
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2010, Article ID 432759, 11 pages
doi:10.1155/2010/432759

Research Article
On the Existence of Nodal Solutions for
a Nonlinear Elliptic Problem on Symmetric
Riemannian Manifolds

Anna Maria Micheletti1 and Angela Pistoia2

1 Dipartimento di Matematica Applicata “U.Dini”, Università di Pisa, via F. Buonarroti 1/c,
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Given that (M,g) is a smooth compact and symmetric Riemannian n-manifold, n ≥ 2, we prove a
multiplicity result for antisymmetric sign changing solutions of the problem −ε2Δgu + u = |u|p−2u
in M. Here p > 2 if n = 2 and 2 < p < 2∗ = 2n/(n − 2) if n ≥ 3.

1. Introduction

Let (M,g) be a smooth compact connected Riemannian manifold without boundary of
dimension n ≥ 2. Let us consider the problem

−ε2Δgu + u = |u|p−2u in M, u ∈ H1
g(M), (1.1)

where p > 2 if n = 2, 2 < p < 2n/(n − 2) if n ≥ 3 and ε is a positive parameter. Here H1
g(M) is

the completion of C∞(M)with respect to

‖u‖2g :=
∫
M

∣∣∇gu
∣∣2dμg +

∫
M

u2dμg. (1.2)
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It is well known that any critical point of the energy functional Jε : H1
g(M) → R constrained

to the Nehari manifold Nε is a solution to (1.1). Here

Jε(u) :=
1
εn

∫
M

(
1
2
ε2
∣∣∇gu

∣∣2 + 1
2u2

− 1
p
|u|p
)
dμg, (1.3)

Nε :=
{
u ∈ H1

g(M) \ {0} : J ′ε(u)[u] = 0
}
. (1.4)

In [1] the authors show that the least energy solution of (1.1), that is, the minimum of Jε on
Nε is a positive solution with a spike layer, whose peak converges to the maximum point of
the scalar curvature Sg of (M,g) as ε goes to zero. Successively, in [2] (see also [3, 4]) the
authors point out that the topology of the manifold M influences the multiplicity of positive
solutions of (1.1), that is, (1.1) has at least cat(M) nontrivial solutions provided that ε is small
enough. Here cat(M) denotes the Lusternik-Schnirelman category of M. Recently, in [5–7] it
has been proved that the existence of positive solutions is strongly related to the geometry of
M, that is stable critical points of the scalar curvature Sg generate positive solutions with one
or more peaks as ε goes to zero.

As far as it concerns the existence of sign changing solutions to (1.1), a few results are
known. The first result has been obtained in [7]where it has been constructed solutions with
one positive peak and one negative peak, which approach, as ε goes to zero, the minimum
point and the maximum point of Sg , provided the scalar curvature is not constant. In [8] the
authors assume the following:

(S) the manifold M is a regular submanifold of R
N invariant with respect to τ , where τ :

R
N → R

N is an orthogonal linear transformation such that τ /= I and τ2 = I, I being the
identity of R

N.

They prove problem (1.1) has at leastGτ−cat(M−Mτ) pairs of sign changing solutions
which change sign exactly once. HereGτ−cat(M−Mτ) denotes theGτ -equivariant Lusternik-
Schnirelman category for the group Gτ := {I, τ} and Mτ := {x ∈ M : τx = x}.

In this paper we assume M satisfies (S) in the particular case τ = −I. We look for
solutions of the problem

−ε2Δgu + u = |u|p−2u in M,

u ∈ H1
g(M),

u(−x) = −u(x).
(1.5)

We evaluate the number of solutions of problem (1.5) using Morse theory. Our main result
reads as following.

Theorem 1.1. Assume that for ε small enough all the solutions to problem (1.5) with energy close
to 2m∞ are nondegenerate. Then there are at least P1(M/G) pairs (u,−u) of nontrivial solutions to
(1.5) which change sign exactly once, where

m∞ := inf∫
Rn |∇u|2+u2=

∫
Rn |u|p

∫
Rn

(
1
2
|∇u|2 + 1

2
u2 − 1

p
|u|p
)
dx. (1.6)

Here G = {I,−I} and P1(M/G) is Poincaré polynomial Pt(M/g) when t = 1.
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Concerning the assumptions of nondegeneracy of all the critical points with energy
close to 2m∞, we think that it is true “generically” in some sense with respect to (ε, g) where
ε is a positive parameter and g is a Riemannian metric.

We point out that problem (1.1) has been widely studied when the manifold M
is replaced by an open bounded and smooth domain in R

N with Dirichlet or Neumann
boundary condition. In particular, it has been studied the effect of the domain topology or
the domain geometry on the number of solutions. See, for example, [9–19] for the Dirichlet
problem and [20–32] for the Neumann problem,

The paper is organized as follows. In Section 2 we set the problem and we recall
some known results; in Section 3 we give the proof of Theorem 1.1; in Section 4 we prove
the technical Lemma 4.5, which is crucial for the proof of Theorem 1.1.

2. Setting of the Problem

First of all, we will recall some topological notions which are used in the paper.

Definition 2.1 (Poincaré polynomial). If (X,Y ) is a couple of the topological spaces, the
Poincaré polynomial Pt(X,Y ) is defined as the following power series in t:

Pt(X,Y ) :=
∑
k

dimHk(X,Y )tk, (2.1)

whereHk(X,Y ) is the kth homology group with coefficients in some fields. Moreover, we set

Pt(X) := Pt(X, ∅) =
∑
k

dimHk(X)tk. (2.2)

If X is a compact manifold, we have that dimHk(X) < +∞ and in this case Pt(X) is a
polynomial and not a formal series.

Definition 2.2 (Morse index). Let J be a C2-functional on a Banach space X and u ∈ X an
isolated critical point of J with J(u) = c. If Jc := {v ∈ X : J(v) ≤ c} then the (polynomial)
Morse index it(u) of u is the following series:

it(u) :=
∑
k

dimHk(Jc, Jc \ {u})tk, (2.3)

where Hk(Jc, Jc \ {u}) is the kth homology group of the couple (Jc, Jc \ {u}). If u is a
nondegenerate critical point of J then it(u) = tμ(u),where μ(u) is the (numerical)Morse index
of u and it is given by the dimension of the maximal subspace on which the bilinear form
J ′′(u)[·, ·] is negatively definite.

It is useful to recall the following result (see [33]).

Remark 2.3. Let X and Y be topological spaces. If f : X → Y and g : Y → X are continuous
maps such that g ◦ f is homotopic to the identity map on X then Pt(Y ) = Pt(X) +Z(t),where
Z(t) is a polynomial with non negative coefficients.
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Now, let us point out that the transformation τ = −I : M → M induces a
transformation on H1

g(M).We define the linear operator τ∗ as follows:

τ∗ : H1
g(M) −→ H1

g(M), τ∗(u(x)) := −u(−x). (2.4)

The operator τ∗ is selfadjoint with respect to the following scalar product on H1
g(M), which

is equivalent to the usual one:

〈u, v〉ε :=
1
εn

∫
M

(
ε2∇gu∇gv + uv

)
dμg, (2.5)

which induces the norm

‖u‖2ε :=
1
εn

∫
M

(
ε2
∣∣∇gu

∣∣2 + u2
)
dμg. (2.6)

In particular, we have

‖τ∗u‖ε,p = ‖u‖ε,p, ‖τ∗u‖ε = ‖u‖ε, Jε(τ∗u) = Jε(u). (2.7)

Here

‖u‖pε,p :=
1
εn

∫
M

|u|pdμg (2.8)

denotes the norm in Lp(M), which is equivalent to the usual one. Therefore, in virtue of the
Palais Principle, the nontrivial solutions of (1.5) are the critical points of the restriction of Jε
to the τ-invariant Nehari manifold

Nτ
ε := {u ∈ Nε : u(−x) = −u(x)} = Nε ∩Hτ

g , (2.9)

where Hτ
g := {u ∈ H1

g(M) : u(−x) = −u(x)}.
In fact, since J − ε(τ∗u) = Jε(u) and τ∗ is a selfadjoint operator, we have

〈∇Jε(τ∗u), τ∗ϕ
〉
ε =

〈∇Jε(u), ϕ
〉
ε ∀ϕ ∈ H1

g(M) (2.10)

and so ∇Jε(u) = τ∗∇Jε(τ∗u) = τ∗∇Jε(u) if (τ∗u)(x) = u(x) = −u(−x).
Let us set

mε := inf
Nε

Jε, mτ
ε := inf

Nτ
ε

Jε (2.11)

and let m∞ be as in (1.6).
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It is easy to verify that Jε satisfies the Palais-Smale condition onNτ
ε . Then, there exists

vε minimizer ofmτ
ε and vε is a critical point of Jε onH1

g(M). Thus v+
ε and v−

ε belong toNε, then
mτ

ε = Jε(vε) ≥ 2mε.We recall that limε→ 0mε = m∞ as it has been shown in [2, Remark 5.9].
It is well known that there exists a unique positive spherically symmetric (with respect

to the origin) function U ∈ H1(Rn) minimizer of m∞. Obviously this fact implies that −ΔU +
U = Up−1 in R

n and for any ε > 0 we can define a family of functions Uε(x) := U(x/ε)
satisfying the following equation −ε2ΔUε +Uε = U

p−1
ε in R

n.
On the tangent bundle of any compact connected Riemannian manifold M, it is

defined the exponential map exp : TM → M which is a C∞-map. Then for ρ sufficiently
small (smaller than the injectivity radius of M) the manifold M possesses a special set of
charts given by expx : B(0, ρ) → Bg(x, ρ), where TxM is identified with R

n for x ∈ M. Here
B(0, ρ) denotes the ball in R

n centered at 0 with radius ρ and Bg(x, ρ) denotes the ball in M
centered at xwith radius ρwith the distance given by the metric g. The system of coordinates
corresponding to those charts are called normal coordinates.

3. The Main Ingredient of the Proof

Let us sketch the proof of our main result.
Since limε→ 0m

τ
ε = 2m∞ (see Lemma 4.3), given δ ∈ (0, m∞/4) for ε small enough, we

have 0 < 2(m∞ − δ) < mτ
ε < 2(m∞ + δ). Thus 2(m∞ − δ) is not a critical value of Jε for any ε.

Fixed ε, if the number of critical points of Jε is finite in J
2(m∞+δ)
ε , we can choose δ such that

2(m∞ + δ) is not a critical value of Jε.
Let Nτ

ε/Z2 be the set obtained by identifying antipodal points of the Nehari manifold
Nτ

ε . It is easy to check that the set Nτ
ε/Z2 is homeomorphic to the projective space P∞ :=

∂Σ1/Z2, which is obtained by identifying antipodal points in un unit sphere ∂Σ1 in the space
Hτ

g .
We are looking for pairs of nontrivial critical points (u,−u) if the functional Jε : Hτ

g →
R, that is we are searching critical points for the functional J̃ε : Hτ

g \ {0}/Z2 → R defined

byJ̃ε([u]) := Jε(u) = Jε(−u).We use the same arguments as in [33]. The following relation can
be proved as in [33, 34] (see [33, Lemma 5.2]):

Pt

(
J̃
2(m∞+δ)
ε , J̃

2(m∞−δ)
ε

)
= tPt

(
J̃
2(m∞+δ)
ε ∩Nτ

ε /Z2

)
. (3.1)

By Lemma 4.5 we deduce that

M/G
Φ̃ε−→ J̃

2(m∞+δ)
ε ∩ Nτ

ε

Z2

β̃−→ Md

G
, (3.2)

where β̃ ◦ Φ̃ε is homotopic to the identity map andMd/G is homotopically equivalent toMg.
Therefore by Remark 2.3 we get

Pt

(
J̃
2(m∞+δ)
ε ∩ Nτ

ε

Z2

)
= Pt

(
M

G

)
+ Z(t), (3.3)

where Z(t) is a polynomial with nonnegative integer coefficients.
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By our assumption we have that for ε small enough all the critical points u such that
J̃ε(u) < 2(m∞ + δ) are nondegenerate. Moreover the functional J̃ε satisfies the Palais-Smale
condition. Then by Morse theory and relations (3.1) and (3.3) we get at least P1(M/G) pairs
(u,−u) of nontrivial solutions for (1.5). By Remark (4.7) these solutions change sign exactly
once. That concludes the proof of Theorem 1.1.

Remark 3.1. By [33, Lemma 5.2] we deduce that

Pt

(
Hτ

g \ {0}
Z2

, J̃
2(m∞−δ)
ε

)
= tPt

(Nτ
ε

Z2

)
. (3.4)

Since P∞ is homeomorphic to Nτ
ε/Z2 we get Pt(Nτ

ε/Z2) = Pt(P∞). Provided the homology
is evaluated with Z2-coefficients (see, e.g., [35, Theorem 7.4]), we have P1(P∞) = +∞. Then,
if all the critical points are nondegenerate, we get infinitely many pairs (u,−u) of nontrivial
solutions for (1.5).

4. Technical Results

Let χr be a smooth cut-off function such that

χr(z) = 1 if z ∈ B
(
0,

r

2

)
, χr(z) = 0 if z ∈ R

N \ B(0, r), ∣∣∇χr(z)
∣∣ ≤ 2 ∀z ∈ R

N.

(4.1)

Fixing a point q ∈ M and ε > 0, let us define the function wε,q on M as

wε,q(x) := Uε

(
exp−1

q (x)
)
χr

(
exp−1

q (x)
)

if x ∈ Bg

(
q, r
)

wε,q(x) := 0 otherwise. (4.2)

We choose r smaller than the injectivity radius ofM and such that Bg(q, r) ∩Bg(−q, r) = ∅ for
any q ∈ M. For any ε > 0 we can define a positive number t(wε,q) such that

Φε

(
q
)
:= t
(
wε,q

)
wε,q ∈ H1

g(M) ∩Nε for any q ∈ M. (4.3)

Namely, t(wε,q) verifies

t
(
wε,q

)
=

⎡
⎢⎣
∫
M

(
ε2
∣∣∇gwε,q

∣∣2 +w2
ε,q

)
dμg∫

Mw2
ε,qdμg

⎤
⎥⎦

1/p−2

. (4.4)

In [2, Proposition 4.2] the following lemma has been proved.

Lemma 4.1. Given ε > 0 the map Φε : M → H1
g(M) ∩ Nε is continuous. Moreover, given δ > 0

there exists ε0(δ) such that if ε ∈ (0, ε0(δ)) then Φε(q) ∈ Nε ∩ Jm∞+δ
ε .
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Now, fixing a point q ∈ M let us define the function

Φτ
ε

(
q
)
:= t
(
wε,q

)
wε,q − t

(
wε,τq

)
wε,τq. (4.5)

It holds that

∫
M

∣∣wε,q

∣∣2p =
∫
M

∣∣wε,τq

∣∣2p,
∫
M

∣∣∇gwε,q

∣∣2dμg =
∫
M

∣∣∇gwε,τq

∣∣2dμg. (4.6)

By (4.4) and (4.6), we deduce

t
(
wε,q

)
= t
(
wε,τq

)
. (4.7)

The proof of the next results follows the same arguments as in [8].

Lemma 4.2. Given ε > 0 the map Φτ
ε : M → H1

g(M) ∩ Nτ
ε is continuous. Moreover, given δ > 0

there exists ε0(δ) such that if ε ∈ (0, ε0(δ)) then Φτ
ε (q) ∈ Nτ

ε ∩ J
2(m∞+δ)
ε .

Proof. Since Uεχr is a radially symmetric function, we set Ũε(|z|) := Uε(z)χr(z). Moreover,
since we have

∣∣∣exp−1
τq(τx)

∣∣∣ = dg

(−x,−q) = dg

(
x, q
)
=
∣∣∣exp−1

q (x)
∣∣∣,

∣∣∣exp−1
q (τx)

∣∣∣ = dg

(−x, q) = dg

(
x,−q) = ∣∣∣exp−1

τq(x)
∣∣∣,

(4.8)

we get

τ∗Φτ
ε

(
q
)
(x) (4.9)

= −t(wε,q

)
wε,q(−x) + t

(
wε,τq

)
wε,τq(−x) (4.10)

= −t(wε,q

)
Ũε

(∣∣∣exp−1
q (−x)

∣∣∣) + t
(
wε,τq

)
Ũε

(∣∣∣exp−1
q (−x)

∣∣∣)

= t
(
wε,τq

)
Ũε

(∣∣∣exp−1
q (x)

∣∣∣) − t
(
wε,q

)
Ũε

(∣∣∣exp−1
q (τx)

∣∣∣)

= t
(
wε,q

)
Ũε

(∣∣∣exp−1
q (x)

∣∣∣) − t
(
wε,q

)
Ũε

(∣∣∣exp−1
q (x)

∣∣∣)
(4.11)

= Φτ
ε

(
q
)
(x), (4.12)

because by (4.7)we have t(wε,q) = t(wε,τq).Hence Φτ
ε (q) ∈ Nτ

ε .
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To get that Φτ
ε (q) ∈ J

2(m∞+δ)
ε , it is enough to prove that Jε(Φτ

ε (q)) = 2Jε(Φε(q)), because
by Lemma 4.1 the statement will follow. Since the support of the function Φτ

ε (q) is Bg(q, r) ∪
Bg(−q, r) and Bg(q, r) ∩ Bg(−q, r) = ∅, by (4.6) and the definition of the function Φτ

ε , we get

Jε
(
Φτ

ε

(
q
))

=
(
1
2
− 1
p

)
1
εn

∫
M

∣∣Φτ
ε (q)
∣∣pdμg

=
(
1
2
− 1
p

)
1
εn

(∫
Bg(q,r)

∣∣Φε(q)
∣∣pdμg +

∫
Bg(−q,r)

∣∣Φε(τq)
∣∣pdμg

)

= 2Jε
(
Φε

(
q
))
.

(4.13)

That concludes the proof.

Lemma 4.3. One has that limε→ 0m
τ
ε = 2m∞.

Proof. By Lemma 4.2 and (4.12)we have that for any δ > 0 there exists ε0(δ) such that for any
ε ∈ (0, ε0(δ)) it holds that

2mε ≤ mτ
ε ≤ Jε

(
Φτ

ε

(
q
))

= 2Jε
(
Φε

(
q
)) ≤ 2(m∞ + δ). (4.14)

Since limε→ 0mε = 2m∞ (see [2, Remark 5.9]) we get the claim.

For any function u ∈ Nτ
ε we can define a point β(u) ∈ R

N by

β(u) :=

∫
Mx|u+(x)|pdμg∫
M|u+(x)|pdμg

. (4.15)

Lemma 4.4. There exists δ0 > 0 such that for any δ ∈ (0, δ0), for any ε ∈ (0, ε0(δ)) (as in
Lemma 4.2), and for any function u ∈ Nτ

ε ∩ J
2(m∞+δ)
ε , it holds that β(u) ∈ Md, where Md := {x ∈

R
N : d(x,M) < d}.

Proof. Let u ∈ Nτ
ε ∩ J

2(m∞+δ)
ε . Since u(x) = −u(−x) we set M+ := {x ∈ M : u(x) > 0} and

M− := {x ∈ M : u(x) < 0}. It is easy to see that M+ = {−x : x ∈ M−}. Then we have

Jε(u) =
(
1
2
− 1
p

)
1
εn

∫
M

|u|pdμg

=
(
1
2
− 1
p

)
1
εn

(∫
M+

|u+|pdμg +
∫
M−

∣∣u−∣∣pdμg

)
= 2Jε(u+).

(4.16)

Since Jε(u) ≤ 2(m∞ + δ), we have Jε(u+) ≤ m∞ + δ and by [2, Proposition 5.10] we get the
claim.
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It is easy to check that Φτ
ε (−q) = −φτ

ε (q) and β(−u) = −β(u). Moreover, by Lemmas 4.1
and 4.2, we can define a map Φ̃ε : M/G → J̃

2(m∞+δ)
ε ∩Nτ

ε/Z2 by

Φ̃ε

([
q
])

:=
[
Φτ

ε

(
q
)]

=
{
Φτ

ε

(
q
)
,Φτ

ε

(−q)}. (4.17)

By Lemma 4.4 we can define a map β̃ : J̃ 2(m∞+δ)
ε ∩Nτ

ε/Z2 → Md/G by

β̃([u]) :=
[
β(u)

]
=
{
β(u), β(−u)}. (4.18)

Lemma 4.5. There exists ε0 > 0 such that for any ε ∈ (0, ε0) the map

Iε := β̃ ◦ Φ̃τ
ε :

M

G
−→ Md

G
(4.19)

is well defined, continuous, and homotopic to the identity map.

Proof. By Lemmas 4.2 and 4.4, Iε is well defined. In order to show that Iε is homotopic to the
identity, we estimate the following difference:

∣∣βΦτ
ε

(
q
) − q

∣∣ =
∫
M

(
x − q

)∣∣∣(Φτ
ε

(
q
))+∣∣∣pdμg

∫
M

∣∣∣(Φτ
ε

(
q
))+∣∣∣pdμg

=

∫
B(0,r)y

∣∣U(y/ε)χr

(∣∣y∣∣)∣∣p∣∣gq(y)∣∣1/2dy∫
B(0,r)

∣∣U(y/ε)χr

(∣∣y∣∣)∣∣p∣∣gq(y)∣∣1/2dy

=
ε
∫
B(0,r/ε)z

∣∣U(z)χr(|εz|)
∣∣p∣∣gq(εz)∣∣1/2dμg∫

B(0,r/ε)

∣∣U(z)χr(|εz|)
∣∣p∣∣gq(εz)∣∣1/2dμg

.

(4.20)

Hence |βΦτ
ε (q) − q|, |βΦτ

ε (−q) + q| ≤ cε, because βΦτ
ε (−q) = −βΦτ

ε (q), for a constant c which
does not depend on the point q. Therefore |Iε(q) − q| < cε; that concludes the proof.

Remark 4.6. We have only to prove that any solution u of (1.5) such that Jε(u) < 2(m∞ + δ)
changes sign exactly once. In fact, assume that the set {u ∈ M : u(x) > 0} has h connected
components M1, . . . ,Mh. Set ui(x) := u(x) if x ∈ Mi ∪ (−Mi) and ui(x) := 0 otherwise. We
have ui ∈ Nτ

ε and

3
2
hm∞ ≤ mτ

ε ≤ Jε(u) =
h∑
i=1

Jε(ui) ≤ 2(m∞ + δ) < 3m∞. (4.21)

Then h = 1. This concludes the proof.



10 International Journal of Differential Equations

References

[1] J. Byeon and J. Park, “Singularly perturbed nonlinear elliptic problems on manifolds,” Calculus of
Variations and Partial Differential Equations, vol. 24, no. 4, pp. 459–477, 2005.

[2] V. Benci, C. Bonanno, and A. M. Micheletti, “On the multiplicity of solutions of a nonlinear elliptic
problem on Riemannian manifolds,” Journal of Functional Analysis, vol. 252, no. 2, pp. 464–489, 2007.

[3] N. Hirano, “Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian
manifold,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 2, pp. 671–692, 2009.

[4] D. Visetti, “Multiplicity of solutions of a zero mass nonlinear equation on a Riemannian manifold,”
Journal of Differential Equations, vol. 245, no. 9, pp. 2397–2439, 2008.

[5] E. N. Dancer, A. M. Micheletti, and A. Pistoia, “Multipeak solutions for some singularly perturbed
nonlinear elliptic problems on Riemannian manifolds,” Manuscripta Mathematica, vol. 128, no. 2, pp.
163–193, 2009.

[6] A. M. Micheletti and A. Pistoia, “The role of the scalar curvature in a nonlinear elliptic problem on
Riemannian manifolds,” Calculus of Variations and Partial Differential Equations, vol. 34, no. 2, pp. 233–
265, 2009.

[7] A.M.Micheletti andA. Pistoia, “Nodal solutions for a singularly perturbed nonlinear elliptic problem
on Riemannian manifolds,” Advanced Nonlinear Studies, vol. 9, no. 3, pp. 565–577, 2009.

[8] M. Ghimenti and A. M.Micheletti, “On the number of nodal solutions for a nonlinear elliptic problem
on symmetric Riemannian manifolds,” to appear in Electronic Journal of Differential Equations.

[9] V. Benci and G. Cerami, “Positive solutions of some nonlinear elliptic problems in exterior domains,”
Archive for Rational Mechanics and Analysis, vol. 99, no. 4, pp. 283–300, 1987.

[10] D. Cao, N. E. Dancer, E. S. Noussair, and S. Yan, “On the existence and profile of multi-peaked
solutions to singularly perturbed semilinear Dirichlet problems,” Discrete and Continuous Dynamical
Systems, vol. 2, no. 2, pp. 221–236, 1996.

[11] E. N. Dancer and S. Yan, “Effect of the domain geometry on the existence of multipeak solutions for
an elliptic problem,” Topological Methods in Nonlinear Analysis, vol. 14, no. 1, pp. 1–38, 1999.

[12] E. N. Dancer and S. Yan, “A singularly perturbed elliptic problem in bounded domains with
nontrivial topology,” Advances in Differential Equations, vol. 4, no. 3, pp. 347–368, 1999.

[13] E. N. Dancer and J. Wei, “On the effect of domain topology in a singular perturbation problem,”
Topological Methods in Nonlinear Analysis, vol. 11, no. 2, pp. 227–248, 1998.

[14] M. del Pino, P. L. Felmer, and J. Wei, “Multi-peak solutions for some singular perturbation problems,”
Calculus of Variations and Partial Differential Equations, vol. 10, no. 2, pp. 119–134, 2000.

[15] M. del Pino, P. L. Felmer, and J. Wei, “On the role of distance function in some singular perturbation
problems,” Communications in Partial Differential Equations, vol. 25, no. 1-2, pp. 155–177, 2000.

[16] M. Grossi and A. Pistoia, “On the effect of critical points of distance function in superlinear elliptic
problems,” Advances in Differential Equations, vol. 5, no. 10–12, pp. 1397–1420, 2000.

[17] Y. Y. Li and L. Nirenberg, “The Dirichlet problem for singularly perturbed elliptic equations,”
Communications on Pure and Applied Mathematics, vol. 51, no. 11-12, pp. 1445–1490, 1998.

[18] W.-M. Ni and J. Wei, “On the location and profile of spike-layer solutions to singularly perturbed
semilinear Dirichlet problems,” Communications on Pure and Applied Mathematics, vol. 48, no. 7, pp.
731–768, 1995.

[19] J. Wei, “On the interior spike solutions for some singular perturbation problems,” Proceedings of the
Royal Society of Edinburgh. Section A, vol. 128, no. 4, pp. 849–874, 1998.

[20] G. Cerami and J. Wei, “Multiplicity of multiple interior peak solutions for some singularly perturbed
Neumann problems,” International Mathematics Research Notices, no. 12, pp. 601–626, 1998.

[21] E. N. Dancer and S. Yan, “Multipeak solutions for a singularly perturbed Neumann problem,” Pacific
Journal of Mathematics, vol. 189, no. 2, pp. 241–262, 1999.

[22] M. del Pino, P. L. Felmer, and J. Wei, “On the role of mean curvature in some singularly perturbed
Neumann problems,” SIAM Journal on Mathematical Analysis, vol. 31, no. 1, pp. 63–79, 1999.

[23] M.Grossi, A. Pistoia, and J.Wei, “Existence of multipeak solutions for a semilinear Neumann problem
via nonsmooth critical point theory,” Calculus of Variations and Partial Differential Equations, vol. 11, no.
2, pp. 143–175, 2000.

[24] C. Gui, “Multipeak solutions for a semilinear Neumann problem,” Duke Mathematical Journal, vol. 84,
no. 3, pp. 739–769, 1996.



International Journal of Differential Equations 11

[25] C. Gui and J. Wei, “Multiple interior peak solutions for some singularly perturbed Neumann
problems,” Journal of Differential Equations, vol. 158, no. 1, pp. 1–27, 1999.

[26] C. Gui and J. Wei, “On multiple mixed interior and boundary peak solutions for some singularly
perturbed Neumann problems,” Canadian Journal of Mathematics, vol. 52, no. 3, pp. 522–538, 2000.

[27] C. Gui, J. Wei, and M. Winter, “Multiple boundary peak solutions for some singularly perturbed
Neumann problems,” Annales de l’Institut Henri Poincaré, vol. 17, no. 1, pp. 47–82, 2000.
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