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A generalized Fisher’s equation is solved by using the modified Adomian decomposition
method (MADM), variational iteration method (VIM), homotopy analysis method (HAM), and
modified homotopy perturbation method (MHPM). The approximation solution of this equation
is calculated in the form of series whose components are computed easily. The existence,
uniqueness, and convergence of the proposed methods are proved. Numerical example is studied
to demonstrate the accuracy of the present methods.

1. Introduction

Fisher proposed equation ∂u/∂t = ∂2u/∂x2 + u(1 − u) as a model for the propagation
of a mutant gene, with u denoting the density of an advantageous. This equation is
encountered in chemical kinetics [1] and population dynamics which includes problems
such as nonlinear evolution of a population in a nuclear reaction and branching. Moreover,
the same equation occurs in logistic population growth models [2], flame propagation,
neurophysiology, autocatalytic chemical reaction, and branching Brownianmotion processes.
A lot of works have been done in order to find the numerical solution of this equation,
for example, variational iteration method and modified variational iteration method for
solving the generalized Fisher equation [3–5], an analytical study of Fisher equation by using
Adomian decomposition method [6], numerical solution for solving Burger-Fisher equation
[7–10], a novel approach for solving the Fisher equation using Exp-function method [11]. In
this paper, we develop the MADM, VIM, HAM, and MHPM to solve the generalized Fisher
equation as follows:

∂u

∂t
=

∂2u

∂x2 + u(1 − us), (1.1)



2 International Journal of Differential Equations

with the initial conditions given by

u(x, 0) = f(x). (1.2)

The paper is organized as follows. In Section 2, the iteration methods MADM, VIM,
HAM and MHPM are introduced for solving (1.1). Also, the existance, uniqueness and
convergence of the proposed in Section 3. Finally, the numerical example is presented in
Section 4 to illustrate the accuracy of these methods.

To obtain the approximation solution of (1.1), by integrating one time from (1.1) with
respect to t and using the initial conditions, we obtain

u(x, t) = f(x) +
∫ t
0

∂2u(x, τ)
∂x2 dτ +

∫ t
0
u(x, τ)(1 − us(x, τ))dτ. (1.3)

We set

F(u) = u(1 − us). (1.4)

In (1.3), we assume f(x) is bounded for all x in J = [0, T](T ∈ �) and

|t − τ | ≤M′, ∀0 ≤ t, τ ≤ T. (1.5)

The termsD2(u) and F(u) are Lipschitz continuous with |D2(u) −D2(u∗)| ≤ L1|u − u∗|,
|F(u) − F(u∗)| ≤ L2|u − u∗|.

We set

α = T
(
M′L1 +M′L2

)
,

β = 1 − T(1 − α).
(1.6)

Nowwe decompose the unknown function u(x, t) by a sum of components defined by
the following decomposition series with u0 identified as u(x, 0):

u(x, t) =
∞∑
n=0

un(x, t). (1.7)

2. Iterative Methods

2.1. Preliminaries of the MADM

The Adomian decomposition method is applied to the following general nonlinear equation:

Lu + Ru +Nu = g(x), (2.1)
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where u is the unknown function, L is the highest-order derivative which is assumed to be
easily invertible, R is a linear differential operator of order less than L,Nu represents the
nonlinear terms, and g is the source term. Applying the inverse operator L−1 to both sides of
(2.1), and using the given conditions, we obtain

u = f(x) − L−1(Ru) − L−1(Nu), (2.2)

where the function f(x) represents the terms arising from integrating the source term g(x).
The nonlinear operatorNu = G(u) is decomposed as

G(u) =
∞∑
n=0

An, (2.3)

where An, n ≥ 0 are the Adomian polynomials determined formally as follows:

An =
1
n!

[
dn

dλn

[
N

( ∞∑
i=0

λiui

)]]
λ=0

. (2.4)

Adomian polynomials were introduced in [12–15] as

A0 = G(u0),

A1 = u1G
′(u0),

A2 = u2G
′(u0) +

1
2!
u2
1G
′′(u0),

A3 = u3G
′(u0) + u1u2G

′′(u0) +
1
3!
u3
1G
′′′(u0), . . . .

(2.5)

2.1.1. Adomian Decomposition Method

The standard decomposition technique represents the solution of u in (2.1) as the following
series,

u =
∞∑
n=0

ui, (2.6)

where, the components u0, u1, . . . are usually determined recursively by

u0 = f(x),

un+1 = −L−1(Run) − L−1(An), n ≥ 0.
(2.7)

Substituting (2.5) into (2.7) leads to the determination of the components of u. Having
determined the components u0, u1, . . . the solution u in a series form defined by (2.6) follows
immediately.
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2.1.2. The Modified Adomian Decomposition Method

Themodified decomposition method was introduced byWazwaz in [16]. The modified forms
was established based on the assumption that the function f(x) can be divided into two parts,
namely f1(x) and f2(x). Under this assumption we set

f(x) = f1(x) + f2(x). (2.8)

Accordingly, a slight variation was proposed only on the components u0 and u1. The
suggestion was that only the part f1 be assigned to the zeroth component u0, whereas the
remaining part f2 be combined with the other terms given in (2.7) to define u1. Consequently,
the modified recursive relation

u0 = f1(x),

u1 = f2(x) − L−1(Ru0) − L−1(A0),

...

un+1 = −L−1(Run) − L−1(An), n ≥ 1,

(2.9)

was developed.

2.2. Description of the MADM

To obtain the approximation solution of (1.1), according to the MADM, we can write the
iterative formula (2.9) as follows:

u0(x, t) = f1(x),

u1(x, t) = f2(x) +
∫ t
0
D2(u0(x, τ)) +

∫ t
0
F(u0(x, τ))dτ,

...

un+1(x, t) =
∫ t
0
D2(un(x, τ)) +

∫ t
0
F(un(x, τ))dτ.

(2.10)

The operatorsD2(u(x, τ)) = (d2/dx2)u(x, t) and F(u(x, τ)) are usually represented by
an infinite series of the so-called Adomian polynomials as follows:

F(u) =
∞∑
i=0

Ai, D2(u) =
∞∑
i=0

Li. (2.11)

where Ai and Li(i ≥ 0) are the Adomian polynomials were introduced in [12].
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From [12], we can write another formula for the Adomian polynomials:

Ln = D2(sn) −
n−1∑
i=0

Li,

An = F(sn) −
n−1∑
i=0

Ai,

(2.12)

where the partial sum is sn =
∑n

i=0 ui(x, t).

2.3. Preliminaries of the VIM

In the VIM [17–20], we consider the following nonlinear differential equation:

L(u) +N(u) = g(t), (2.13)

where L is a linear operator,N is a nonlinear operator and g(x, t) is a known analytical
function. In this case, a correction functional can be constructed as follows:

un+1(x, t) = un(x, t) +
∫ t
0
λ(x, τ)

{
L(un(x, τ)) +N(un(x, τ)) − g(x, τ)

}
dτ, n ≥ 0, (2.14)

where λ is a general Lagrange multiplier which can be identified optimally via variational
theory. Here the function un(x, τ) is a restricted variations which means δun = 0. Therefore,
we first determine the Lagrange multiplier λ that will be identified optimally via integration
by parts. The successive approximation un(x, t), n ≥ 0 of the solution u(t) will be readily
obtained upon using the obtained Lagrangemultiplier and by using any selective function u0.
The zeroth approximation u0 may be selected any function that just satisfies at least the initial
and boundary conditions. With λ determined, then several approximation un(x, t), n ≥ 0
follow immediately. Consequently, the exact solution may be obtained by using

u(x, t) = lim
n→∞

un(x, t). (2.15)

The VIM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with approximations converge rapidly to accurate solutions.

2.4. Description of the VIM

To obtain the approximation solution of (1.1), according to the VIM, we can write iteration
formula (2.14) as follows:

un+1(x, t) = un(x, t) + L−1t

(
λ

[
u(x, t) − f(x) −

∫ t
0
D2(un(x, τ))dτ −

∫ t
0
F(un(x, τ))dτ

])
,

(2.16)
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where,

L−1t (·) =
∫ t
0
(·)dτ. (2.17)

To find the optimal λ, we proceed as

δun+1(x, t) = δun(x, t) + δL−1t

(
λ

[
un(x, t) − f(x) −

∫ t
0
D2(un(x, τ))dτ +

∫ t
0
F(un(x, τ))dτ

])

= δun(x, t) + λ(x)δun(x, t) − L−1t
[
δun(x, t)λ′(x)

]
.

(2.18)

From (2.18), the stationary conditions can be obtained as follows:

λ′ = 0, 1 + λ = 0. (2.19)

Therefore, the Lagrange multipliers can be identified as λ = −1 and by substituting in
(2.16), the following iteration formula is obtained.

u0(x, t) = f(x),

un+1(x, t)=un(x, t)−L−1t
([

un(x, t)−f(x)−
∫ t
0
D2(un(x, τ))dτ−

∫ t
0
F(un(x, τ))dτ

])
, n≥0.

(2.20)

Relation (2.20) will enable us to determine the components un(x, t) recursively for
n ≥ 0.

2.5. Preliminaries of the HAM

Consider

N[u] = 0, (2.21)

where N is a nonlinear operator, u(x, t) is unknown function and x is an independent
variable. let u0(x, t) denote an initial guess of the exact solution u(x, t), h/= 0 an auxiliary
parameter, H(x, t)/= 0 an auxiliary function, and L an auxiliary nonlinear operator with the
property L[r(x, t)] = 0 when r(x, t) = 0. Then using q ∈ [0, 1] as an embedding parameter, we
construct a homotopy as follows:

(
1 − q)L[φ(x, t; q) − u0(x, t)

] − qhH(x, t)N
[
φ
(
x, t; q

)]
= Ĥ
[
φ
(
x, t; q

)
;u0(x, t),H(x, t), h, q

]
.

(2.22)
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It should be emphasized that we have great freedom to choose the initial guess u0(x, t),
the auxiliary nonlinear operator L, the nonzero auxiliary parameter h, and the auxiliary
function H(x, t).

Enforcing the homotopy (2.22) to be zero, that is,

Ĥ
[
φ
(
x, t; q

)
;u0(x, t),H(x, t), h, q

]
= 0, (2.23)

we have the so-called zero-order deformation equation

(
1 − q)L[φ(x, t; q) − u0(x, t)

]
= qhH(x, t)N

[
φ
(
x, t; q

)]
. (2.24)

When q = 0, the zero-order deformation (2.24) becomes

φ(x, t; 0) = u0(x, t), (2.25)

and when q = 1, since h/= 0 andH(x, t)/= 0, the zero-order deformation (2.24) is equivalent to

φ(x, t; 1) = u(x, t). (2.26)

Thus, according to (2.25) and (2.26), as the embedding parameter q increases from 0
to 1, φ(x, t; q) varies continuously from the initial approximation u0(x, t) to the exact solution
u(x, t). Such a kind of continuous variation is called deformation in homotopy [21, 22].

Due to Taylor’s theorem, φ(x, t; q) can be expanded in a power series of q as follows:

φ
(
x, t; q

)
= u0(x, t) +

∞∑
m=1

um(x, t)qm, (2.27)

where

um(x, t) =
1
m!

∂mφ(x, t; q)
∂qm

∣∣∣∣
q=0

. (2.28)

Let the initial guess u0(x, t), the auxiliary nonlinear parameter L, the nonzero auxiliary
parameter h and the auxiliary function H(x, t) be properly chosen so that the power series
(2.27) of φ(x, t; q) converges at q = 1, then, we have under these assumptions the solution
series

u(x, t) = φ(x, t; 1) = u0(x, t) +
∞∑
m=1

um(x, t). (2.29)
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From (2.27), we can write (2.24) as follows:

(
1 − q)L[φ(x, t; q) − u0(x, t)

]

=
(
1 − q)L

[ ∞∑
m=1

um(x, t)qm
]
= qhH(x, t)N

[
φ
(
x, t; q

)]

=⇒ L

[ ∞∑
m=1

um(x, t) qm
]
− qL
[ ∞∑
m=1

um(x, t)qm
]
= qhH(x, t)N

[
φ
(
x, t; q

)]
.

(2.30)

By differentiating (2.30) m times with respect to q, we obtain

{
L

[ ∞∑
m=1

um(x, t)qm
]
− qL
[ ∞∑
m=1

um(x, t)qm
]}(m)

=
{
qhH(x, t)N

[
φ
(
x, t; q

)]}(m)

= m!L[um(x, t) − um−1(x, t)]

= hH(x, t)m
∂m−1N[φ(x, t; q)]

∂qm−1

∣∣∣∣∣
q=0

.

(2.31)

Therefore,

L
[
um(x, t) − χmum−1(x, t)

]
= hH(x, t)�m

(
ym−1(x)

)
, (2.32)

where,

�m(um−1(x, t)) =
1

(m − 1)!
∂m−1N[φ(x, t; q)]

∂qm−1

∣∣∣∣∣
q=0

, (2.33)

χm =

⎧⎨
⎩
0, m ≤ 1,

1, m > 1.
(2.34)

Note that the high-order deformation (2.32) is governing the nonlinear operator L, and
the term�m(um−1(x, t)) can be expressed simply by (2.33) for any nonlinear operatorN.

2.6. Description of the HAM

To obtain the approximation solution of (1.1), according to HAM, let

N[u] = u(x, t) − f(x) −
∫ t
0
D2(u(x, τ))dτ −

∫ t
0
F(u(x, τ))dτ, (2.35)
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so

�m(um−1(x, t)) = um−1(x, t) −
∫ t
0
D2(um−1(x, τ))dτ −

∫ t
0
F(um−1(x, τ))dτ −

(
1 − χm

)
f(x).

(2.36)

Substituting (2.36) into(2.32)

L
[
um(x, t) − χmum−1(x, t)

]

= hH(x, t)

[
um−1(x, t) −

∫ t
0
D2(um−1(x, τ))dτ −

∫ t
0
F(um−1(x, τ))dτ −

(
1 − χm

)
f(x)

]
.

(2.37)

We take an initial guess u0(x, t) = f(x), an auxiliary nonlinear operator Lu = u, a
nonzero auxiliary parameter h = −1, and auxiliary function H(x, t) = 1. This is substituted
into (2.37) to give the recurrence relation

u0(x, t) = f(x),

un(x, t) =
∫ t
0
D2(un−1(x, τ))dτ +

∫ t
0
F(un−1(x, τ))dτ, n ≥ 1.

(2.38)

Therefore, the solution u(x, t) becomes

u(x, t) =
∞∑
n=0

un(x, t) = f(x) +
∞∑
n=0

(∫ t
0
D2(un−1(x, τ))dτ +

∫ t
0
F(un−1(x, τ))dτ

)
, (2.39)

which is the method of successive approximations. If

|un(x, t)| < 1 (2.40)

then the series solution (2.39) convergence uniformly.

2.7. Description of the MHPM

To explain MHPM, we consider (1.1) as

L(u) = u(x, t) − f(x) −
∫ t
0
D2(un−1(x, τ))dτ −

∫ t
0
F(un−1(x, τ))dτ, (2.41)

where D2(u(x, τ)) = g1(x)h1(τ) and F(u(x, τ)) = g2(x)h2(τ). We can define homotopy
H(u, p,m) by

H(u, o,m) = f(u), H(u, 1, m) = L(u), (2.42)
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where m is an unknown real number and

f(u(x, t)) = u(x, t) −G(x, t). (2.43)

Typically we may choose a convex homotopy by

H
(
u, p,m

)
=
(
1 − p)f(u) + pL(u) + p

(
1 − p)[m(g1(x) + g2(x)

)]
= 0, 0 ≤ p ≤ 1. (2.44)

where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) =
H(u, p), which is the standard HPM. The convex homotopy (2.44) continuously trace an
implicity defined curve from a starting point H(u(x, t) − f(u), 0, m) to a solution function
H(u(x, t), 1, m). The embedding parameter p monotonically increase from o to 1 as trivial
problem f(u) = 0 is continuously deformed to original problem L(u) = 0. [23, 24]

The MHPM uses the homotopy parameter p as an expanding parameter to obtain

v =
∞∑
n=0

pnun; (2.45)

when p → 1 (2.44) corresponds to the original one, (2.45) becomes the approximate solution
of (1.1), that is,

u = lim
p→ 1

v =
∞∑

m=0

um, (2.46)

where,

um(x, t) = f(x) +
∫ t
0
D2(um−1(x, τ))dτ +

∫ t
0
F(um−1(x, τ))dτ. (2.47)

3. Existence and Convergency of Iterative Methods

Theorem 3.1. Let 0 < α < 1, then Fisher equation (1.1), has a unique solution.

Proof. Let u and u∗ be two different solutions of (1.3) then

|u − u∗| =
∣∣∣∣∣
∫ t
0

[
D2(u(x, τ)) −D2(u∗(x, τ))

]
dτ +

∫ t
0
[F(u(x, τ)) − F(u∗(x, τ))]dτ

∣∣∣∣∣

≤
∫ t
0

∣∣∣D2(u(x, τ)) −D2(u∗(x, τ))
∣∣∣dτ +

∫ t
0
|F(u(x, τ)) − F(u∗(x, τ))|dτ

≤ T
(
M′L1 +M′L2

)|u − u∗| = α|u − u∗|.

(3.1)

From which we get (1 − α)|u − u∗| ≤ 0. Since 0 < α < 1. then |u − u∗| = 0. Implies u = u∗

and completes the proof.
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Theorem 3.2. The series solution u(x, t) =
∑∞

i=0 ui(x, t) of problem (1.1) using MADM convergence
when 0 < α < 1, |u1(x, t)| <∞.

Proof. Denote as (C[J], ‖ · ‖) the Banach space of all continuous functions on J with the norm
‖f(t)‖ = max |f(t)|, for all t in J . Define the sequence of partial sums sn, and let sn and sm be
arbitrary partial sums with n ≥ m. We are going to prove that sn is a Cauchy sequence in this
Banach space:

‖sn − sm‖ = max
∀t∈J
|sn − sm| = max

∀t∈J

∣∣∣∣∣
n∑

i=m+1

ui(x, t)

∣∣∣∣∣

= max
∀t∈J

∣∣∣∣∣
n∑

i=m+1

∫ t
0
Li−1dτ +

n∑
i=m+1

∫ t
0
Ai−1dτ

∣∣∣∣∣

= max
∀t∈J

∣∣∣∣∣
∫ t
0

(
n−1∑
i=m

Li

)
dτ +

∫ t
0

(
n−1∑
i=m

Ai

)
dτ

∣∣∣∣∣.

(3.2)

From [12], we have

n−1∑
i=m

Li = D2(sn−1) −D2(sm−1),

n−1∑
i=m

Ai = F(sn−1) − F(sm−1).
(3.3)

So,

‖sn − sm‖ = max
∀t∈J

∣∣∣∣∣
∫ t
0

[
D2(sn−1) −D2(sm−1)

]
dτ +

∫ t
0
[F(sn−1) − F(sm−1)]dτ

∣∣∣∣∣

≤
∫ t
0

∣∣∣D2(sn−1) −D2(sm−1)
∣∣∣dτ +

∫ t
0
|F(sn−1) − F(sm−1)|dτ ≤ α‖sn − sm‖.

(3.4)

Let n = m + 1, then

‖sn − sm‖ ≤ α‖sm − sm−1‖ ≤ α2‖sm−1 − sm−2‖ ≤ · · · ≤ αm‖s1 − s0‖. (3.5)

From the triangle inquality we have

‖sn − sm‖ ≤ ‖sm+1 − sm‖ + ‖sm+2 − sm+1‖ + · · · + ‖sn − sn−1‖ ≤
[
αm + αm1 + · · · + αn−m−1

]
‖s1 − s0‖

≤ αm
[
1 + α + α2 + · · · + αn−m−1

]
‖s1 − s0‖ ≤

[
1 − αn−m

1 − α
]
‖u1(x, t)‖.

(3.6)
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Since 0 < α < 1, we have (1 − αn−m) < 1, then

‖sn − sm‖ ≤ αm

1 − αmax
∀t∈J
|u1(x, t)|. (3.7)

But |u1(x, t)| < ∞, so, asm → ∞, then ‖sn − sm‖ → 0. We conclude that sn is a Cauchy
sequence in C[J], therefore the series is convergence and the proof is complete.

Theorem 3.3. The series solution u(x, t) =
∑∞

i=0 ui(x, t) of problem (1.1) using VIM converges when
0 < α < 1, 0 < β < 1.

Proof. One has the following:

un+1(x, t) = un(x, t) − L−1t
([

un(x, t) − f(x) −
∫ t
0
D2(un(x, τ))dτ −

∫ t
0
F(un(x, τ))dτ

])
,

(3.8)

u(x, t) = u(x, t) − L−1t
([

u(x, t) − f(x) −
∫ t
0
D2(u(x, τ))dτ −

∫ t
0
F(u(x, τ))dτ

])
. (3.9)

By subtracting relation (3.9) from (3.8),

un+1(x, t) − u(x, t) = un(x, t) − u(x, t)

− L−1t
(
un(x, t) − u(x, t) −

∫ t
0

[
D2(un(x, τ)) −D2(u(x, τ))

]
dτ

−
∫ t
0
[F(un(x, τ)) − F(u(x, τ))]dτ

)
,

(3.10)

if we set, en+1(r, t) = un+1(r, t) − un(r, t), en(r, t) = un(r, t) − u(r, t), |en(r, t∗)| = maxt|en(r, t)|
then since en is a decreasing function with respect to t from the mean value theorem we can
write,

en+1(r, t) = en(r, t)

+ L−1t

(
−en(r, t) +

∫ t
0

[
D2(un(x, τ)) −D2(u(x, τ))

]
dτ

−
∫ t
0
[F(un(x, τ)) − F(u(x, τ))]dτ

)

≤ en(r, t) + L−1t
[
−en(r, t) + L−1t |en(r, t)|(ν(L1 + TL2))

]

≤ en(r, t) − Ten
(
r, η
)
+ T
(
M′L1 +M′L2

)
L−1t L−1t |en(r, t)|

≤ (1 − T(1 − α))|en(r, t∗)|,

(3.11)

where 0 ≤ η ≤ t. Hence, en+1(r, t) ≤ β|en(r, t∗)|.
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Therefore,

‖en+1‖ = max
∀t∈J
|en+1| ≤ βmax

∀t∈J
|en| ≤ β‖en‖. (3.12)

Since 0 < β < 1, then ‖en‖ → 0. So, the series converges and the proof is complete.

Theorem 3.4. If the series solution (2.38) of problem (1.1) is convergent then it converges to the exact
solution of the problem (1.1) by using HAM.

Proof. We assume:

u(x, t) =
∞∑

m=0

um(x, t) (3.13)

where

lim
m→∞

um(x, t) = 0. (3.14)

We can write,

n∑
m=1

[
um(x, t) − χmum−1(x, t)

]
= u1 + (u2 − u1) + · · · + (un − un−1) = un(x, t). (3.15)

We have,

lim
n→∞

un(x, t) = 0. (3.16)

So, using (3.16) and the definition of the nonlinear operator L, we have

∞∑
m=1

L
[
um(x, t) − χmum−1(x, t)

]
= L

[ ∞∑
m=1

[
um(x, t) − χmum−1(x, t)

]]
= 0. (3.17)

Therefore from (2.32), we can obtain that,

∞∑
m=1

L
[
um(x, t) − χmum−1(x, t)

]
= hH(x, t)

∞∑
m=1

�m−1(um−1(x, t)) = 0. (3.18)

Since h/= 0 and H(x, t)/= 0, we have

∞∑
m=1

�m−1(um−1(x, t)) = 0. (3.19)
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By substituting �m−1(um−1(x, t)) into the relation (3.19) and simplifying it, we have

∞∑
m=1

�m−1(um−1(x, t))

=
∞∑

m=1

[
um−1(x, t) −

∫ t
0
D2(um−1(x, τ))dτ −

∫ t
0
F(um−1(x, τ))dτ −

(
1 − χm

)
f(x)

]

= u(x, t) − f(x) −
∫ t
0
D2(um−1(x, τ))dτ

−
∫ t
0
[F(um−1(x, τ))dτ].

(3.20)

From (3.19) and (3.20), we have

u(x, t) = G(x, t) +
∫ t
0
(t − τ)D2(u(x, τ))dτ −

∫ t
0
(t − τ)F(u(x, τ))dτ, (3.21)

therefore, u(x, t) must be the exact solution of (1.1).

Theorem 3.5. If |um(x, t)| ≤ 1, then the series solution (2.46) of problem (1.1) converges to the exact
solution.

Proof. We can write the solution u(x, t) as follows:

u(x, t) =
∞∑
m=0

um(x, t)

=
∞∑
m=0

{∫ t
0
D2(um−1(x, τ))dτ +

∫ t
0
F(um−1(x, τ))dτ

+
(
1 − χm

)
f(x) +

∫ t
0
(t − τ)g1(um−1(x))dτ +

∫ t
0
(t − τ)(g2(x))dτ

}
.

(3.22)

If |um(x, t)| < 1, therefore, u(x, t) =
∑∞

m=0 um(x, t) must be the exact solution of (1.1).

4. Numerical Example

In this section, we compute a numerical example which is solved by the MADM, VIM, HAM
and MHPM. The program has been provided with Mathematica 6 according to the following
algorithm. In this algorithm ε is a given positive value.
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Table 1: Numerical results of Example 4.2.

t
Error Error Error Error

(MADM, n = 5) (VIM, n = 3) (HAM, n = 2) (MHPM, n = 3)
0.5 0.0588302 0.0587111 0.0348265 0.0588668
0.6 0.0670054 0.0677865 0.0437778 0.0674631
0.7 0.068559 0.0674742 0.0424178 0.0670032
0.8 0.0745342 0.0720383 0.0558752 0.0720428
0.9 0.0745342 0.0746331 0.0566234 0.07458943
1.0 0.0766331 0.0775012 0.0599735 0.0775367

Algorithm 4.1. One has the following.

Step 1. Set n← 0.

Step 2. Calculate the recursive relation (2.10) for MADM, (2.20) for VIM, (2.38) for HAM and
(2.46) for MHPM.

Step 3. If |un+1 − un| < ε then go to Step 4, else n← n + 1 and go to Step 2.

Step 4. Print u(x, t) =
∑n

i=0 ui(x, t) as the approximate of the exact solution.

Example 4.2 (see [3]). Consider the Fisher equation with s = 3.

ut = uxx + u
(
1 − u3

)
, (4.1)

subject to initial conditions

u(x, 0) =

⎛
⎜⎝ 1(

1 + e(3/
√
10)x
)1/3
⎞
⎟⎠

2

, (4.2)

with the exact solution is {(1/2) tanh[−(3/2
√
10)(x − (7/

√
10)t)] + (1/2)}2/3.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of nonlinear
problems with the approximations which convergent are rapidly to exact solutions. In
this paper, the HAM has been successfully employed to obtain the approximate analytical
solution of the Fisher equation. For this purpose, we showed that the HAM is more rapid
convergence than the MADM, VIM and MHPM.
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