forms are one of the most effective
method in the oscillatory theory of nonlinear differential equations. Most obvious merits of
Riccati’s approach is that q(t) may change sign in (1.8). For getting the more general results
[10, 11], a lot of authors have introduced to a class of Y function

Y =
{
Φ ∈ C1(E,R) | Φ(t, t, l) = Φ(t, l, l) = 0, Φ(t, s, l)/= 0, l < s < t

}
,

E = {(t, s, l) | t0 ≤ l ≤ s ≤ t <∞},
(1.10)

where ∂Φ/∂s exists on E and is integral with respect to s. By using this method, peoples
have obtained some general results, but its shortcoming is that the property of q(t) can be
weakened as t → ∞. We use the method similar to [4], that is, replace the above-mentioned
function Φ(t, s, l) with ρ ∈ C1([t0,∞), R+). Perhaps the reason that people like to use this
method is that integrating by parts with respect to s on [l, t] can employ Φ(t, t, l) = Φ(t, l, l) =
0.

For (1.9), we make the following assumptions:

(A) xf(x) > 0, x /= 0, f ′(x)|f(x)|(1−β)/β ≥ C1, α, β > 0, φ ∈ C(R2, R+), 0 < nφ ≤ φ(x, y) ≤
Nφ;

(B) 0 < C0 ≤ k1(u, v) ≤ C2, 0 ≤ C3 ≤ k2(u, v) ≤ C4;

(C) r ∈ C1(I, R+), gi ∈ C(I, R+), 0 ≤ g ′
i(t), i = 1, 2, I = [t0,∞), p, q ∈ C([t0,∞), R).

In the paper, a solution of (1.9) is called oscillatory if it has zeros unbounded set. If the
solutions are oscillatory, (1.9) is called to be oscillatory equation.

2. Main Theorem

We establish some lemmas which are useful in our discussions.

Lemma 2.1. Let a, b, γ, λ > 0, then

at − bt1+1/γ ≤ γγ

(γ + 1)γ+1
aγ+1

bγ
, (2.1)

at−λ + btγ ≥ (λ + γ
)
λ −λ/(λ+γ)γ−γ/(λ+γ)aγ/(λ+γ)bλ/(λ+γ). (2.2)

Lemma 2.1 can easily be proved by using the extremum of one variable function. For
the sake of convenience, we denote

q−(t) = min
{
q(t), 0

}
, q+(t) = max

{
q(t), 0

}
, q̃(t) = nφq+(s) +Nφq−(s),

p1(t) = C4p+(t) + C3p−(t), p2(t) = C3p+(t) + C4p−(t).
(2.3)
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Theorem 2.2. Assume that α = β holds and there exists ρ ∈ C1([t0,∞), R+), ∀T ∈ [t0,∞), such
that

∫ t

T

(

q̃(s) − C2α
αr(s)

Cα
1 (α + 1)α+1

∣∣∣∣
ρ′(s)
ρ(s)

∣∣∣∣

α+1)

e
∫s
t0
(pi(τ)/r(τ))dτρ(s)ds −→ ∞, t −→ ∞, i = 1, 2, (2.4)

lim
t→∞

Q(t) =
∫ t

T

q̃(s)e
∫s
t0
(p1(τ)/r(τ))dτds > 0. (2.5)

If any one of the following two conditions holds, then the solution x = x(t) of (1.9) is oscillatory.
(1)

R(t) =
∫ t

t0

r−1/α(s)e−1/α
∫s
t0
(p1(τ)/r(τ))dτds −→ ∞, t −→ ∞. (2.6)

(2) R(∞) <∞, and

∫ t

T

(
Q(s)r−1(s)e−

∫s
t0
(p1(τ)/r(τ))dτ

)1/α
ds

=
∫ t

T

(
r−1(s)

∫s

T

q̃(ς)e−
∫s
ς(p1(τ)/r(τ))dτdς

)1/α

ds −→ ∞, t −→ ∞,

(2.7)

lim
t→∞

Q1/α(t)(R(∞) − R(t)) ≥ α

C1
C1/α

2 . (2.8)

Proof. Let x = x(t) be a nonoscillatory solution of (1.9). Then, there exists T ≥ t0 such that x =
x(t)/= 0, t ∈ (T,∞). Without loss of generality, we may assume that x = x(t) ≥ 0, t ∈ (T,∞).

Define the Riccati Transformation by

W(t) =
ρ(t)r(t)k1(x(t), x′(t))|x′(t)|α−1x′(t)

f(x(t))
, t ≥ T. (2.9)

From conditions (A) and (B), we have

|W(t)|1/α|x(t)|
C1/α

0 (ρ(t)r(t))1/α
≥ ∣∣x′(t)

∣∣ ≥ |W(t)|1/α|x(t)|
C1/α

2

(
ρ(t)r(t)

)1/α ,
∣∣f(x)

∣∣ ≥
(
C1

α

)α
|x|α, t ≥ T. (2.10)
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DifferentiatingW(t), and applying (1.9) and (2.10), we have

W ′(t) =
ρ′(t)
ρ(t)

W(t) − p(t)k2(x(t), x′(t))
r(t)

W(t)

− ρ(t)q(t)
∣∣f(x(t))

∣∣

|x(t)|α φ
(
x
(
g1(t)

)
, x′(g2(t)

)) − αW(t)x′(t)
x(t)

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
ρ′(t)
ρ(t)

− p1(t)
r(t)

)
W(t) −

(
C1

α

)α
ρ(t)q̃(t) − α|W(t)|(α+1)/α

C1/α
2 (ρ(t)r(t))1/α

, W(t) < 0,

(
ρ′(t)
ρ(t)

− p2(t)
r(t)

)
W(t) −

(
C1

α

)α
ρ(t)q̃(t) − α|W(t)|(α+1)/α

C1/α
2 (ρ(t)r(t))1/α

, W(t) > 0.

(2.11)

By (2.1), we have

W ′(t) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
((

C1

α

)α
ρ(t)q̃(t) − C2r(t)

(α + 1)α+1

(
ρ′(t)
ρ(t)

− p1(t)
r(t)

)α+1)

ρ(t), W(t) < 0,

−
((

C1

α

)α
ρ(t)q̃(t) − C2r(t)

(α + 1)α+1

(
ρ′(t)
ρ(t)

− p2(t)
r(t)

)α+1)

ρ(t), W(t) > 0.

(2.12)

Integrating the above inequality from T to t ≥ T , we have

W(t) ≤W(T) −
∫ t

T

((
C1

α

)α
q̃(s) − C2r(s)

(α + 1)α+1

(
ρ′(s)
ρ(s)

− pi(s)
r(s)

)α+1)

ρ(s), i = 1, 2. (2.13)

Condition (2.4) shows that limt→∞W(t) = −∞. Without loss of generality, we may
assume thatW(t) < 0, t ≥ T , by applying (2.11), we have

q̃(t)e
∫ t
t0
(p1(s)/r(s))ds + C1C

−1/α
2 r−1/α(t)e−(1/α)

∫ t
t0
(p1(s)/r(s))dsZ(α+1)/α(t) ≤ Z′(t),

Z(t) = −W(t)
ρ(t)

e
∫ t
t0
(p1(s)/r(s))ds > 0, t ≥ T.

(2.14)

Integrating the above inequality from T to t ≥ T , we obtain

Z(T) +Q(t) + C1C
−1/α
2

∫ t

T

r−1/α(τ)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(τ)dτ ≤ Z(t). (2.15)
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Let

F(t) =
∫ t

T

r−1/α(τ)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(s)ds > 0,

F ′(t) = r−1/α(t)e−(1/α)
∫ t
t0
(p1(s)/r(s))dsZ(α+1)/α(t),

t > T.

(2.16)

We will discuss in the following two cases.
(1) By (2.1) and (2.5), we see that

C
(α+1)/α
1 C

−(α+1)/α2
2 r−1/α(t)e−(1/α)

∫ t
t0
(p1(s)/r(s))ds ≤ F ′(t)F−(α+1)/α(t), t ≥ T1 > T. (2.17)

Integrating the above inequality from T1 to t ≥ T1, we have

αF−1/α(T1) > αF−1/α(T1) − αF−1/α(t)

> C
(α+1)/α
1 C

−(α+1)/α2
2

∫ t

T1

r−1/α(s)e−(1/α)
∫s
t0
(p1(τ)/r(τ))dτds −→ ∞, t −→ ∞.

(2.18)

But, it is impossible that the above inequality holds.
(2)Observe thatW(t) < 0 and by (2.8), we have x′(t) < 0, so that x = x(t) is monotonic

decreasing function for t ≥ T , and if limt→∞x(t) = c, then c = 0. Otherwise, if c > 0, by (2.15)
and (2.9), we have

Q(t)f(c) ≤ Z(t)f(c) ≤ Z(t)f(x(t)) = −e
∫τ
t0
(p1(s)/r(s))dsr(t)k1

(
x(t), x′(t)

)∣∣x′(t)
∣∣α, t ≥ T.

(2.19)

By condition (B), we have

−x′(t) ≥ C−1/α
2 f1/α(c)Q1/α(t)r−1/α(t)e−(1/α)

∫ t
t0
(p1(s)/r(s))ds, t ≥ T. (2.20)

Integrating the above inequality from T1 to t ≥ T1 leads to

x(T) − c≥x(T) − x(t)≥C−1/α
2 f1/α(c)

∫ t

T

Q1/α(s)r−1/α(s)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsds −→ ∞, t −→ ∞.

(2.21)

But, this is impossible. We choose ρ(t) = 1, thus (2.15) has the following form:

Z(T) +Q(t) + C1C
−1/α
2

∫ t

T

r−1/α(τ)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(τ)dτ ≤ Z(t),

Z(t) = −e
∫ t
t0
(p1(s)/r(s))dsW(t).

(2.22)
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When
∫ t
T r

−1/α(τ)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(τ)dτ < Mα+1, by considering Hölder′s

inequality and (2.10), we have

−ln x(t)
x(T)

=
∫ t

T

− x′(s)x−1(s)ds

≤
(∫ t

T

r(s)e−
∫τ
t0
(p1(s)/r(s))ds |x′(s)|α+1

xα+1(s)
ds

)1/(α+1)(∫ t

T

r−1/α(s)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsds

)α/(α+1)

≤ C−(α+1)/α
0

(∫ t

tN

r−1/α(s)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(s)ds

)1/(α+1)

(R(t) − R(T))α/(α+1)

≤MC
−(α+1)/α
0 Rα/(α+1)(t),

(2.23)

such that MC
−(α+1)/α
0 Rα/(α+1)(∞) ≥ MC

−(α+1)/α
0 Rα/(α+1)(t) ≥ −ln(x(t)/x(T)) → ∞, t → ∞.

However, this is also impossible.

If
∫ t
T r

−1/α(τ)e−(1/α)
∫τ
t0
(p1(s)/r(s))dsZ(α+1)/α(τ)dτ → ∞, t → ∞, then by (2.8), we see that

limt→∞Q(t) = ∞. From (2.15), we obtain

Z(t) ≥ Z(T) +Q(T2) + C1C
−1/α
2 F(t), t ≥ T2 ≥ T,

C1C
−1/α
2 F ′(t)

(
Z(T) +Q(T2) + C1C

−1/α
2 F(t)

)−(α+1)/α

≥ C1C
−1/α
2 r−1/α(t)e−(1/α)

∫ t
t0
(p1(s)/r(s))ds, t ≥ T2.

(2.24)

Integrating the above inequality from T2 to t ≥ T2, we have

αQ−1/α(T2) > α
(
Z(T) +Q(T2) + C1C

−1/α
2 F(T2)

)−1/α ≥ C1C
−1/α
2 (R(∞) − R(T2)), T2 ≥ T.

(2.25)

Let T2 → ∞; the above inequality contradicts (2.8); this completes the proof.

Theorem 2.3. Suppose that α ≤ β and

∫∞

t0

((
C1

β

)β
q̃(s) − C2α

α
∣∣p1(s)

∣∣α+1

(α + 1)α+1βαrα(s)

)

ds = ∞, i = 1, 2. (2.26)

If there exists 0 < ε < ((α + 1)β/α)C−1/α
2 , t0 ≤ t1 < t2 < · · · < tn < · · · → ∞, such that

∫ t

tn

θ(s)ds > 0, t > tn, lim
t→∞

(∫ t

tn

θ(s)ds

)1/α

(R(∞) − R(t))(β−α)/λ(α+1)+1 = ∞, n = 1, 2, . . . ,

(2.27)
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where

θ(t) =
(
C1

β

)β
q̃(t) − 1

α + 1

∣∣p1(t)
∣∣α+1

εαrα(t)
, R(t) =

∫ t

t0

r−1/α(s)ds,

Cε =
(
βC−1/α

2 − εα

α + 1

)
, δ =

(
C0

C2

)(α+1)/α

, λ =
β(δ − 1)

α
+ 1 − εδ

α + 1
,

(2.28)

then every solution of (1.9) is oscillatory.

Note

From (2.27), it is easy to obtain the following equation:

lim
t→∞

(∫ t

tn

θ(sds)

)1/α

(R(∞) − R(t)) = ∞, lim
t→∞

(∫ t

tn

θ(s)ds

)1/α

ln
R(∞)
R(t)

= ∞, n = 1, 2, . . . .

(2.29)

Proof. Let x = x(t) be a nonoscillatory solution of (1.9). Then, there exists T ≥ t0 such that
x = x(t)/= 0, t > T.We may assume that x = x(t) > 0, t > T.

Introduce the Riccati transformation W(t) = r(t)U(t)/x(t)β, t ≥ T . From conditions
(A) and (B), we have

(
W(t)xβ(t)
C0r(t)

)1/α

≥ ∣∣x′(t)
∣∣ ≥
(
W(t)xβ(t)
C2r(t)

)1/α

,
∣∣f(x)

∣∣ ≥
(
C1

β

)β
|x|β, t ≥ T. (2.30)

DifferentiatingW(t), and applying (1.9) and the above inequality, leads to

W ′(t) = −p(t)k2(x(t), x
′(t))x(β−α)/(α+1)(t)W(t)
r(t)

− q(t)φ
(
x
(
g1(t)

)
, x′(g2(t)

))

xβ(t)
− βW(t)x′(t)

x(t)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−p1(t)
r(t)

x(β−α)/(α+1)(t)W(t) −
(
C1

β

)β
q̃(t)

−βC−1/α
2 r−1/α(t)x(β−α)/α(t)|W(t)|(α+1)/α, W(t) < 0

−p2(t)
r(t)

x(β−α)/(α+1)(t)W(t) −
(
C1

β

)β
q̃(t)

−βC−1/α
2 r−1/α(t)x(β−α)/α(t)W (α+1)/α(t), W(t) > 0.

(2.31)
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By (2.1), we see that

W ′(t) ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
(
C1

β

)β
q̃(t) +

C2α
α
∣∣p1(t)

∣∣α+1

(α + 1)α+1βαrα(t)
, Z′(t) < 0

−
(
C1

β

)β
q̃(t) +

C2α
α
∣∣p2(t)

∣∣α+1

(α + 1)α+1βαrα(t)
, Z′(t) > 0.

(2.32)

The following proof is similar to that in Theorem 2.2, using (2.26), we find that limt→∞W(t) =
−∞. Thus there exists T1 ≥ T , such that W(t) < 0, x′(t) < 0, t ≥ T1. Because x = x(t) is
monotonic decreasing function on [T1,∞); hence limt→∞x(t) = c ≥ 0. By (2.31), we have

W ′(t) ≤
∣∣p1(t)

∣∣

r(t)
x(β−α)/(α+1)(t)|W(t)| −

(
C1

β

)β
q̃(t)

− βC−1/α
2 r−1/α(t)x(β−α)/(α+1)(t)|W(t)|(α+1)/α, W(t) < 0, t ≥ T1.

(2.33)

By using of weighted mean inequality, we can transform the above inequality into

W ′(t) ≤ −θ(t) − Cεr
−1/α(t)

∣∣∣x(β−α)/(α+1)(t)W(t)
∣∣∣
(α+1)/α

, W(t) < 0. (2.34)

We need to show that c = 0. Otherwise, if c > 0, by the above inequality, we have

W ′(t) ≤ −θ(t) − Cεc
(β−α)/(α+1)r−1/α(t)|W(t)|(α+1)/α, W(t) < 0. (2.35)

By choosingN ≥ 1, such that tN ≥ T1, integrating the above inequality from TN to t ≥ TN and
by (2.27), we can get

W(t)≤W(tN)−
∫ tn

tN

θ(s)ds − Cεc
(β−α)/(α+1)

∫ t

tN

r1/α(s)|W(s)|(α+1)/αds, t≥ tn, n > N, W(t)<0,

(2.36)

or

Cεc
(β−α)/(α+1)r−1/α(t)|W(t)|(α+1)/α

(
|W(tN)| + ∫ tntNθ(s)ds + Cεc(β−α)/(α+1)

∫ t
tN
r−1/α(s)|W(s)|(α+1)/αds

)(α+1)/α

≥ Cεc
(β−α)/(α+1)r−1/α(t), t ≥ tn, n > N.

(2.37)
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Differentiating the above inequality on the interval [tn,∞], we have

α

(

|W(tN)| +
∫ tn

tN

θ(s)ds + Cεc
(β−α)/(α+1)

∫ tn

tN

r−1/α(s)|W(s)|(α+1)/αds
)−1/α

≥ Cεc
(β−α)/(α+1)(R(∞) − R(tn)), t > tn, n > N.

(2.38)

This is a contradiction to (2.29); hence, we have limt→∞x(t) = 0. According to the above
discussion, we have

|W(t)| ≥ |W(tN)|+
∫ tn

tN

θ(s)ds

+Cε

∫ t

tN

r−1/α(s)
∣∣∣x(β−α)/(α+1)(t)W(s)

∣∣∣
(α+1)/α

ds, t ≥ tn, n > N, W(t) < 0,

(2.39)

(

|W(tN)| +
∫ tn

tN

θ(s)ds + Cε

∫ tn

tN

r−1/α(s)
∣∣∣x(β−α)/(α+1)(t)W(s)

∣∣∣
(α+1)/α

ds

)−1/α

≥ Cε

∫∞

tn

r−1/α(s)x(β−α)/(α+1)(s)ds, n > N.

(2.40)

We will discuss in the following two cases.
If there existsM > 0, such that

∫ t
tN
r−1/α(s)x(β−α)/α(s)|W(s)|(α+1)/αds ≤Mα+1, t ≥ tN , by

considering Hölder’s inequality and (2.39), we have

α + 1
β − α

(
x(α−β)/(α+1)(t) − x(α−β)/(α+1)(tN)

)

=
∫ t

tN

− x′(s)x−(β+1)/(α+1)(s)ds

≤
(∫ t

tN

r(s)
|x′(s)|α+1
xβ+1(s)

ds

)1/(α+1)(∫ t

tN

r−1/α(s)ds

)α/(α+1)

≤ C−(α+1)/α
0

(∫ t

tN

r−1/α(s)x(β−α)/α(s)|W(s)|(α+1)/αds
)1/(α+1)

(R(t) − R(tN))α/(α+1)

≤MC
−(α+1)/α
0 Rα/(α+1)(t).

(2.41)
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By choosing n > N, such that 2(α+1)/(β−α)x(t) < x(tN), t ≥ tn, n > N, from the above inequality,
we have x(β−α)/(α+1)(t) ≥ ((α+ 1)C(α+1)/α

0 /2(β − α)M)R−α/(α+1)(t), t ≥ tn, n > N. Inserting it in
(2.40), we can get

(∫ tn

tN

θ(s)ds

)−1/α
≥
(

|W(tN)| +
∫ tn

tN

θ(s)ds +
∫ tn

tN

C̃ε|W(s)|(α+1)/α
R(s)r1/α(s)

ds

)−1/α

≥ C̃ε

α
ln
R(∞)
R(tn)

, C̃ε = Cε

(
(α + 1)C(α+1)/α

0

2
(
β − α)M

)(α+1)/α

.

(2.42)

This is contradiction to (2.29).
If
∫∞
tN
(x(β−α)/α(s)|W(s)|(α+1)/α/(ρ(s)r(s))1/α)ds = ∞ for t ≥ tn, n > N, along with (2.39)

and (2.30), we have

C2r(t)|x′(t)|α
|x(t)|β

≥ |W(t)| ≥ |W(tN)| + CεC
(α+1)/α
0

∫ t

tN

r(s)
|x′(s)|α+1
|x(s)|β+1

ds, t ≥ tn, n > N, (2.43)

leading to

CεC
(α+1)/α
0

r(t)|x′(t)|α+1
|x(t)|β+1

(

|W(tN)| + CεC
(α+1)/α
0

∫ t

tN

r(s)
|x′(s)|α+1
|x(s)|β+1 ds

)−1
≥ −Cε

C2
C

(α+1)/α
0

x′(t)
x(t)

.

(2.44)

Integrating the above inequality from tn to t > tn and by (2.40), we can get

ln
C2r(t)|x′(t)|α
−W(tN)|x(t)|β

≥ Cε

C2
C

(α+1)/α
0 ln

x(tn)
x(t)

, (2.45)

or

−x′(t)x(β/α−ε/(α+1))δ−β/α(t) ≥ |W(tN)|1/αC−1/α
2 x(β/α−ε/(α+1))δ(tn)(r(t))−1/α. (2.46)

Integrating the above inequality on the interval [t,∞), we have

x(t) ≥ C1/λ(R(∞) − R(t))1/λ, C = λ|W(tN)|1/αC−1/α
2 x(β/α−ε/(α+1))δ(tn). (2.47)
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If Rρ(∞) = ∞, the above inequality cannot be satisfied; hence, Rρ(∞) < ∞. Inserting it
in (2.40), we can get

(
β − α

λ(α + 1)
+ 1
)

≥ CεC
(β−α)/λ(α+1)

(∫ tn

tN

θ(sds)

)1/α

(R(∞) − R(tn))(β−α)/λ(α+1)+1. (2.48)

This is contradiction to (2.26).
Hence, we complete the proof of Theorem 2.3.

3. Some Examples

Example 3.1. Let us consider the oscillatory behavior of the following differential equation:

(
tλ
∣∣x′(t)

∣∣α−1x′(t)
)′

+ ptλ1
∣∣x′(t)

∣∣α−1x′(t) + qtλ2 |x(t)|α−1x(t)φ(x(t), x′(t)
)
= 0, t ≥ t0. (3.1)

Comparing (3.1) with (1.9), we can find that

r(t) = tλ, C2 = C0 = 1, p(t) = ptλ1 , p > 0, C1 = 1, C3 = C4 = 1,

q(t) = qtλ2 , β = α, p1(t) = ptλ1 , p2(t) = 0, q̃(t) = qnφtλ2 .
(3.2)

Let ρ(t) = tμ, (2.4)–(2.7) are transformed into the equations

∫ t

t0

(

qnφ −
μα+1

(α + 1)α+1
sλ−λ2−α−1

)

e
p
∫s
t0
τλ1−λdτ

sλ2+μds −→ ∞, t −→ ∞, (3.3)

∫ t

T

sλ2e
p
∫s
t0
τλ1−λdτ

ds > 0, (3.4)

R(t) =
∫ t

t0

s−λ/αe−(p/α)
∫s
t0
τλ1−λdτ

ds −→ ∞, t −→ ∞, (3.5)

∫ t

T

(
s−λ
∫ s

T

ςλ2e−p
∫s
ςτ

λ1−λdτdς

)1/α

ds −→ ∞, t −→ ∞, (3.6)

lim
t→∞

(∫ t

T

sλ2e
p
∫s
t0
τλ1−λdτ

ds

)1/α

(R(∞) − R(t)) > αC1/α
2

qnφC1
. (3.7)

We will discuss inthe following cases.
(1) λ1 + 1 < λ, choosing μ = −min{λ2 + 1, 0}, provided that λ ≤ α, λ − λ2 < α + 1, or

qnφ > μ
α+1/(α + 1)α+1 is satisfied for α ≥ λ = λ2 + α + 1, then (3.3)–(3.5) hold, and the solution

of (3.1) is oscillatory.
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(2) λ = λ1 + 1, p + λ + α ≥ 0, choosing μ = −min{λ2 + 1, 0}, provided that λ ≤ α, and
λ − λ2 < α + 1 or qnφ > |μ − p|α+1/(α + 1)α+1, α ≥ λ = λ2 + α + 1, then (3.3)–(3.5) hold, the
solution of (3.1) is oscillatory.

(3) λ = λ1 + 1, p + λ + α < 0, we can see that R(∞) < ∞, choosing μ = −min{λ2 + 1, 0},
and therefore, (3.6) and (3.7) are transformed into the following equation:

∫ t

T

(
qnφ

λ2 + p + 1

(
s−λ+λ2+1 − s−λ−pTλ2+p+1

))1/α

ds −→ ∞, t −→ ∞, λ2 + p + 1 > 0,

lim
t→∞

t(λ2−λ+α+1)/α >

(
λ + p − α)C1/α

2

qnφC1

(
λ2 + p + 1

)1/α
, λ2 + p + 1 > 0,

(3.8)

provided that λ2 + p + 1 > 0 and λ < λ2 + α + 1, or λ = λ2 + α + 1, ((λ + p −
α)C1/α

2 /qnφC1)(λ2 + p + 1)1/α < 1, then (3.3)-(3.4) and (3.6)-(3.7) hold, the solution of (3.1)
is oscillatory.

In particular, we chose α = 1, p = 0, λ = 0, λ2 = −2, φ(x(t), x′(t)) = 1 = nφ, μ = 1, q >
1/4, thus the conditions of the case (1) can be satisfied. This is the sufficient condition for all
solutions of x′′(t) + (q/t2)x(t) = 0 to be oscillatory.

If we choose α = P − 1, p = 2(P − 1), λ = 0, λ1 = −1, λ2 = −P, φ(x, y) ≥ ((P − 1)/P)P +
λ̃/ln2|x| > ((P − 1)/P)P = nφ, λ̃ > 0, μ = P − 1, q ≥ 1, the conditions of the case (2) can be
satisfied. Compared with the conditions: q = 1, λ̃ > (1/2)((P − 1)/P)P+1 in [6], our results are
more general.

Example 3.2. Let us consider the oscillatory behavior of the following differential equation:

x′′(t) − sin tx′(t) +
1 + cos t

1 + sin2t
x(t)
(
1 + |x(t)|2

)
, t ≥ 0. (3.9)

Comparing (3.9) with (1.9), we can see that q̃(t) = (1 + cos t)/(1 + sin2t), α = 1, r(t) =
1, f(x) = x(1 + x2), C1 = 3/ 3

√
2, C0 = C2 = C3 = C4 = 1, p1(t) = p2(t) = −sin t, β = 3. Choosing

ε = 1, clearly, the conditions (2.26) and (2.27) of Theorem6 can be satisfied. Therefore, we
may conclude that (3.9) is oscillatory. Example 3.2 is Example 2 of [5]. It is easy to verify that
Example 1 of [5] also satisfies with Theorem6.

Example 3.3. Let us consider the oscillatory behavior of the following differential equation:

[
1

1 + t2
x′(t)

]′
− a + b sin t

t
x′(t) + q(t)|x(t)|β−1x(t), t ≥ 0. (3.10)

Comparing (3.10)with (1.9), we can see that q̃(t) = q(t), α = 1, r(t) = 1/(1+ t2), f(x) =
|x|β−1x, C1 = β, C0 = C2 = C3 = C4 = 1, and p1(t) = p2(t) = (a + b sin t)/t. Thus, we have
R(t) = t − t0 + (1/3)(t3 − t30) → ∞, t → ∞, so the second condition of Theorem 2.3 in (2.27) is
satisfied. Therefore, another condition is

∫∞

t0

(

q(s) − (a + b sin s)2

4β

(
1 +

1
s2

))

ds = ∞, (3.11)
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and there exists 0 < ε < 2β, t0 ≤ t1 < t2 < · · · < tn < · · · → ∞ such that

∫ t

tn

(

q(s) − (a + b sin s)2

2ε

(
1 +

1
s2

))

ds > 0, t > tn, n = 1, 2, . . . . (3.12)

If only
∫∞
t0
(q(s)−(2a2+b2)/8β)ds = ∞,

∫∞
t0
(q(s)−(2a2+b2)/4ε)ds > M,whereM is a sufficiently

large constant, then the conditions (3.11) and (3.12) can be satisfied, the solution of (3.10) is
oscillatory.

By taking q(t) = sin2t, provided that 2a2 + b2 < 4β, ε = (1/2β + 1/(2a2 + b2))−1, (3.11)
and (3.12) hold. By the way, we also note that for (3.10), the example given in [3],

q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 + t2

4

[
2

t − (6n − 4)π
+
1 + t2

t

]2
, (6n − 4)π ≤ t ≤

(
6n − 7

2

)
π,

3 + t2

4

[
2

(6n − 3)π − t −
1 + t2

t

]2
,

(
6n − 7

2

)
π ≤ t ≤ (6n − 3)π,

n = {1, 2, . . .}

(3.13)

are not continuous at t = (6n − 4)π, (6n − 3)π, n = 1, 2, . . ., and

[t/6π]∑

n=1

∫ (6n−7/2)π

(6n−4)π

3 + t2

4

[
2

t − (6n − 4)π
+
1 + t2

t

]2
dt = ∞,

∫ (6n−3)π

(6n−7/3)π

3 + t2

4

[
2

(6n − 2)π − t +
1 + t2

t

]2
dt = ∞.

(3.14)

Though (3.11) and (3.12) hold, but it is the general requirement that for fixed t,
∫ t
t0
q(s)ds is

bounded; hence, this example is not appropriate.
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[7] J. V. Manojlović, “Oscillation criteria for sublinear differential equations with damping,” Acta
Mathematica Hungarica, vol. 104, no. 1-2, pp. 153–169, 2004.



International Journal of Differential Equations 15

[8] Z. Zheng, “Oscillation criteria for nonlinear second order differential equations with damping,” Acta
Mathematica Hungarica, vol. 110, no. 3, pp. 241–252, 2006.

[9] Y. G. Sun, “Oscillation of second order functional differential equations with damping,” Applied
Mathematics and Computation, vol. 178, no. 2, pp. 519–526, 2006.

[10] Q. Yang, “Oscillation of self-adjoint linear matrix Hamiltonian systems,” Journal of Mathematical
Analysis and Applications, vol. 296, no. 1, pp. 110–130, 2004.

[11] Q. Yang, “On the oscillation of certain nonlinear neutral partial differential equations,” Applied
Mathematics Letters, vol. 20, no. 8, pp. 900–907, 2007.

[12] O. G. Mustafa, S. P. Rogovchenko, and Y. V. Rogovchenko, “On oscillation of nonlinear second-order
differential equations with damping term,” Journal of Mathematical Analysis and Applications, vol. 298,
no. 2, pp. 604–620, 2004.


