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1. Introduction

Higher-order initial value problems (IVPs) arise in mathematical models for problems in
physics and engineering. Generally, second- and higher-order IVPs are more difficult to solve
than first-order IVPs. It is possible to integrate a special nth-order IVP by reducing it to a
first-order system and applying one of the established methods available for such system.
However, it seems more natural to provide direct numerical methods for solving the nth-
order IVPs.

It is the purpose of the present paper to present an alternative approach for the direct
solution of nth-order IVPs based on the homotopy analysis method (HAM). The analytic
homotopy analysis method (HAM), initially proposed by Professor Liao in his Ph.D. thesis
[1], is a powerful method for solving both linear and nonlinear problems. (The interested
reader can refer to the much-cited book [2] for a systematic and clear exposition on this
method.) In recent years, this method has been successfully employed to solve many types
of nonlinear problems in science and engineering [3–17]. All of these successful applications
verified the validity, effectiveness and flexibility of the HAM. More recently, Bataineh et al.
[18–25] employed the standard HAM to solve some problems in engineering sciences. HAM
yields a very rapid convergence of the solution series and in most cases, usually only a few
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iterations leading to very accurate solutions. Thus Liao’s HAM is a universal one which can
solve various kinds of nonlinear equations. Bataineh et al. [18] first presented a modified
HAM called (MHAM) to solve systems of second-order BVPs. Another new approach in
HAM was presented by Yabushita et al. [26] who applied HAM not only to the governing
differential equations, but also to algebraic equation. We call this new variant of HAM as
NHAM.

In this work, we consider a class of nth-order IVPs of the form

x(n) (t) = f
(
t, x (t) , x′ (t) , . . . , x(n−1) (t)

)
, (1.1)

subject to the initial conditions

x (t0) = x0, x′ (t0) = x′0, . . . , x
(n−1) (t0) = x

(n−1)
0 , (1.2)

where f represents a continuous, real linear/nonlinear function, and x0, x′0, . . ., x(n−1)
0

are prescribed. Some of the more recent direct (purely) numerical methods for solving
second-order IVPs were developed by Cash [27], Ramos and Vigo-Aguiar [28, 29]. Recently
Yahaya et al. [30] applied the seminumeric multistage modified Adomian decomposition
method to solve the nth-order IVPs (1.1)-(1.2). Very recently, Chowdhury and Hashim [31]
demonstrated the applicability of the analytic homotopy-perturbation method for solving
nth-order IVPs.

The aim of this paper is to apply HAM and NHAM for the first time to obtain
approximate solutions of nth-order IVPs directly. We demonstrate the accuracy of the HAM
and NHAM through some test examples. Numerical comparison will be made against the
seven- and eight-order Runge-Kutta method (RK78).

2. Basic Ideas of HAM

To describe the basic ideas of the HAM, we consider the following differential equation:

N [x (t)] = 0, (2.1)

where N is a nonlinear operator, t denotes the independent variable, x(t) is an unknown
function. By means of generalizing the traditional homotopy method, Liao [2] constructs the
so-called zero-order deformation equation

(
1 − q

)
L
[
φ
(
t; q

)
− x0 (t)

]
= q�

{
N

[
φ
(
t; q

)]}
, (2.2)

where q ∈ [0, 1] is an embedding parameter, � is a nonzero auxiliary function, L is an auxiliary
linear operator, x0(t) is an initial guess of x(t) and φ(t; q) is an unknown function. It is
important to note that one has great freedom to choose auxiliary objects such as � and L
in HAM. Obviously, when q = 0 and q = 1, both

φ (t; 0) = x0 (t) , φ (t; 1) = x (t) , (2.3)
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hold. Thus as q increases from 0 to 1, the solution φ(t; q) varies from the initial guess x0(t) to
the solution x(t). Expanding φ(t; q) in Taylor series with respect to q, one has

φ
(
t; q

)
= x0 (t) +

+∞∑
m=1

xm (t) qm, (2.4)

where

xm =
1
m!

∂mφ(t; q)
∂qm

∣∣∣∣
q=0
. (2.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter �, and the auxiliary
function are so properly chosen, then the series (2.4) converges at q = 1 and one has

φ (t; 1) = x0 (t) +
+∞∑
m=1

xm (t) , (2.6)

which must be one of the solutions of the original nonlinear equation, as proved by Liao [2].
If � = −1, (2.2) becomes

(
1 − q

)
L
[
φ
(
t; q

)
− x0 (t)

]
+ q

{
N

[
φ
(
t; q

)]}
= 0, (2.7)

which is used mostly in the HPM [32].
According to (2.5), the governing equations can be deduced from the zero-order

deformation equations (2.2). We define the vectors

−→xi = {x0 (t) , x1 (t) , . . . , xi (t)} . (2.8)

Differentiating (2.2) m times with respect to the embedding parameter q and then setting
q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

L
[
xm (t) − χmxm−1 (t)

]
= �Rm

(−→xm−1
)
, (2.9)

where

Rm

(−→xm−1
)
=

1
(m − 1)!

∂m−1 {N [
φ(t; q)

]}

∂qm−1

∣∣∣∣∣
q=0

,

χm =

⎧
⎨
⎩

0, m ≤ 1,

1, m > 1.

(2.10)

It should be emphasized that xm(t) (m ≥ 1) are governed by the linear equation (2.9) with the
linear boundary conditions that come from the original problem, which can be easily solved
by symbolic computation softwares such as Maple and Mathematica.
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A new approach in the HAM was proposed by Yabushita et al. [26]. We will call this
method NHAM. Yabushita et al. [26] considered the following projectile problem:

du
dt

+ f (t)u = 0,

dv
dt

+ f (t)v + 1 = 0,

(2.11)

where

f (t) =
√
u2 + v2. (2.12)

The standard HAM applied to this problem yields a divergent solution on some part of the
solution domain. In NHAM, the zeroth-order deformation equations were constructed for not
only (2.11), but also for (2.12). This slight modification in the NHAM gives a more accurate
solution.

3. Numerical Experiments

To illustrate the effectiveness of the HAM we will consider four examples of nth-order IVPs
(1.1)-(1.2).

3.1. Example 1

We first consider the nonlinear second-order IVP

x′′ + x′2 = 0, (3.1)

subject to the initial conditions

x (0) = 1, x′ (0) = 2. (3.2)

The exact solution is

x (t) = 1 + ln (1 + 2t) . (3.3)

To solve (3.1)-(3.2) by means of HAM, we choose the initial approximation

x0 (t) = 1 + 2t (3.4)

and the linear operator

L
[
Φ
(
t; q

)]
=
∂2φ

(
t; q

)

∂t2
, (3.5)
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with the property

L [c1 + tc2] = 0, (3.6)

where ci (i = 1, 2) are constants of integration. Furthermore, (3.1) suggests that we define the
nonlinear operator as

N
[
φ
(
x; q

)]
=
∂2φ

(
t; q

)

∂t2
+
∂φ2 (t; q)

∂t
. (3.7)

Using the above definition, we construct the zeroth-order deformation equation as in (2.2) and
the mth-order deformation equation for m ≥ 1 is as in (2.9) with the initial conditions

xm (0) = 0, x′m (0) = 0, (3.8)

where

Rm

(−→xm−1
)
= x′′m−1 (t) +

m−1∑
j=0

x′j (t)x
′
m−1−j (t) , (3.9)

now the solution of the mth-order deformation for m ≥ 1 is

xm (t) = χmxm−1 (t) + �L−1Rm

(−→xm−1
)
. (3.10)

We now successively obtain

x1 (t) = 2�t2,

x2 (t) = 2�t2 + 2�
2t2 +

8
3

�
2t3,

x3 (t) = 2�t2 + 4�
2t2 + 2�

2t2 +
16
3

�
2t3 +

16
3

�
3t3 + 4�

3t4,

...

(3.11)

Then the series solution expression can be written in the form

x (t) = x0 (t) + x1 (t) + x2 (t) + · · · , (3.12)

and so forth. Hence, the series solution when � = −1 is

x (t) � 1 + 2t − 2t2 +
8
3
t3 − 4t4 +

32
5
t5 − · · · , (3.13)

which converges to the closed-form solution (3.3).
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3.2. Example 2

Consider the linear fourth-order IVP,

x(4) = −5x′′ − 4x, (3.14)

subject to the initial conditions

x (0) = 1, x′ (0) = 0, x′′ (0) = 0, x′′′ (0) = 1. (3.15)

The exact solution is

x (t) =
4
3

cos t +
1
3

sin t − 1
3

cos 2t − 1
6

sin 2t. (3.16)

To solve (3.14)-(3.15) by means of HAM, we choose the initial approximation

x0 (t) = 1 +
1
6
t3, (3.17)

and the linear operator

L
[
Φ
(
t; q

)]
=
∂4φ

(
t; q

)

∂t4
, (3.18)

with the property

L
[
c1 + tc2 + t2c3 + t3c4

]
= 0, (3.19)

where ci (i = 1, 2, 3, 4) are constants of integration. According to the zeroth-order deformation
equation (2.2) and the mth-order deformation equation for m ≥ 1 (2.9) with the initial conditions

xm (0) = 0, x′m (0) = 0, x′′m (0) = 0, x′′′m (0) = 0, (3.20)

where

Rm

(−→xm−1
)
= x′′′′m−1 (t) + 5x′′m−1 (t) + 4xm−1 (t) , (3.21)

the solution of the mth-order deformation for m ≥ 1 is the same as (3.10).
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We now successively obtain

x1 (t) =
1
6

�t4 +
1

24
�t5 +

1
1260

�t7,

x2 (t) =
1
6

�t4 +
1
6

�
2t4 +

1
24

�t5 +
1

36
�

2t6 +
1

1260
�t7 +

29
5040

�
2t7

+
1

2520
�

2t8 +
1

9072
�

2t9 +
1

2494800
�t11,

...

(3.22)

Then the series solution expression can be written in the form

x (t) = x0 (t) + x1 (t) + x2 (t) + · · · , (3.23)

and so forth. Hence, the series solution when � = −1 is

x1 (t) = −
1
6
t4 − 1

24
t5 − 1

1260
t7,

x2 (t) =
1

36
t6 +

5
1008

t7 +
1

2520
t8 +

1
9072

t9 +
1

2494800
t11,

x3 (t) = −
5

2016
t8 − 25

72576
t9 − 1

22680
t10 − 1

133056
t11 − 1

7484400
t12

− 1
25945920

t13 − 1
20432412000

t15,

x4 (t) =
5

36288
t10 +

25
1596672

t11 +
1

399168
t12 +

5
15567552

t13

+
1

90810720
t14 +

1
544864320

t15 +
1

81729648000
t16

+
1

277880803200
t17 +

1
475176173472000

t19,

(3.24)

and so forth. Hence, the series solution is

x (t) � 1 +
1
6
t3 − 1

6
t4 − 1

24
t5 +

1
36
t6 +

1
240

t7 − 1
480

t8

− 17
72576

t9 +
17

181440
t10 + · · · ,

(3.25)

which converges to the closed-form solution (3.16).
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3.3. Example 3

Now consider the nonlinear fourth-order IVP,

x(4) = −xx′′ + x′2, (3.26)

subject to the initial conditions

x (0) = 0, x′ (0) = 1, x′′ (0) = 1, x′′′ (0) = 1. (3.27)

The exact solution is

x (t) = et − 1. (3.28)

According to the HAM, the initial approximation is

x0 (t) = t +
1
2
t2 +

1
6
t3, (3.29)

and the linear operator is (3.18) with the property (3.19) where ci (i = 1, 2, 3, 4) are constants
of integration. According to the zeroth-order deformation equation (2.2) and the mth-order
deformation equation (2.9) with the initial conditions (3.20) with

Rm

(−→xm−1
)
= x′′′′m−1 +

m−1∑
j=0

xj (t)x′′m−1−j (t) −
m−1∑
j=0

x′j (t)x
′
m−1−j (t) , (3.30)

the solution of the mth-order deformation for m ≥ 1 is the same as (3.10).
We now successively obtain

x1 (t) = −
1
24

�t4 − 1
120

�t5 − 1
270

�t6 − 1
2520

�t7 − 1
20160

�t8

...

(3.31)

Then the series solution expression can be written in the form

x (t) = x0 (t) + x1 (t) + x2 (t) + · · · , (3.32)
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and so forth. Hence, the series solution when � = −1 is

x1 (t) =
1

24
t4 +

1
120

t5 +
1

720
t6 +

1
2520

t7 +
1

20160
t8,

x2 (t) = −
1

5040
t7 − 1

40320
t8 +

1
362880

t9 − 1
453600

t10

− 13
19958400

t11 − 1
11404800

t12 − 1
148262400

t13,

x3 (t) =
1

403200
t10 +

1
1478400

t11 +
43

479001600
t12

+
1

55598400
t13 +

11
1981324800

t14 +
53

32691859200
t15

+
29

106748928000
t16 +

829
29640619008000

t17 +
829

533531142144000
t18

(3.33)

and so forth.
Hence, the series solution is

x (t) � t + 1
2
t2 +

1
6
t3 +

1
24
t4 +

1
120

t5 +
1

720
t6 +

1
5040

t7

+
1

40320
t8 +

1
362880

t9 +
1

3628800
t10 + · · · ,

(3.34)

which converges to the closed-form solution (3.28).

3.4. Example 4

Finally we consider the nonlinear Genesio equation [33]

x′′′ (t) + ax′′ (t) + bx′ (t) − f (x (t)) = 0, (3.35)

where

f (x (t)) = −cx (t) + x2 (t) , (3.36)

subject to the initial conditions

x (0) = 0.2, x′ (0) = −0.3, x′′ (0) = 0.1, (3.37)

where a, b, c are positive constants satisfying ab < c.
First we solve (3.35) by means of HAM. According to the HAM, the initial

approximation is

x0 (t) = 0.2 − 0.3t + 0.05t2, (3.38)
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and the linear operator is

L
[
Φ
(
t; q

)]
=
∂3φ

(
t; q

)

∂t3
, (3.39)

with the property

L
[
c1 + tc2 + t2c3

]
= 0, (3.40)

where ci (i = 1, 2, 3) are constants of integration. According to the zeroth-order deformation
equation (2.2) and the mth-order deformation equation (2.9) with the initial conditions

xm (0) = 0, x′m (0) = 0, x′′m (0) = 0, (3.41)

where

Rm

(−→xm−1
)
= x′′′m−1 (t) + ax

′′
m−1 (t) + bx

′
m−1 (t) + cxm−1 (t)

−
m−1∑
j=0

xj (t)xm−1−j (t) ,
(3.42)

the solution of the mth-order deformation for m ≥ 1 is the same as (3.10).
We now successively obtain when a = 1.2, b = 2.92 and c = 6,

x1 (t) = 0.0673333�t3 − 0.0578333�t4 + 0.0031666�t5 + 0.00025�t6

− 0.0000119048�t7,

x2 (t) = 0.0673333�t3 + 0.0673333�
2t3 − 0.0578333�t4 − 0.0376333�

2t4

+ 0.00316667�t5 − 0.000882667�
2t5 + 0.00025�t6 − 0.001603�

2t6

− 0.0000119048�t7 − 0.00109873�
2t7 − 0.0000592857�

2t8

+ 0.0000175397�
2t9 − 0.0000000324�

2t10 − 0.0000000032�
2t11

+ 0.0000000009�
2t12,

(3.43)

and so forth.
Now we use the new technique, namely NHAM, of Yabushita et al. [26] to solve (3.35).

In this technique, we construct the zeroth-order deformation equations for not only (3.35) but also
for (3.36) as follows:

(
1 − q

)
L
[
φ
(
t; q

)
− x0 (t)

]
= q�

[
∂3φ

(
t; q

)

∂t3
+ a

∂2φ
(
t; q

)

∂t2
+ b

∂φ
(
t; q

)

∂t
− f

(
t; q

)]
,

(
1 − q

)
L
[
f
(
t; q

)
− f0 (x (t))

]
= q�

[
f
(
t; q

)
+ c φ

(
t; q

)
− φ2 (t; q)

]
,

(3.44)
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and the mth-order deformation equation

L
[
xm (t) − χmxm−1 (t)

]
= �Rm

(−→xm−1
)
,

L
[
fm (x (t)) − χmfm−1 (x (t))

]
= �Rm

(−→
f m−1

)
,

(3.45)

with the initial conditions

xm (0) = 0, x′m (0) = 0, x′′m (0) = 0, (3.46)

where

Rm

(−→xm−1
)
= x′′′m−1 (t) + ax

′′
m−1 (t) + bx

′
m−1 (t) − fm−1 (x (t)) ,

Rm

(−→
f m−1

)
= cxm−1 (t) −

m−1∑
j=0

xj (t)xm−1−j (t) .
(3.47)

Again, we successively obtain when a = 1.2, b = 2.92 and c = 6,

f0 (x (t)) = −1.16 + 1.68t − 0.19t2 − 0.03t3 + 0.0025t4,

f1 (x (t)) = 0,

f2 (x (t)) = 0.377067�
2t3 − 0.283467�

2t4 − 0.0237�
2t5 + 0.00908333�

2t6

− 0.000233333�
2t7 − 0.000032142�

2t8 + 0.00000119048�
2t9,

x1 (t) = 0.0673333�t3 − 0.0578333�t4 + 0.00316667�t5 + 0.00025�t6

− 0.0000119048�t7,

x2 (t) = 0.0673333�t3 − 0.0673333�
2t3 − 0.0578333�t4 − 0.0376333�

2t4

+ 0.00316667�t5 − 0.000882667�
2t5 + 0.00025�t6 − 0.00474578�

2t6

− 0.0000119048�t7 + 0.000251111�
2t7 + 0.00001125�

2t8

− 0.000000482�
2t9,

(3.48)

and so forth. Then the series solution expression can be written in the form

x (t) = x0 (t) + x1 (t) + x2 (t) + · · · , (3.49)

f (t) = f0 (t) + f1 (t) + f2 (t) + · · · . (3.50)

The series solutions (3.12), (3.23), (3.32), (3.49) and (3.50) contain the auxiliary parameter �.
The validity of the method is based on such an assumption that the series (2.4) converges at
q = 1. It is the auxiliary parameter � which ensures that this assumption can be satisfied. In
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Example 1
Example 2
Example 3

Figure 1: The �-curve of x′′(0) given by (3.1), (3.14) and (3.26): fifth -order approximation of x′′(0).
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x
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(0
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ħ

Figure 2: The �-curve of x′′(0) obtained from the eleventh -order HAM approximation solution of (3.35).

general, by means of the so-called �-curve, it is straightforward to choose a proper value of �

which ensures that the solution series is convergent. Figure 1 show the �-curves obtained
from the fifth -order HAM approximation solutions of (3.1), (3.14) and (3.26). From this
figure, the valid regions of � correspond to the line segments nearly parallel to the horizontal
axis. Substituting the special choice � = −1 into the series solutions (3.12), (3.23) and (3.32)
yields the exact solution (3.3), (3.16) and (3.28). Also Figures 2 and 3 show the �-curves
obtained from the eleventh -order HAM and NHAM approximation solutions of (3.35) and
(3.36). In Figure 4 we obtain numerical solution of the Genesio equation using the eleventh
-order HAM and NHAM approximation. It is demonstrated that the HAM and NHAM
solutions agree very well with the solutions obtained by the seven- and eight-order Runge-
Kutta method (RK78). Moreover we conclude that the proposed algorithm given by NHAM
is more stable than the classical HAM.

Remarks 1. Equation (3.35) represented by Genesio [33] as a system includes a simple square
part and three simple ordinary differential equations that depend on three positive real
parameters. Bataineh et al. [19] discussed the behavior of this system in the interval t ∈ [0, 2]
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f ′′′′(0)

Figure 3: The �-curve of x′′′(0) and f ′′′(0) given by (3.49) and (3.50): eleventh -order NHAM approximation
of (3.49) and (3.50).
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Figure 4: The eleventh -order HAM and NHAM solutions (3.49) with � = −0.7998 for HAM solution and
� = −0.7 for NHAM solution versus RK78 solution for the (3.35) when a = 1.2, b = 2.92 and c = 6.

by using HAM, so according to Figure 4 we conclude that the behavior of numerical solution
(3.35) is more stable than the numerical solution obtained by [19] using the classical HAM.

4. Conclusions

In this paper, the homotopy analysis method HAM was applied to solve a class of linear and
nonlinear nth-order IVPs and the Genesio equation. HAM provides us with a convenient way
of controlling the convergence of approximation series, which is a fundamental qualitative
difference in analysis between HAM and other methods. The illustrative examples suggest
that HAM is a powerful method for nonlinear problems in science and engineering.
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