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We present new oscillation criteria for the even order neutral delay differential equations with
distributed deviating argument [r(t)ψ(x(t))Z(n−1)(t)]

′
+
∫b
ap(t, ξ)f[x(g(t, ξ))]dσ(ξ) = 0, t ≥ t0,

where Z(t) = x(t) + q(t)x(t − τ). Assumptions in our theorems are less restrictive, whereas the
proofs are significantly simpler compared to those by Wang et al. (2005).

1. Introduction

In this paper, we are concerned with the oscillation behavior of the even order neutral delay
differential equations of the form

[
r(t)ψ(x(t))Z(n−1)(t)

]′
+
∫b

a

p(t, ξ)f
[
x
(
g(t, ξ)

)]
dσ(ξ) = 0, t ≥ t0, (1.1)

where Z(t) = x(t) + q(t)x(t − τ), τ � 0 and n is an even positive integer. We assume that

(A1) r, q ∈ C(I, R) and 0 ≤ q(t) ≤ 1, r(t) > 0 for t ∈ I, ∫∞(1/r(s))ds = ∞, I = [t0,∞);

(A2) ψ ∈ C1(R,R), ψ(x) > 0 for x /= 0;

(A3) f ∈ C(R,R), xf(x) > 0 for x /= 0;

(A4) p ∈ C(I × [a, b], [0,∞) and p(t, ξ) is not eventually zero on any half linear [tu,∞) ×
[a, b], tu ≥ t0;

(A5) g ∈ C(I×[a, b], [0,∞)), g(t, ξ) ≤ t for ξ ∈ [a, b], g(t, ξ) has a continuous and positive
partial derivative on I × [a, b] with respect to t and nondecreasing with respect to
ξ, respectively, lim inft→∞g(t, ξ) = ∞ for ξ ∈ [a, b];
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(A6) σ ∈ C([a, b], R) is nondecreasing, and the integral of (1.1) is in the sense of
Riemann-Stieltijes.

We restrict our attention to those solutions x(t) of (1.1)which exist on some half linear
[tx,∞) and satisfy sup{|x(t)| : t � tx}/= 0 for any T � t0. As usual, such a solution of (1.1)
is called oscillatory if the set of its zeros is unbounded from above; otherwise, it is said to be
nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

The oscillatory behavior of solutions of higher-order neutral differential equations is
of both theoretical and practical interest. There have been some results on the oscillatory and
asymptotic behavior of even order neutral equations. Wemention here [1–12]. The oscillation
problem for nonlinear delay equation such as

[
r(t)x′(t)

]′ + q(t)f(x(σ(t))) = 0, t > t0 (1.2)

as well as for the the linear ordinary differential equation

[
r(t)x′(t)

]′ + p(t)x′(t) + q(t)x(t) = 0, t > t0 (1.3)

and the neutral delay differential equation

(
x(t) + q(t)x(t − σ))′′ + p(t)x(t − τ) = 0 (1.4)

has been studied by many authors with different methods. In [13], Rogovchenko established
some general oscillation criteria for second-order nonlinear differential equation:

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0. (1.5)

In [14], the authors discussed the following neutral equations of the form

[x(t) + c(t)x(t − τ)](n) +
∫b

a

p(t, ξ)x
[
g(t, ξ)

]
dσ(ξ) = 0, t ≥ t0 (1.6)

and obtained the following results.

Theorem A (see [14, Theorem 2]). Assume that there exist functionsH(t, s) ∈ C′(D;R), h(t, s) ∈
C(D0;R), and ρ(t) ∈ C′([t0,∞),(0,∞)), such that

(I) H(t, t) = 0,H(t, s) > 0;

(II) H ′
s(t, s) ≤ 0, and −H ′

s(t, s) −H(t, s)(ρ′(s)/ρ(s)) = h(t, s)
√
H(t, s), and

0 < inf
s≥t0

[
lim
t→∞

inf
H(t, s)
H(t, t0)

]
≤ ∞; (C1)

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

ρ(s)h2(t, s)
gn−2(s, a)g ′(s, a)

ds <∞. (C2)
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If there exists a function ϕ(t) ∈ C([t0,∞), R) satisfying

lim
t→∞

sup
1

H(t, u)

∫ t

u

[

H(t, s)ρ(s)
∫b

a

p(s, ξ)
(
1 − c[g(s, ξ)])dσ(ξ)

− ρ(s)h2(t, s)
2Mθgn−2(s, a)g ′(s, a)

]

ds ≥ ϕ(u), u ≥ t0,
(C3)

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

g ′(u, a)gn−2(u, a)
ρ(u)

ϕ2
+(u)du = ∞, ϕ+(u) = max

u≥t0

{
ϕ(u), 0

}
, (C4)

then every solution of (1.6) is oscillatory.

We will use the function class W to study the oscillation criteria for (1.1). Let D =
{(t, s) | t ≥ s ≥ t0}, and D0 = {(t, s)t > s ≥ t0}. We say that a continuous function H(t, s) ⊂
C′(D,R) belongs to the classW if

(A7) H(t, t) = 0 and H(t, s) > 0 for −∞ < s < t < +∞;

(A8) H has a continuous partial derivative ∂H/∂s satisfying, for some h ∈ Lloc(D,R),
the condition ∂H/∂s = −h(t, s)

√
H(t, s).

The purpose of this paper is to further improve Theorem A byWang et al. [14], using a
generalized Riccati transformation and developing ideas exploited by the Rogovchenko and
Tuncay [13], we establish some new oscillation criteria for (1.1), which remove condition (C2)
in Theorem A by Wang et al. [14]; this complements and extends the results in [14].

In addition, we will make use of the following conditions.

(S1) There exists a positive real numberM such that |f(±uv)| ≥Mf(u)f(v) for uv > 0.

Lemma 1.1. If a > 0, b ≥ 0, then

−ax2 + bx ≤ −a
2
x2 +

b2

2a
. (1.7)

Lemma 1.2 (Kiguradze [15]). Let u(t ) be a positive and n times differentiable function on R. If
u(n)(t) is of constant sign and identically zero on any ray [t,+∞) for (t1 > 0), then there exists a
tu ≥ t1 and an integer l (0 ≤ l ≤ n), with n+ l even for u(t)u(n)(t) ≥ 0 or n+ l odd for u(t)u(n)(t) ≤ 0,
and for t ≥ tu,

u(t)u(k)(t) > 0, 0 ≤ k ≤ l; (−1)k−1u(t)u(k)(t) > 0, l ≤ k ≤ n. (1.8)

Lemma 1.3 (Philos [16]). Suppose that the conditions of Lemma 1.2 are satisfied, and

u(n−1)(t)u(n)(t) ≤ 0, t ≥ tu, (1.9)
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then there exists a constant θ in (0,1) such that for sufficiently large t, and there exists a constant
Mθ > 0 satisfying

∣
∣
∣
∣u

′
(
t

2

)∣∣
∣
∣ ≥Mθt

n−2
∣
∣
∣u(n−1)(t)

∣
∣
∣, (1.10)

whereMθ = θ/(n − 2)!.

2. When f(x) Is Monotone

In this section, we will deal with the oscillation for (1.1) under the assumptions
(A1)–(A8), (S1) and the following assumption.

(A9) f ′(x) exists, f ′(x) ≥ K1 and ψ(x) ≤ L−1 for x /= 0.

Theorem 2.1. Let (S1), (A1)–(A9) hold. Equation (1.1) is oscillatory provided that ρ(t) ∈
C1([t0,∞), R) such that

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)Q(s) − h2(t, s)ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

]

ds = ∞, (2.1)

where

Q(t) = ρ(t)M
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) −

(
ρ′(t)

)2
r(t)

K1LMθgn−2(t, a)g ′(t, a)ρ(t)
. (2.2)

Proof. Suppose to the contrary that there exists a solution x(t) of (1.1) such that

x(t) > 0, x(t − τ) > 0, x
[
g(t, ξ)

]
> 0, t ≥ t1, ξ ∈ [a, b] for t � t1 � t0. (2.3)

From (1.1), we also have Z(t) > 0 and [(r(t)ψ(x(t))Z(n−1)(t)]′ ≤ 0 for t ≥ t1.
It follows that the function r(t)ψ(x(t))Z(n−1)(t) is decreasing and we claim that

Z(n−1)(t) ≥ 0 for t ≥ t1. (2.4)

Otherwise, if there exist a t̃1 ≥ t1 such that Z(n−1)(t̃1) < 0, then for all t ≥ t̃1,

r(t)ψ(x(t))Z(n−1)(t) ≤ r
(
t̃1
)
ψ
(
x
(
t̃1
))
Z(n−1)

(
t̃1
)
= −C(C > 0), (2.5)

which implies that Z(n−1)(t) ≤ −C/r(t)ψ(x(t)), t ≥ t1; integrating the above inequality from
t̃1 to t, we have

Z(n−2)(t) ≤ Z(n−2)
(
t̃1
)
− CL

∫ t

t̃1

1
r(t)

ds. (2.6)
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Let t → ∞; from (A1), we get limt→∞Z(n−2)(t) = −∞, which implies that Z(n−1)(t) and
Z(n−2)(t) are negative for all large t; from Lemma 1.2, no two consecutive derivative can be
eventually negative, for this would imply that limt→∞Z(t) = −∞, which is a contradiction.
Hence Z(n−1)(t) ≥ 0 for t ≥ t1. Using this fact together with x(t) ≤ Z(t), we have that

x(t) ≥ [1 − q(t)]Z(t), t ≥ t1. (2.7)

Now from (A1), (S1), and (2.7), we get

f
[
x
(
g(t, ξ)

)] ≥Mf
[
1 − q(g(t, ξ))]f[Z(g(t, ξ))], t ≥ t1, (2.8)

and thus, from(1.1), we get

0 =
[
r(t)ψ(x(t))Z(n−1)(t)

]′
+
∫b

a

p(t, ξ)f
[
x
(
g(t, ξ)

)]
dσ(ξ) ≥

[
(r(t)ψ(x(t))Z(n−1)(t)

]′

+M
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]f[Z(g(t, ξ))]dσ(ξ).

(2.9)

Further, observing that g(t, ξ) is nondecreasing with respect to ξ and Z(n−1)(t) > 0 for t ≥ t1,
from Lemma 1.2, we have Z′(t) ≥ 0, t ≥ t1, and so

Z
(
g(t, ξ)

) ≥ Z(g(t, a)), t ≥ t1, ξ ∈ [a, b]. (2.10)

So, f[Z(g(t, ξ))] ≥ f[Z(g(t, a))] for t ≥ t1 and ξ ∈ [a, b]. Thus

[
r(t)ψ(x(t))Z(n−1)(t)

]′
+Mf

[
Z
(
g(t, a)

)]
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) ≤ 0, t � t1.

(2.11)

Define

w(t) = ρ(t)
r(t)ψ(x(t))Z(n−1)(t)
f
[
Z
(
g(t, a)/2

)] , t � t1. (2.12)

From (1.1), (2.11), and Lemma 1.3 we get

w′(t) =
ρ′(t)
ρ(t)

w(t) + ρ(t)

(
r(t)ψ(x(t))Z(n−1)(t)

)′

f
[
Z
(
g(t, a)/2

)]

− ρ(t)r(t)ψ(x(t))Z
(n−1)(t)

f2
[
Z
(
g(t, a)/2

)] f ′
[
Z

(
g(t, a)

2

)]
Z′
(
g(t, a)

2

)
1
2
g ′(t, a)

≤ ρ′(t)
ρ(t)

w(t) − ρ(t)M
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) − 1

2
K1LMθg(n−2)(t, a)g ′(t, a)

ρ(t)r(t)
w2(t).

(2.13)
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Then, by Lemma 1.1 we get

w′(t) ≤ −ρ(t)M
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) +

(
ρ′(t)

)2
r(t)

K1LMθg(n−2)(t, a)g ′(t, a)ρ(t)

− 1
4
K1LMθg(n−2)(t, a)g ′(t, a)

ρ(t)r(t)
w2(t)

= −Q(t) − 1
4
K1LMθg(n−2)(t, a)g ′(t, a)

ρ(t)r(t)
w2(t).

(2.14)

Let

Q(t) = ρ(t)M
∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) −

(
ρ′(t)

)2
r(t)

K1LMθgn−2(t, a)g ′(t, a)ρ(t)
. (2.15)

That is,

Q(t) ≤ −w′(t) − K1LMθg
n−2(t, a)g ′(t, a)

4ρ(t)r(t)
w2(t). (2.16)

Integrating by parts for any t > T ≥ t1, and using properties (A7) and (A8), we obtain

∫ t

T

H(t, s)Q(s)ds

≤ −
∫ t

T

H(t, s)w′(s)ds −
∫ t

T

H(t, s)
K1LMθg

n−2(s, a)g ′(s, a)
4ρ(s)r(s)

w2(s)

= H(t, T)w(T) +
∫ t

T

w(s)
∂H(t, s)
∂s

ds −
∫ t

T

H(t, s)
K1LMθg

n−2(s, a)g ′(s, a)
4ρ(s)r(s)

w2(s)ds

= H(t, T)w(T) −
∫ t

T

−w(s)
∂H(t, s)
∂s

ds −
∫ t

T

H(t, s)
K1LMθg

n−2(s, a)g ′(s, a)
4ρ(s)r(s)

w2(s)ds

= H(t, T)w(T)−
∫ t

T

[

h(t, s)
√
H(t, s)w(s)+H(t, s)

K1LMθg
n−2(s, a)g ′(s, a)

4ρ(s)r(s)
w2(s)

]

ds

= H(t, T)w(T)

−
∫ t

T

⎛

⎝

√
H(t, s)K1LMθg

n−2(s, a)g ′(s, a)
4βρ(s)r(s)

w(s)+h(t, s)

√
βρ(s)r(s)

K1LMθgn−2(s, a)g ′(s, a)

⎞

⎠

2

ds

+
β

MθK1L

∫ t

T

h2(t, s)ρ(s)r(s)
gn−2(s, a)g ′(s, a)

ds

−
(
β − 1

)
K1MθL

4β

∫ t

T

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds.

(2.17)
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We obtain

∫ t

T

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ H(t, T)w(T) −
(
β − 1

)
K1MθL

4β

∫ t

T

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds

−
∫ t

T

⎛

⎝

√
H(t, s)K1LMθg

n−2(s, a)g ′(s, a)
4βρ(s)r(s)

w(s) + h(t, s)

√
ρ(s)r(s)

K1LMθgn−2(s, a)g ′(s, a)

⎞

⎠

2

ds.

(2.18)

From (A8),H ′(t, s) ≤ 0, for t1 ≥ t0,H(t, t1) ≤ H(t, t0),

∫ t

t1

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds ≤ H(t, t1)w(t1) ≤ H(t, t0)w(t1), (2.19)

which implies that

1
H(t, t0)

∫ t

t0

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(t1) +
1

H(t, t0)

∫ t1

t0

[

H(t, s)Q(s) − h2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(t1) +
∫ t1

t0

Q(s)ds <∞.

(2.20)

Let t → ∞, and taking upper limits, we have

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)Q(s) − h2(t, s)ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

]

ds <∞, (2.21)

which contradicts the assumption (2.1). This complete the proof of Theorem 2.1.

From Theorem 2.1, we have the following oscillation result.

Corollary 2.2. If condition (2.1) of Theorem 2.1 is replaced by

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[H(t, s)Q(s)]ds = ∞,

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

h2(t, s)ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

ds <∞,

(2.22)

where Q(t) is defined by (2.2), then (1.1) is oscillatory.
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Remark 2.3. By introducing variousH(t, s) from Theorem 2.1 or Corollary 2.2, we can obtain
some oscillatory criteria of (1.1). For example, let H(t, s) = (t − s)m−1, t ≥ s ≥ t0, in which
m > 2 is a integer. By choosing

h(t, s) = (t − s)(m−3)/2(m − 1), (2.23)

it is clear that the conditions of (A7) and (A8) hold; then, from Theorem 2.1 and Corollary 2.2,
we have the following.

Corollary 2.4. Assume that there exists a function ρ(t) ∈ C′([t0,∞), (0,∞)) such that

lim
t→∞

sup
1

tm−1

∫ t

t0

[
(t − s)m−1Q(s)

]
− ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

(t − s)m−3(m − 1)2ds = ∞,

(2.24)

where Q(t) is defined by (2.2), then (1.1) is oscillatory.

Corollary 2.5. Assume that there exists a function ρ(t) ∈ C′([t0,∞), (0,∞)) such that

lim
t→∞

sup
1

tm−1

∫ t

t0

(t − s)m−1Q(s)ds = ∞,

lim
t→∞

sup
1

tm−1

∫ t

t0

ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

(t − s)m−3(m − 1)2ds <∞,

(2.25)

where Q(t) is defined by (2.2), then (1.1) is oscillatory.

Theorem 2.6. Assume that the conditions of Theorem 2.1 hold, and

0 < inf
s≥t0

[
lim
t→∞

inf
H(t, s)
H(t, t0)

]
≤ ∞. (2.26)

If there exists a function ϕ(t) ∈ C([t0,∞),R) satisfying

lim
t→∞

sup
1

H(t, u)

∫ t

u

[

H(t, s)Q(s) − h2(t, s)ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

]

ds ≥ ϕ(u), u ≥ t0, (2.27)

lim
t→∞

sup
∫ t

t0

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

ϕ2
+(u)du = ∞, ϕ+(u) = max

u≥t0

{
ϕ(u), (0)

}
, (2.28)

where Q(t) is defined by (2.2), then (1.1) is oscillatory.
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Proof. Assume that there exists a nonoscillatory solution x(t) of (1.1) on [t0,∞), such that
x(t)/= 0 on [t0,∞). Without loss of generality, assume that x(t) > 0, t ≥ t0. Then, proceeding as
in the proof of Theorem 2.1, for t > u ≥ t1 ≥ t0, we have

1
H(t, u)

∫ t

u

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(u) − 1
H(t, u)

(
β − 1

)
K1MθL

4β

∫ t

u

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds.

(2.29)

Let t → ∞, and taking upper limits, we have

lim
t→∞

sup
1

H(t, u)

∫ t

u

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(u) − lim
t→∞

inf
1

H(t, u)

(
β − 1

)
K1MθL

4β

∫ t

u

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds,

(2.30)

thus, from (2.27), we have

w(u) ≥ ϕ(u) + lim
t→∞

inf
1

H(t, u)

(
β − 1

)
K1MθL

4β

∫ t

u

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds, (2.31)

then w(u) ≥ ϕ(u), and

lim
t→∞

inf
1

H(t, u)

∫ t

u

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds <
4β

(
β − 1

)
K1MθL

(
w(u) − ϕ(u)) <∞.

(2.32)

Now we can claim that

∫∞

t1

gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds <∞, t < t1. (2.33)

In fact, assume the contrary, that

∫∞

t1

gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds = ∞, t < t1. (2.34)

From (2.26), there exists a constant ρ > 0 such that

inf
s≥t0

[
lim
t→∞

inf
H(t, s)
H(t, t0)

]
> ρ > 0, (2.35)
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this is

lim
t→∞

inf
H(t, s)
H(t, t0)

> ρ > 0, (2.36)

and there exists a T2 ≥ t1 such that H(t, T)/H(t, t0) ≥ ρ, for all t ≥ T2. On the other hand, by
virtue of (2.34), for any positive number α, there exists a T1 ≥ t1, such that, for all t ≥ T1

∫ t

t1

gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds >
α

ρ
. (2.37)

Using integration by parts, we conclude that, for all t ≥ T > t1,

1
H(t, t1)

∫ t

t1

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds

=
1

H(t, t1)

∫ t

t1

H(t, s)d

(∫ s

t1

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

w2(s)du

)

=
1

H(t, t1)

∫ t

t1

(∫ s

t1

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

w2(s)du

)(
−∂H
∂s

)
ds

≥ α

ρ

H(t, T)
H(t, t1)

≥ α.

(2.38)

Since α is an arbitrary positive constant,

lim
t→∞

inf
1

H(t, t1)

∫ t

t1

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds = ∞, (2.39)

which contradicts (2.32), consequently, (2.33) holds, and, by virtue of ω(u) ≥ ϕ(u) for u ≥
t1 ≥ t0,

lim
t→∞

sup
∫ t

t0

g ′(u, a)gn−2(u, a)
ρ(u)r(u)

ϕ2
+(u)du ≤ lim

t→∞
sup
∫ t

t0

g ′(u, a)gn−2(u, a)
ρ(u)r(u)

ω2
+(u)du <∞,

(2.40)

which contradicts (2.28), and therefore, (1.1) is oscillatory.

Remark 2.7. Choosing H as in Remark 2.3, it is not difficult to see that condition (2.26) is
satisfied because, for any s ≥ t0,

lim
t→∞

H(t, s)
H(t, t0)

= lim
t→∞

(t − s)n−1
(t − t0)n−1

= 1. (2.41)
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Consequently, one immediately derives from Theorem 2.6 the following useful
corollary for the oscillation of (1.1).

Corollary 2.8. Assume that there exist functions ρ(t) ∈ C([t0,∞), (0,∞)) and ϕ(t) ∈ C([t0,∞),R)
satisfying

lim
t→∞

sup
1

tm−1

∫ t

t0

[
(t− s)m−1Q(s)− ρ(s)r(s)β

K1LMθgn−2(s, a)g ′(s, a)
(t−s)m−3(m−1)2

]
ds≥ϕ(u), u≥0,

lim
t→∞

sup
∫ t

t0

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

ϕ2
+(u)du = 0, ϕ+(u) = max

u≥t0

{
ϕ(u), (0)

}
,

(2.42)

where Q(t) is defined by (2.2), then (1.1) is oscillatory.

Theorem 2.9. Assume that the conditions of Theorem 2.1 and (2.26) hold, and

lim
t→∞

inf
1

H(t, u)

∫ t

u

[

H(t, s)Q(s) − h2(t, s)ρ(s)r(s)β
K1LMθgn−2(s, a)g ′(s, a)

]

ds ≥ ϕ(u), u ≥ t0,

lim
t→∞

sup
∫ t

t0

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

ϕ2
+(u)du = ∞, ϕ+(u) = max

u≥t0

{
ϕ(u), 0

}
,

(2.43)

then (1.1) is oscillatory.

Proof. Assume that there exists a nonoscillatory solution x(t) of (1.1) on [t0,∞), such that
x(t)/= 0 on [t0,∞). Without loss of generality, assume that x(t) > 0, t ≥ t0. Then, proceeding as
in the proof of Theorem 2.1, for t > u ≥ t1 ≥ t0, we have

1
H(t, T)

∫ t

T

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(T) − 1
H(t, T)

(
β − 1

)
K1MθL

4β

∫ t

T

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds.

(2.44)

Let t → ∞, and taking lower limits, we have

lim
t→∞

inf
1

H(t, u)

∫ t

u

[

H(t, s)Q(s) − βh2(t, s)ρ(s)r(s)
K1LMθgn−2(s, a)g ′(s, a)

]

ds

≤ w(u) − lim
t→∞

sup
1

H(t, u)

(
β − 1

)
K1MθL

4β

∫ t

u

H(t, s)gn−2(s, a)g ′(s, a)
ρ(s)r(s)

w2(s)ds.

(2.45)

The following proof is similar to Theorem 2.6, so we omit the details. This completes
the proof of Theorem 2.9.
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3. When f(x) Is Not Monotone

In this section, we will deal with the oscillation for (1.1) under the assumptions (A1)–(A8)
and the following assumption:

(A10) f(x)/x ≥ K2 and ψ(x) ≤ L−1 for x /= 0.

Theorem 3.1. Let (A1)–(A8) and (A10) hold. Equation (1.1) is oscillatory provided that ρ(t) ∈
C1([t0,∞), R) such that

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

[

H(t, s)Q2(s) −
h2(t, s)ρ(s)r(s)β

LMθgn−2(s, a)g ′(s, a)

]

ds = ∞, (3.1)

where

Q2(t) = ρ(t)K2

∫b

a

p(t, ξ)f
[
1 − q(g(t, ξ))]dσ(ξ) −

(
ρ′(t)

)2
r(t)

LMθgn−2(t, a)g ′(t, a)ρ(t)
, (3.2)

then (1.1) is oscillatory.

Proof. Let x(t) be an eventually positive solution of (1.1). As in the proof of Theorem 2.1, there
exists t1 � t0, such that (2.3), (2.4), and (2.7) hold. Thus, from (1.1) and (A10), we get

0 =
(
r(t)ψ(x(t))Z(n−1)(t)

)′
+
∫b

a

p(t, ξ)f
[
x
(
g(t, ξ)

)]
dσ(ξ)

≥
(
r(t)ψ(x(t))Z(n−1)(t)

)′
+K2

∫b

a

p(t, ξ)x
[
g(t, ξ)

]
dσ(ξ)

=
(
r(t)ψ(x(t))Z(n−1)(t)

)′
+K2

∫b

a

p(t, ξ)
{
Z
[
g(t, ξ)

] − q[g(t, ξ)]x[g(t, ξ) − τ]}dσ(ξ).

(3.3)

Noting that

Z
[
g(t, ξ)

] ≥ Z[g(t, ξ) − τ] ≥ x[g(t, ξ) − τ]. (3.4)

Thus, (3.3) implies that

(
r(t)ψ(x(t))Z(n−1)(t)

)′
+K2

∫b

a

p(t, ξ)
[
1 − q(g(t, ξ))]Z[g(t, ξ)]dσ(ξ) ≤ 0, t ≥ t1. (3.5)

From (2.10) and (3.5)we get

(
r(t)ψ(x(t))z(n−1)(t)

)′
+K2Z

[
g(t, a)

]
∫b

a

p(t, ξ)
[
1 − q(g(t, ξ))]dσ(ξ) ≤ 0, t ≥ t1. (3.6)
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Define

w(t) = ρ(t)
r(t)ψ(x(t))Z(n−1)(t)
Z
[(
g(t, a)/2

)] , t � t1. (3.7)

Differentiating (3.7) and using (3.6), Lemma 1.1, and 1.3 we get

w′(t) ≤ ρ′(t)
ρ(t)

w(t) − ρ(t)
[

K2

∫b

a

p(t, ξ)
{
1 − q(g(t, ξ))}dσ(ξ)

]

− MθLg
n−2(t, a)g ′(t, a)
2r(t)ρ(t)

w2(t)

≤ −K2ρ(t)

[∫b

a

p(t, ξ)
{
1 − q(g(t, ξ))}dσ(ξ)

]

+

(
ρ′(t)

)2
r(t)

MθLgn−2(t, a)g ′(t, a)ρ(t)

− MθLg
n−2(t, a)g ′(t, a)
4ρ(t)r(t)

w2(t)

= −Q2(t) −
MθLg

n−2(t, a)g ′(t, a)
4ρ(t)r(t)

w2(t).

(3.8)

The rest proof is similar to that of Theorem 2.1 and hence is omitted. This completes the proof
of Theorem 3.1.

Theorem 3.2. Assume that the conditions of Theorem 2.1 and (2.26) hold; if there exists a function
ϕ(t) ∈ C([t0,∞),R) satisfying

lim
t→∞

sup
1

H(t, u)

∫ t

u

[

H(t, s)Q2(s) −
h2(t, s)ρ(s)r(s)β

LMθgn−2(s, a)g ′(s, a)

]

ds ≥ ϕ(u), u ≥ t0,

lim
t→∞

sup
∫ t

t0

gn−2(u, a)g ′(u, a)
ρ(u)r(u)

ϕ2
+(u)du = ∞, ϕ+(u) = max

u≥t0

{
ϕ(u), (0)

}
,

(3.9)

then (1.1) is oscillatory.

Theorem 3.3. Let all assumptions of Theorem 2.6 be satisfied except that lim sup in condition
Theorem 3.2 is replaced with lim inf, then (1.1) is oscillatory.
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