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We study the existence and asymptotic behavior of positive solutions for a class of quasilinear ellip-
tic systems in a smooth boundary via the upper and lower solutions and the localization method.
The main results of the present paper are new and extend some previous results in the literature.

1. Introduction

This paper is concerned with the study of positive boundary blow-up solutions to a
quasilinear elliptic system of competitive type:

Δpu = a(x)uavb in Ω,

Δpv = b(x)ucve in Ω,

u = v = +∞ on ∂Ω,

(1.1)

where Ω is a bounded C2 domain of RN and Δp stands for the p-Laplacian operator defined
by Δpu = div(|∇u|p−2∇u), p > 1. The exponents a, b, c, e verify a, e > p − 1, b, c > 0, (a − p +
1)(e − p + 1) > bc. There exists C(x), D(x) ∈ C(Ω, R+), γ(x), η(x) ∈ C(Ω, R+) such that

lim
x→x0

a(x)

C(x0)d(x)γ(x0)
= 1, lim

x→x0

b(x)

D(x0)d(x)η(x0)
= 1, (1.2)

where x0 ∈ ∂Ω, d(x) = dist(x, ∂Ω).
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We must emphasize that the weight functions a(x), b(x) are allowed decaying to zero
onΩwith arbitrary rate, depending upon the particular point of ∂Ω. The boundary condition
is to be understood u(x) → ∞, v(x) → ∞ as d(x) → 0+. Problems like (1.1) are usually
known in the literature as boundary blow-up problems, and their solutions are also named
large solutions or boundary blow-up solutions.

The problem of the previous form is mathematical models occuring in studies of the
p-Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid theory [1, 2],
non-Newtonian filtration [3], and the turbulent flow of a gas in porous medium. In the non-
Newtonian fluid theory, the quantity p is a characteristic of the medium. Media with p >
2 are called dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2, they
are Newtonian fluids. When p /= 2, the problem becomes more complicated since certain nice
properties inherent to the case p = 2 seem to be lost or at least difficult to verify. The main
differences between p = 2 and p /= 2 can be founded in [4, 5].

When p = 2, system (1.1) becomes

Δu = a(x)uavb in Ω,

Δv = b(x)ucve in Ω,

u = v = +∞ on ∂Ω,

(1.3)

for which the existence, uniqueness, and asymptotic behavior of large solutions have been
investigated extensively. We list here, for example, [6–12].

This is a huge amount of literature dealing with single equation with infinite boundary
conditions (see, e.g., [13–34]). This problem with more general nonlinearies and weight-
function has been discussed by many authors recently [35–39].

Problem (1.1) is considered in special case. When p = 2, in [40], problem (1.1) was
analyzed with a(x) = 1, b(x) = 1. In the same paper, some existence, uniqueness, and
boundary behavior of solutions were obtained under the assumptions

a(x) ∼ C1d(x)k1 , b(x) ∼ C2d(x)k2 (1.4)

as d(x) → 0+ for some positive constants C1, C2 and real numbers k1, k2 > −2. This problem
was later studied in [41]with general form, where

C1d(x)γ1 ≤ a(x) ≤ C2d(x)γ1 ,

C′
1d(x)

γ1 ≤ b(x) ≤ C′
2d(x)

γ1 ,
(1.5)

for x ∈ Ω, γ1, γ2 ∈ RN, C1, C2, C
′
1, C

′
2 are positive constants. The author also obtained

uniqueness results.
In [42], Yang extended the quasilinear elliptic system to

Δpu = um1vn1 in Ω,

Δqv = um2vn2 in Ω,

u = v = +∞ on ∂Ω,

(1.6)
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where m1 > p − 1, n2 > q − 1, m2, n1 > 0, and Ω ⊆ RN is a smooth bounded domain, subject
to three different types of Dirichlet boundary conditions: u = λ, v = μ or u = v = +∞ or u =
+∞, v = μ on ∂Ω, where λ, μ > 0. Under several hypotheses on the parameters m1, n1, m2, n2,
the author showed the existence of positive solutions and further provided the asymptotic
behavior of the solutions near ∂Ω.

When p /= 2, in [43], problem (1.1) was analyzed with a(x) = 1, b(x) = 1 under
assumption (1.4). The author obtained the existence, uniqueness, and behavior of solutions
to problem (1.1).

Very recently, Huang et al. [12] obtained existence, uniqueness, and asymptotic
behavior of problem (1.1) when p = 2, and a(x), b(x) satisfy condition (1.2). Motivated by
the results of the papers [12, 40, 41, 43], we consider the quasilinear elliptic system (1.1). We
modify the method developed by Huang et al. [12] and extend the results to a quasilinear
elliptic system (1.1) under condition (1.2).

Throughout of this paper, set

C1 = min
x∈Ω

C(x), C2 = max
x∈Ω

C(x), D1 = min
x∈Ω

D(x), D2 = max
x∈Ω

D(x),

γ1 = max
x∈Ω

γ(x), γ2 = min
x∈Ω

γ(x), η1 = max
x∈Ω

η(x), η2 = min
x∈Ω

η(x),

α
(
x, y
)
=

(
p + x

)(
e − p + 1

) − (p + y
)
b

(
a − p + 1

)(
e − p + 1

) − bc
, β

(
x, y
)
=

(
p + y

)(
a − p + 1

) − (p + x
)
c

(
a − p + 1

)(
e − p + 1

) − bc
,

E
(
x, y
)
=

⎛

⎝
((
p − 1

)
αp−1(α + 1)

)e−p+1
xb

((
p − 1

)
βp−1
(
β + 1

))b
ye−p+1

⎞

⎠

1/((a−p+1)(e−p+1)−bc)

,

F
(
x, y
)
=

⎛

⎝
((
p − 1

)
βp−1
(
β + 1

))a−p+1
yc

((
p − 1

)
αp−1(α + 1)

)c
xa−p+1

⎞

⎠

1/((a−p+1)(e−p+1)−bc)

,

(1.7)

nx0 stands for the outward unit normal at x0 ∈ ∂Ω.
The paper is organized as follows. In Section 2 we consider some preliminaries which

will be used in proof of Theorem 1.1. In Section 3 we will give the proof of the main theorem.
By modifications of the arguments in the proof of Theorem 1.1 in [12], we obtain the

following main results.

Theorem 1.1. Assume that Ω is a bounded C2 domain of RN, a(x), b(x) ∈ Cθ(Ω) for some θ ∈
(0, 1), a(x), b(x) > 0 in Ω and verify (1.2), (a − p + 1)(e − p + 1) > bc, a, e > p − 1, b, c >

0, γ(x), η(x) ∈ C(Ω, R+) and satisfy

b

e − p + 1
<

p + γ(x0)
p + η(x0)

<
a − p + 1

c
for x0 ∈ ∂Ω. (1.8)
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Then problem (1.1) has a solution (u, v) if and only if

b

e − p + 1
<

p + γ1
p + η2

,
p + γ2
p + η1

<
a − p + 1

c
. (1.9)

And one has

lim
x→x0

u(x)

d(x)−α(γ(x0),η(x0))E(D(x0), C(x0))
= 1, (1.10)

lim
x→x0

v(x)

d(x)−β(γ(x0),η(x0))F(D(x0), C(x0))
= 1. (1.11)

2. Preliminaries

In this section, we will introduce some propositions.

Definition 2.1. (u, v) is a subsolution of

⎧
⎨

⎩

Δpu = a(x)uavb in Ω,

Δpv = b(x)ucve in Ω,
provided

⎧
⎨

⎩

Δpu ≥ a(x)uavb in Ω,

Δpv ≤ b(x)ucve in Ω.
(2.1)

A supersolution (u, v) is defined by reversing the inequalities.

Proposition 2.2. Assume that (u, v) is a subsolution and (u, v) is a supersolution of problem (1.1),
with u = v = u = v = +∞ on ∂Ω. Then problem (1.1) has at least a solution (u, v) with u ≤ u ≤
u, v ≥ v ≥ v in Ω. In particular u = v = +∞ on ∂Ω.

Proposition 2.3 (see [43]). Assume that a(x), b(x) satisfy (1.4), then problem (1.1) admits a
positive solution (u, v) with u = v = +∞ on ∂Ω if and only if k1, k2 > −p and

b

e − p + 1
<

p + k1
p + k2

<
a − p + 1

c
. (2.2)

This solution is unique and satisfies

lim
x→x0

u(x)

d(x)−α(k1,k2)E(C2, C1)
= 1, lim

x→x0

v(x)

d(x)−β(k1,k2)F(C2, C1)
= 1 (2.3)

for each x0 ∈ ∂Ω.

Next, we are ready to study two auxiliary problems in a ball and an annuli. To this
aim, for given 0 < R1 < R and x0 ∈ RN,N ≥ 1, set

BR(x0) =
{
x ∈ RN : |x − x0| < R

}
, AR1,R(x0) =

{
x ∈ RN : R1 < |x − x0| < R

}
. (2.4)
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Proposition 2.4. AssumeΩ = BR(x0), (a−p+1)(e−p+1) > bc, a, e > p−1, b, c > 0, C(r), D(r) ∈
C([0, R], R+) and γ, η > 0 satisfy

b

e − p + 1
<

p + γ

p + η
<

a − p + 1
c

. (2.5)

Then the following systems

ΔpΦ = C(r)(R − r)γΦaΨb in BR(x0),

ΔpΨ = D(r)(R − r)ηΦcΨe in BR(x0),

Φ = Ψ = +∞ on ∂BR(x0)

(2.6)

possess a unique radially symmetric positive solution (Φ(r),Ψ(r)) satisfying

lim
x→x0

Φ(r)

E(D(R), C(R))(R − r)−α(γ,η)
= 1,

lim
x→x0

Ψ(r)

F(D(R), C(R))(R − r)−β(γ,η)
= 1,

(2.7)

where r = |x − x0|.

Proof. At first, we consider the following systems

(∣∣Φ′∣∣p−2Φ′
)′

+
N − 1

r

(∣∣Φ′∣∣p−2Φ′
)
= C(r)(R − r)γΦaΨb in (0, R),

(∣∣Ψ′∣∣p−2Ψ′
)′

+
N − 1

r

(∣∣Ψ′∣∣p−2Ψ′
)
= D(r)(R − r)ηΦcΨe in (0, R),

Φ(R) = Ψ(R) = +∞, Φ′(0) = Ψ′(0) = 0.

(2.8)

Wewill show that problem (2.8) has a solution (Φ(r),Ψ(r)),which provide a positive radially
symmetric solution to problem (2.6). Indeed, any positive solution (Φ(r),Ψ(r)) of the integral
equation system

Φ(r) = l +
∫ r

0

[

t1−N
∫ t

0
sN−1C(s)(R − s)γΦaΨbds

]1/(p−1)
dt, 0 < r < R,

Ψ(r) = m +
∫ r

0

[

t1−N
∫ t

0
sN−1D(s)(R − s)ηΦcΨeds

]1/(p−1)
dt, 0 < r < R,

(2.9)

provides a solution of (2.8), where Φ(0) = l,Ψ(0) = m,Φ(R) = +∞,Ψ(R) = +∞.
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Define Φ0(r) = l,Ψ0(r) = m for all 0 < r < R, let {Φk}, {Ψk} be the function sequences
given by

Φk(r) = l +
∫ r

0

[

t1−N
∫ t

0
sN−1C(s)(R − s)γΦa

k−1Ψ
b
k−1ds

]1/(p−1)
dt, 0 < r < R,

Ψk(r) = m +
∫ r

0

[

t1−N
∫ t

0
sN−1D(s)(R − s)ηΦc

k−1Ψ
e
k−1ds

]1/(p−1)
dt, 0 < r < R,

(2.10)

subject to Φk(0) = l,Ψk(0) = m,Φk(R) = Ψk(R) = k.
We remark that {Φk}, {Ψk} are nondecreasing sequences. In fact,

Φ1(r) = l +
(
lamb

)1/(p−1)∫ r

0

[

t1−N
∫ t

0
sN−1C(s)(R − s)γds

]1/(p−1)
dt

= l +
(
lamb

)1/(p−1)
A(r) ≥ l = Φ0(r),

Ψ1(r) = m + (lcme)1/(p−1)
∫ r

0

[

t1−N
∫ t

0
sN−1D(s)(R − s)ηds

]1/(p−1)
dt

= m + (lcme)1/(p−1)B(r) ≥ m = Ψ0(r),

(2.11)

where

A(r) =
∫ r

0

[

t1−N
∫ t

0
sN−1C(s)(R − s)γds

]1/(p−1)
dt,

B(r) =
∫ r

0

[

t1−N
∫ t

0
sN−1D(s)(R − s)ηds

]1/(p−1)
dt.

(2.12)

Proceeding by the same manner, we conclude that

l ≤ Φk ≤ Φk+1, m ≤ Ψk ≤ Ψk+1. (2.13)

We now prove that {Φk}, {Ψk} are bounded in (0, R). To prove this, we consider

ΔpΥ =
(
C(r)(R − r)γ +D(r)(R − r)η

)(
Υa+b + Υc+e

)
, (2.14)

problem (2.14) has a large radially symmetric solution Υ(r), and

Υ(r) = Υ(0) +
∫ r

0

[

t1−N
∫ t

0
sN−1(C(s)(R − s)γ +D(s)(R − s)η

)(
Υa+b + Υc+e

)
ds

]1/(p−1)
dt,

(2.15)
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where Υ(0) = l +m. It follows that

Φ1(r) = l +
(
lamb

)1/(p−1)∫ r

0

[

t1−N
∫ t

0
sN−1C(s)(R − s)γds

]1/(p−1)
dt

≤ Υ(0) +
∫ r

0

[

t1−N
∫ t

0
sN−1(C(s)(R − s)γ +D(s)(R − s)η

)(
Υa+b + Υc+e

)
ds

]1/(p−1)
dt

= Υ(r).
(2.16)

Similarly, we have Ψ1 ≤ Υ(r).
Arguing as before, we obtain Φk ≤ Υ(r),Ψk ≤ Υ(r). Therefore, we show that

{Φk}, {Ψk} are nondecreasing and bounded sequences in (0, R), which implies that the
following limit holds

(Φ,Ψ) = lim
k→∞

(Φk,Ψk), (2.17)

we deduce that (Φ,Ψ) is a positive solution of (2.8). Then (Φ(x),Ψ(x)) = (Φ(r),Ψ(r)) is a
positive radially symmetric solution to problem (2.6) and

Φ(R) = lim
r→R

Φ(r) = ∞, Ψ(R) = lim
r→R

Ψ(r) = ∞. (2.18)

Secondly, it is clear that

C1(R − r)γ ≤ C(r)(R − r)γ ≤ C2(R − r)γ , D1(R − r)η ≤ D(r)(R − r)η ≤ D2(R − r)η.
(2.19)

By (2.5) and Proposition 2.3, we have

E(D1, C2) ≤ lim
r→R

Φ(r)

(R − r)−α(γ,η)
≤ E(D2, C1),

F(D2, C1) ≤ lim
r→R

Ψ(r)

(R − r)−β(γ,η)
≤ F(D1, C2).

(2.20)

Denote by

l = lim
r→R

Φ(r)

(R − r)−α(γ,η)
, k = lim

r→R

Ψ(r)

(R − r)−β(γ,η)
. (2.21)
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By using γ + p = (a − p + 1)α(γ, η) + bβ(γ, η), η + p = (e − p + 1)β(γ, η) + cα(γ, η) and L′Hôpital
rule, we obtain

l = lim
r→R

Φ(0) +
∫ r
0

[
t1−N

∫ t
0s

N−1C(s)(R − s)γΦaΨbds
]1/(p−1)

dt

(R − r)−α

= lim
r→R

[
r1−N

∫ r
0t

N−1C(t)(R − t)γΦaΨbdt
]1/(p−1)

α(R − r)−α−1

=

[

lim
r→R

r1−N
∫ r
0t

N−1C(t)(R − t)γΦaΨbdt

α(R − r)−(α+1)(p−1)

]1/(p−1)

=

[

lim
r→R

(1 −N)r−N
∫ r
0t

N−1C(t)(R − t)γΦaΨbdt + C(r)(R − r)γΦaΨb

α(α + 1)
(
p − 1

)
(R − r)−αp+α−p

]1/(p−1)

=

[
C(R)

α(α + 1)
(
p − 1

) lim
r→R

(R − r)aα+bβΦaΨb

+
1 −N

α(α + 1)
(
p − 1

) lim
r→R

r−N
∫ r
0t

N−1C(t)(R − t)γΦaΨbdt

(R − r)−αp+α−p

]1/(p−1)

=

[
C(R)

α(α + 1)
(
p − 1

) lakb +
1 −N

α(α + 1)
(
p − 1

) lim
r→R

r−N
∫ r
0t

N−1C(t)(R − t)γΦaΨbdt

(R − r)−αp+α−p

]1/(p−1)
.

(2.22)

We note that

0 ≤ lim
r→R

r−N
∫ r
0t

N−1C(t)(R − t)γΦaΨbdt

(R − r)−αp+α−p

≤ lim
r→R

r−1
∫ r
0C(t)(R − t)γΦaΨbdt

(R − r)−αp+α−p

= lim
r→R

C(r)(R − r)γΦaΨbdt

R
(−αp + α − p

)
(R − r)−αp+α−p+1

=
C(R)

R
(−αp + α − p

) lim
r→R

(R − r)γ+αp−α+p+1ΦaΨb

=
C(R)

R
(−αp + α − p

) lakb lim
r→R

(R − r) = 0.

(2.23)

This implies that

lp−1 =
C(R)

α(α + 1)
(
p − 1

) lakb. (2.24)
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Similarly, we obtain

kp−1 =
D(R)

β
(
β + 1

)(
p − 1

) lcke. (2.25)

Since

αp−1(α + 1)
(
p − 1

)

C(R)
= E(D(R), C(R))a−p+1F(D(R), C(R))b,

βp−1
(
β + 1

)(
p − 1

)

D(R)
= E(D(R), C(R))cF(D(R), C(R))e−p+1.

(2.26)

If 0 < α < 1, 1 < p ≤ 2, then

Ea−p+1Fb =
αp−1(α + 1)

(
p − 1

)

C(R)
≥ α(α + 1)

(
p − 1

)

C(R)
= la−p+1kb, (2.27)

therefore, we get E ≥ l, F ≥ k. If 0 < α < 1, p > 2, we get E ≤ l, F ≤ k. So, when 0 < α < 1, we
get E = l, F = k.

Similarly, when α ≥ 1, we also get E = l, F = k.
By (2.24) and (2.25), we conclude that l = E(D(R), C(R)), k = F(D(R), C(R)), this

completes the proof.

Proposition 2.5. Assume (a − p + 1)(e − p + 1) > bc, a, e > p − 1, b, c > 0, γ > 0, η > 0, and

b

e − p + 1
<

p + γ

p + η
<

a − p + 1
c

, (2.28)

D(r), C(r) ∈ C([R1, R], R+) are the reflection around R0 = (R1 + R)/2 of some functions
C(r), D(r) ∈ C([R0, R], R+). Then the following system

ΔpΦ = C(r)d(x)γΦaΨb in AR1,R(x0),

ΔpΨ = D(r)d(x)ηΦcΨe in AR1,R(x0),

Φ = Ψ = +∞ on ∂AR1,R(x0)

(2.29)

has a unique radially symmetric positive solution (Φ(r),Ψ(r)) such that

lim
d(x)→ 0

Φ(r)

E(D(R), C(R))d(x)−α(γ,η)
= 1,

lim
d(x)→ 0

Ψ(r)

F(D(R), C(R))d(x)−β(γ,η)
= 1,

(2.30)
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where

d(x) = d(x, ∂AR1,R(x0)) =

⎧
⎨

⎩

R − |x − x0|, if R0 ≤ |x − x0| ≤ R,

|x − x0| − R1, if R1 ≤ |x − x0| ≤ R0.
(2.31)

Proof. The proof is similarl to the proof of Proposition 2.4, so we omit it here.

3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1, whose proof will be split into the following several
lemmas.

Lemma 3.1. Assume (a − p + 1)(e − p + 1) > bc, a, e > p − 1, b, c > 0, C(x), D(x) ∈
C(Ω), a(x), b(x) > 0 in Ω and (1.2) holds, γ(x), η(x) > 0 and satisfy

b

e − p + 1
<

p + γ(x0)
p + η(x0)

<
a − p + 1

c
, (3.1)

for each x0 ∈ ∂Ω, then problem (1.1) has a solution (u, v) if

b

e − p + 1
<

p + γ1
p + η2

,
p + γ2
p + η1

<
a − p + 1

c
. (3.2)

Proof. By (3.2) and Proposition 2.3, the following system

ΔpΦ = C1d(x)γ1ΦaΨb in Ω,

ΔpΨ = D2d(x)η2ΦcΨe in Ω,

Φ = Ψ = +∞ on ∂Ω

(3.3)

possesses a positive solution (u1, v1).
Next we will show that

(u, v) =

⎛

⎝
(

m + n

(m − n)b/(a−p+1)

)1/(p−1)
u1,

(
m − n

(m + n)c/(e−p+1)

)1/(p−1)
v1

⎞

⎠ (3.4)

is a supersolution of (1.1), if m is sufficiently large and 0 < m − n < 1, where m,n ∈ R+ and
m > n. In fact, by

γ1 + p =
(
a − p + 1

)
α
(
γ1, η2

)
+ bβ

(
γ1, η2

)
, η2 + p =

(
e − p + 1

)
β
(
γ1, η2

)
+ cα

(
γ1, η2

)
.
(3.5)
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We have (u, v) is a supersolution of (1.1) provided

C1d(x)γ1 ≤ a(x)(m + n)((e−p+1)(a−p+1)−bc)/(e−p+1)(p−1),

D2d(x) ≥ b(x)(m − n)((a−p+1)(e−p+1)−bc)/(a−p+1)(p−1).
(3.6)

Since a(x), b(x) ∈ C(Ω), choosing m is large enough, and m − n > 0 is sufficiently small, we
can prove that

(
u, v
)
=

⎛

⎝
(

m − n

(m + n)b/(a−p+1)

)1/(p−1)
u2,

(
m + n

(m − n)c/(e−p+1)

)1/(p−1)
v2

⎞

⎠ (3.7)

is a subsolution of (1.1), where (u2, v2) is a solution of the following problem:

ΔpΦ = C2d(x)γ2ΦaΨb in Ω,

ΔpΨ = D1d(x)η1ΦcΨe in Ω,

Φ = Ψ = +∞ on ∂Ω.

(3.8)

Then by Proposition 2.2, problem (1.1) has a solution.

Lemma 3.2. Assume that problem (1.1) has a solution (u, v), then (1.9) holds.

Proof. In fact, if (1.9) does not hold, it will lead to a contradiction. From Lemma 3.1, we find
that ifm is large enough and m − n > 0 is sufficiently small, we have

u ≤ u =

(
m + n

(m − n)b/(a−p+1)

)1/(p−1)
u1, v ≤ v =

(
m + n

(m − n)c/(e−p+1)

)1/(p−1)
v2. (3.9)

On the other hand, by (2.3), there exists ε > 0 such that for x ∈ Ωε = {x ∈ Ω : d(x, ∂Ω) ≤ ε},
we get

u ≤
(

m + n

(m − n)b/(a−p+1)

)1/(p−1)
u1 ≤

(
m + n

(m − n)b/(a−p+1)

)1/(p−1)
E(D2, C1)d(x)−α(γ1,η2).

(3.10)

Thus, if

b

e − p + 1
≥ p + γ1

p + η2
, (3.11)
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by the definition of α(γ1, η2), we obtain α(γ1, η2) ≤ 0. By (3.10), it implies that u is bounded
for x ∈ Ωε, which is impossible since u(x) = +∞ as d(x) = dist(x, ∂Ω) → 0+. If

p + γ2
p + η2

≥ a − p + 1
c

, (3.12)

it is similarly proved that v is bounded near ∂Ω, which is also a contradiction. The proof of
Lemma 3.2 is complete.

Lemma 3.3. Let (u, v) be a positive solution of (1.1), then (1.10) and (1.11) hold.

Proof. Fix τ ∈ (0, 1), by (1.2), there exits σ ∈ (0, 1) such that, if d(x, x0) < σ,

a(x) ≥ (1 − τ)C(x0)d(x)γ(x0), b(x) ≤ (1 + τ)D(x0)d(x)η(x0), (3.13)

where x0 ∈ ∂Ω. For a fixed x0 ∈ ∂Ω, set

Σ = Bσ/2

⋂
∂Ω (3.14)

and choose R > 0 small enough such that

K =
⋃

y∈Σ
BR

(
y − Rny

) ⊂ Bσ(x0)
⋂

Ω, (3.15)

where ny stands for the outward unit normal at y ∈ ∂Ω.
For x ∈ Bσ(x0) ∩Ω, we get

a(x) ≥ (1 − τ)C(x0)d(x)γ(x0), b(x) ≤ (1 + τ)D(x0)d(x)η(x0). (3.16)

Since Ω is of C2 bounded domain, there exit R > 0 and σ0 > 0 such that

BR(x0 − (R + σ)nx0) ⊂ Ω, BR(x0 − Rnx0)
⋂

∂Ω = {x0}, (3.17)

for each σ ∈ (0, σ0).
Let (uB,σ , vB,σ) be any positive radially symmetric solution to the following system:

Δpu = (1 − τ)C(x0)(R − |x − x0|)γ(x0)uavb in BR(x0 − (R + σ)nx0),

Δpv = (1 + τ)D(x0)(R − |x − x0|)η(x0)ucve in BR(x0 − (R + σ)nx0),

u = v = +∞ on ∂BR(x0 − (R + σ)nx0).

(3.18)

It is easy to see that (uσ, vσ) = (u, v)|BR(x0−(R+σ)nx0 ) is a positive smooth subsolution of (3.18),
where (u, v) is a positive solution of (1.1).
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Then we get

uσ = u|BR(x0−(R+σ)nx0 )
≤ uB,σ , vσ = v|BR(x0−(R+σ)nx0 )

≥ vB,σ . (3.19)

Let (uB, vB) be any positive solution to the following system:

Δpu = (1 − τ)C(x0)(R − |x − x0|)γ(x0)uavb in BR(x0 − Rnx0),

Δpv = (1 + τ)D(x0)(R − |x − x0|)η(x0)ucve in BR(x0 − Rnx0),

u = v = +∞ on ∂BR(x0 − Rnx0).

(3.20)

By Proposition 2.3, (uB, vB) satisfies

lim
r→R

uB

E((1 + τ)D(x0), (1 − τ)C(x0))(R − r)−α(γ(x0),η(x0))
= 1, (3.21)

lim
r→R

vB

F((1 + τ)D(x0), (1 − τ)C(x0))(R − r)−β(γ(x0),η(x0))
= 1, (3.22)

where r = |x − x0|.
Taking into account that, for x ∈ BR(x0 − (R + σ)nx0),

uB,σ(x) = uB(x + σnx0), vB,σ(x) = vB(x + σnx0), (3.23)

by (3.19), for each x ∈ BR(x0 − (R + σ)nx0) and σ ∈ (0, σ0), we have

u(x) ≤ uB(x + σnx0), v(x) ≥ vB(x + σnx0). (3.24)

Let σ → 0, we have

u(x) ≤ uB(x), v(x) ≥ vB(x). (3.25)

It follows immediately from (3.21), (3.22) that

lim
r→R

u

E(R − r)−α
≤ lim

r→R

uB

E(R − r)−α
= 1, (3.26)

lim
r→R

v

F(R − r)−β
≥ lim

r→R

vB

F(R − r)−β
= 1, (3.27)

where E = E((1 + τ)D(R), (1 − τ)C(R)), F = F((1 + τ)D(R), (1 − τ)C(R)).
We next have to prove the inverse inequalities. Similarly, there exits R > R1 > 0 and

σ0 > 0 such that Ω ⊂ ⋂0<σ<σ0
AR1,R(x0 + (R + σ)nx0) and AR0,R(x0 + R1nx0)

⋂
∂Ω = {x0}.
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Fix a sufficiently small τ , there exit radially symmetric functions a : AR1,R(x0 + R1nx0) → R+

and b : AR1,R(x0 + R1nx0) → R+ such that a ≥ a, b ≤ b in Ω, and

max
AR1 ,R(x0+R1nx0 )

a ≤ max
Ω

a + 1, max
Ω

b + 1 ≤ max
AR1 ,R(x0+R1nx0 )

b, (3.28)

and for each x ∈ AR1,R(x0 + R1nx0)

a(x) = a1(|x − x0 − R1nx0 |)
[
d
(
x, ∂AR1,R(x0+R1nx0)

)]γ(x0)
,

b(x) = b1(|x − x0 − R1nx0 |)
[
d
(
x, ∂AR1,R(x0+R1nx0)

)]η(x0)
,

(3.29)

where a1, b1 ∈ C([R1, R], R+), satisfing

a1(R1) = C(x0) + τ, b1(R1) = D(x0) − τ. (3.30)

We now consider the system

Δpu = a(x)uavb in AR1,R(x0 + R1nx0),

Δpv = b(x)ucve in AR1,R(x0 + R1nx0),

u = v = +∞ on ∂AR1,R(x0 + R1nx0).

(3.31)

By Proposition 2.5, problem (3.31) possesses a solution (uA, vA).
But for the system

Δpu = a(x)uavb in AR1,R(x0 + (R1 + σ)nx0),

Δpv = b(x)ucve in AR1,R(x0 + (R1 + σ)nx0),

u = v = +∞ on ∂AR1,R(x0 + (R1 + σ)nx0),

(3.32)

it has a solution (uA,σ, vA,σ), and for each x ∈ AR1,R(x0 + (R1 + σ)nx0), we have

(uA,σ(x), vA,σ(x)) = (uA(x − σnx0), vA(x − σnx0)). (3.33)
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It is also clear that (uA(x), vA(x)) = (uA,σ(x), vA,σ(x))|Ω is a subsolution of problem (1.1).
Thus for each x ∈ AR1,R(x0 + (R1 + σ)nx0), we get uA(x − σnx0) ≤ u(x), vA(x − σnx0) ≥ v(x).
Let σ → 0, we have uA(x) ≤ u(x), vA(x) ≥ v(x). Thus for x ∈ K, we get

1 = lim
|x|→R

uA(x)

E
(
a(x), b(x)

)
(R − |x|)−α(γ(x0),η(x0))

≤ lim
d(x)→ 0

u(x)

E
(
a(x), b(x)

)
(R − |x|)−α(γ(x0),η(x0))

,

(3.34)

1 = lim
|x|→R

vA(x)

F
(
a(x), b(x)

)
(R − |x|)−β(γ(x0),η(x0))

≥ lim
d(x)→ 0

v(x)

F
(
a(x), b(x)

)
(R − |x|)−β(γ(x0),η(x0))

(3.35)

but we have limτ → 0 K = {x0}. Therefore, by (3.26), (3.27), (3.34), and (3.35), we finish (1.10)
and (1.11). The proof of Lemma 3.3 is complete. From Lemma 3.1 to Lemma 3.3, we finish the
proof of Theorem 1.1.

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (Grant no.
10871060) by the Natural Science Foundation of the Jiangsu Higher Education Institutions of
China (Grant no. 8KJB110005).

References

[1] G. Astrita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, NY,
USA, 1974.

[2] L. K. Martinson and K. B. Pavlov, “Unsteady shear flows of a conducting fluid with a rheological
power law,” Magnitnaya Gidrodinamika, vol. 2, pp. 50–58, 1971.

[3] A. S. Kalashnikov, “On a nonlinaer equation appearing in the theory of non-stationary filtration,”
Trudy Seminara imeni I. G. Petrovskogo, vol. 4, pp. 137–146, 1978.

[4] Z. M. Guo, “Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue
problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 18, no. 10, pp. 957–971, 1992.

[5] Z. M. Guo and J. R. L. Webb, “Uniqueness of positive solutions for quasilinear elliptic equations when
a parameter is large,” Proceedings of the Royal Society of Edinburgh: Section A, vol. 124, no. 1, pp. 189–198,
1994.

[6] Y. Du, “Effects of a degeneracy in the competition model. Part II. Perturbation and dynamical
behaviour,” Journal of Differential Equations, vol. 181, no. 1, pp. 133–164, 2002.

[7] Y. Du, “Effects of a degeneracy in the competitionmodel. Part I. Classical and generalized steady-state
solutions,” Journal of Differential Equations, vol. 181, no. 1, pp. 92–132, 2002.

[8] E. N. Dancer and Y. Du, “Effects of certain degeneracies in the predator-prey model,” SIAM Journal
on Mathematical Analysis, vol. 34, no. 2, pp. 292–314, 2002.

[9] J. Garcı́a-Melián, R. Letelier-Albornoz, and J. Sabina de Lis, “The solvability of an elliptic system
under a singular boundary condition,” Proceedings of the Royal Society of Edinburgh: Section A, vol. 136,
no. 3, pp. 509–546, 2006.

[10] J. López-Gómez, “Coexistence and meta-coexistence for competing species,” Houston Journal of
Mathematics, vol. 29, no. 2, pp. 483–536, 2003.



16 International Journal of Differential Equations

[11] J. Garcı́a-Melián, A. Suárez, and J. Sabina de Lis, “Existence and uniqueness of positive large solutions
to some cooperative elliptic systems,” Advanced Nonlinear Studies, vol. 3, pp. 193–206, 2003.

[12] S. Huang, Q. Tian, and C. Mu, “Large solutions of elliptic system of competitive type: existence
uniqueness and asymptotic behavior,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, pp.
4544–4552, 2009.

[13] L. Bieberbach, “Δu = eu und die automorphen Funktionen,”Mathematische Annalen, vol. 77, no. 2, pp.
173–212, 1916.

[14] C. Bandle andM. Marcus, “Sur les solutions maximales de problèmes elliptiques nonlinèaires: bornes
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[18] M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, R. Letelier, and J. Garcı́a-Melián, “On an elliptic
problem with boundary blow-up and a singular weight: the radial case,” Proceedings of the Royal
Society of Edinburgh: Section A, vol. 133, no. 6, pp. 1283–1297, 2003.
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