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We introduce a formulation for the time-optimal control problems of systems displaying fractional
dynamics in the sense of the Riemann-Liouville fractional derivatives operator. To propose a
solution to the general time-optimal problem, a rational approximation based on the Hankel
data matrix of the impulse response is considered to emulate the behavior of the fractional
differentiation operator. The original problem is then reformulated according to the new model
which can be solved by traditional optimal control problem solvers. The time-optimal problem is
extensively investigated for a double fractional integrator and its solution is obtained using either
numerical optimization or time-domain analysis.

1. Introduction

In the world surrounding us, the physical laws of dynamics are not always followed by all
systems. When the considered systems are complex or can only be studied on a macroscopic
scale, they sometimes divert from the traditional integer order dynamic laws. In some cases,
their dynamics follow fractional-order laws meaning that their behavior is governed by
fractional-order differential equations [1]. As an illustration, it can be found in the literature
[2] that materials with memory and hereditary effects, and dynamical processes, such as
gas diffusion and heat conduction, in fractal porous media can be more precisely modeled
using fractional-order models than using integer-order models. Another vein of research has
identified the dynamics of a frog’s muscle to display fractional-order behavior [3].

Optimal Control Problems (OCPs) or Integer-Order Optimal Controls (IOOCs) can
be found in a wide variety of research topics such as engineering and science of course, but
economics as well. The field of IOOCs has been investigated for a long time and a large
collection of numerical techniques has been developed to solve this category of problems [4].
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The main objective of an OCP is to obtain control input signals that will make a given
system or process satisfy a given set of physical constraints (either on the system’s states
or control inputs) while extremizing a performance criterion or a cost function. Fractional
Optimal Control Problems (FOCPs) are OCPs in which the criterion and/or the differential
equations governing the dynamics of the system display at least one fractional derivative
operator. The first record of a formulation of the FOCP was given in [5]. This formulation
was general but includes constraints on the system’s states or control inputs. Later, a general
definition of FOCP was formulated in [6] that is similar to the general definition of OCPs. The
number of publications linked to FOCPs is limited since that problem has only been recently
considered.

Over the last decade, the framework of FOCPs has hatched and grown. In [5], Agrawal
gives a general formulation of FOCPs in the Riemann-Liouville (RL) sense and proposes
a numerical method to solve FOCPs based on variational virtual work coupled with the
Lagrange multiplier technique. In [7], the fractional derivatives (FDs) of the system are
approximated using the Grünwald-Letnikov definition, providing a set of algebraic equations
that can be solved using numerical techniques. The problem is defined in terms of the
Caputo fractional derivatives in [8] and an iterative numerical scheme is introduced to solve
the problem numerically. Distributed systems are considered in [9] and an eigenfunction
decomposition is used to solve the problem. Özdemir et al. [10] also use eigenfunction
expansion approach to formulate an FOCP of a 2-dimensional distributed system. Cylindrical
coordinates for the distributed system are considered in [11]. A modified Grünwald-Letnikov
approach is introduced in [12] which leads to a central difference scheme. Frederico and
Torres [13–15], using similar definitions of the FOCPs, formulated a Noether-type theorem
in the general context of the fractional optimal control in the sense of Caputo and studied
fractional conservation laws in FOCPs. In [6], a rational approximation of the fractional
derivatives operator is used to link FOCPs and the traditional IOOCs. A new solution scheme
is proposed in [16], based on a different expansion formula for fractional derivatives.

In this article, we introduce a formulation to a special class of FOCP: the Fractional
Time-Optimal Control Problem (FTOCP). Time-optimal control problems are also referred
to in the literature as minimum-time control problems, free final time-optimal control, or
bang-bang control problems. These different denominations define the same kind of optimal
control problem in which the purpose is to transfer a system from a given initial state
to a specified final state in minimum time. So far, this special class of FOCPs has been
disregarded in the literature. In [6], such a problem was solved as an example to demonstrate
the capability and generality of the proposed method but no thorough studies were done.

The article is organized as follows. In Section 2, we give the definitions of fractional
derivatives in the RL sense and FOCP and introduce the formulation of FTOCP. In Section 3,
we consider the problem of the time-optimal control of a fractional double integrator and
propose different schemes to solve the problem. In Section 4, the solution to the problem
is obtained for each approach for a given system. Finally, we give our conclusions in
Section 5.

2. Formulation of the Fractional Time-Optimal Control Problem

2.1. The Fractional Derivative Operator

There exist several definitions of the fractional derivative operator: Riemann-Liouville,
Caputo, Grünwald-Letnikov, Weyl, as well as Marchaud and Riesz [17–20]. Here, we are
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interested in the Riemann-Liouville definition of the fractional derivatives for the formulation
of the FOCP.

The Left Riemann-Liouville Fractional Derivative (LRLFD) of a function f(t) is
defined as

aD
α
t f(t) =

1
Γ(n − α)

(
d

dt

)n∫ t
a

(t − τ)n−α−1f(τ)dτ, (2.1)

where Γ(·) is the Gamma function defined for any complex number z as

Γ(z) =
∫0

∞
tz−1e−tdt (2.2)

and where the order of the derivative α satisfies n − 1 ≤ α < n. The Right Riemann-Liouville
Fractional Derivative (RRLFD) is defined as

t
Dα
b f(t) =

1
Γ(n − α)

(
− d
dt

)n∫b
t

(τ − t)n−α−1f(τ)dτ. (2.3)

2.2. Fractional Optimal Control Problem Formulation

With the RL definition of the fractional derivatives operator given in (2.1) and (2.3), we can
specify a general FOCP: find the optimal control u(t) for a fractional dynamical system that
minimizes the following performance criterion:

J(u) = Go(x(a), x(b)) +
∫b
a

Lo(x, u, t)dt (2.4)

subject to the following system dynamics:

aD
α
t x(t) = H(x, u, t) (2.5)

with initial condition

x(a) = xa (2.6)

and with the following constraints:

umin(t) ≤ u(t) ≤ umax(t),

xmin(a) ≤ x(a) ≤ xmax(a),

Lνti(t, x(t), u(t)) ≤ 0,

Gν
ei(x(a), x(b)) ≤ 0,

Gν
ee(x(a), x(b)) = 0,

(2.7)
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where x is the state variable, t ∈ [a, b] stands for the time, and L, G, and H are arbitrary given
nonlinear functions. The subscripts o, ti, ei, and ee on the functions G(·, ·) and L(·, ·, ·) stand
for, respectively, objective function, trajectory constraint, endpoint inequality constraint and
endpoint equality constraint.

2.3. Fractional Time-Optimal Control Problem Formulation

A FTOCP is defined by a performance index of the form

J(u) =
∫b
a

1dt = b − a, (2.8)

which appears when we desire to minimize the time required to reach a given target xb given
some initial conditions xa.

Under such conditions, the problem is to transfer the system whose dynamics are
given by

aD
α
t x(t) = H(x, u, t) (2.9)

from a given initial state x(a) = xa to the desired state x(b) = xb. The minimum time required
to reach the target is defined as t∗.

To ensure that the problem has a solution, the control variables are required to be
constrained in the following way:

umin ≤ u(t) ≤ umax. (2.10)

In the following, we will make use of the minimum principle to determine the optimal control
law u∗(t) for the previously defined problem. We define the state associated with the optimal
control law as x∗(t).

We define the Hamiltonian H for the problem described by the dynamic system (2.9)
and the criterion (2.8) as

H(x, u, t) = 1 + λ
(
H(x, u, t) − aD

α
t x
)
, (2.11)

where λ(t) stands for the costate variable. The optimal costate variable is defined as λ∗(t).
In the case of constrained systems, the results given in [5] do not apply as the control

function u(t) is constrained and does not have arbitrary variations. Indeed, if the control u(t)
lies on the boundary in (2.10), then the variations are not arbitrary. Instead, we need to use
Pontryagin’s minimum principle [4]. According to the proof of the theorem in [21], we use
for demonstration arbitrary variations in the control signal u(t) = u∗(t) + δu(t). We define
both the increment ΔJ and the (first) variation δJ of the performance index J as

ΔJ(u∗, δu) = J(u) − J(u∗) ≥ 0 for minimum

= δJ(u∗, δu) +O2,
(2.12)
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where the first variation is defined as

δJ =
∂J

∂u
δu(t). (2.13)

With the constraints (2.10) and making the assumption that all the admissible variations
on the control ‖δu(t)‖ are small enough to ensure that the sign of the increment ΔJ can
be determined by the sign of the variation δJ , the necessary condition on u∗ to minimize
J becomes

δJ(u∗(t), δu(t)) ≥ 0. (2.14)

According to [21, Chapter 2], the first variation can be defined as

δJ(u∗(t), δu(t)) =
∫b
a

([
∂H
∂x

+ λ̇(t)
]
∗
δx(t) +

[
∂H
∂u

]′
∗
δu(t) +

[
∂H
∂λ

− ẋ(t)
]′
∗
δλ(t)

)
dt

+
[
∂S

∂x
+ λ(t)

]′
∗b
δxb +

[
H +

∂S

∂t

]
∗b
δb.

(2.15)

In the previous equation,

(1) if the optimal state x∗ equations are satisfied, then we obtain the state relation,

(2) if the costate λ∗ is chosen so that the coefficient of the dependent variation δx in the
integrand is identically zero, then we obtain the costate equation,

(3) the boundary condition is chosen so that it results in the auxiliary boundary
condition.

When all of the previous enumerated items are satisfied, the first variation can be
reformulated as

δJ(u∗, δu) =
∫ [

∂H
∂u

]′
δudt. (2.16)

The integrand in the previous relation is the first-order approximation to change in the
Hamiltonian H due to a change in u alone. This means that by definition

[
∂H
∂u

(x∗, u∗, λ∗, t)
]
δu ≡ H(x∗, u∗ + δu, λ∗, t) −H(x∗, u∗, λ∗, t) (2.17)

combining the previous two equations leads us to

δJ(u∗, δu) =
∫b
a

[H(x∗, u∗ + δu, λ∗, t) −H(x∗, u∗, λ∗, t)]dt. (2.18)
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Now, using the above, the necessary condition becomes

∫b
a

[H(x∗, u∗ + δu, λ∗, t) −H(x∗, u∗, λ∗, t)]dt ≥ 0, (2.19)

for all admissible δu less than a small value. The relation becomes

H(x∗, u∗ + δu, λ∗, t) ≥ H(x∗, u∗, λ∗, t). (2.20)

Replacing u∗ + δu by u, the necessary condition becomes

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t). (2.21)

When applied to our problem, we obtain

1 + λ∗
(
H(x∗, u∗, t) − aD

α
t x

∗) ≤ 1 + λ∗
(
H(x∗, u, t) − aD

α
t x

∗), (2.22)

which can be simplified to

λ∗
(
H(x∗, u∗, t) − aD

α
t x

∗) ≤ λ∗(H(x∗, u, t) − aD
α
t x

∗),
H(x∗, u∗, t) ≤ H(x∗, u, t).

(2.23)

The state and costate equations can be retrieved from [5] and give

aD
α
t x = H(x, u, t),

tD
α
bλ =

∂H(x, u, t)
∂x

λ,
(2.24)

with

x(a) = xa, x(b) = xb, (2.25)

where we again note that b is free. We can notice that u∗ is the control signal that causes
G(x∗, u, t) to take its minimum value.

Let us consider the simple case of a fractional system with the following: dynamics

aD
α
t x = Ax + Bu. (2.26)

The state and costate equations become

aD
α
t x = Ax + Bu,

tD
α
bλ = Aλ,

(2.27)
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with

x(a) = xa, x(b) = xb. (2.28)

Using Pontryagin’s minimum principle, we have

u∗Bλ∗ ≤ uBλ∗. (2.29)

Defining q∗ = bλ∗ gives us

u∗q∗ ≤ uq∗, (2.30)

u∗q∗ = min
umin≤u≤umax

{
uq∗
}
. (2.31)

We can now derive the optimal control sequence u∗(t). Given (2.31),

(1) if q∗(t) is positive, then the optimal control u∗(t) must be the smallest admissible
control umin value so that

min
umin≤u≤umax

{
uq∗
}
= −q∗ = − ∣∣q∗∣∣, (2.32)

(2) and if q∗(t) is negative, then the optimal control u∗(t) must be the largest admissible
control umax value so that

min
umin≤u≤umax

{
uq∗
}
= q∗ = −∣∣q∗∣∣. (2.33)

Combining (2.32) and (2.33) gives us the following control law:

u∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

umax if q∗(t) < 0,

umin if q∗(t) > 0,

undetermined if q∗(t) = 0.

(2.34)

In Section 3, we provide several numerical methods to obtain the control u, state x, and
costate λ for a specific problem from the literature.

3. Solution of the Time-Optimal Control of
a Fractional Double Integrator

In this section, we consider the following FTOCP:

min
u,T

J(u, T) .= T, (3.1)
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subject to

ẋ1 = x2, x1(0) = 0, x1(T) = A,

0D
αx2 = u, x2(0) = 0, x2(T) = 0,

umin ≤ u(t) ≤ umax, ∀t ∈ [0, T].

(3.2)

3.1. Solution Using Rational Approximation of the Fractional Operator

It is possible for time-optimal control problems to be reformulated into traditional optimal
control problems by augmenting the system dynamics with additional states (one additional
state for autonomous problems). For that purpose, the first step is to specify a nominal time
interval, [a b], for the problem and to define a scaling factor, adjustable by the optimization
procedure, to scale the system dynamics, and hence, in effect, scale the duration of the time
interval accordingly. This scale factor and the scaled time are represented by the extra states.

The problem defined by (3.1)-(3.2) can accordingly be reformulated as follows: find
the control u(t) (satisfying umin ≤ u(t) ≤ umax) over the time interval [01], which minimizes
the quadratic performance index

J(u) = T, (3.3)

subject to the following dynamics:

ẋ1 = Tx2,

0D
α
t x2 = Tu,

Ṫ = 0,

(3.4)

where the initial conditions are

x1(0) = 0,

x2(0) = 0,

T(0) = n,

(3.5)

where T(0) is the initial value chosen by the user. Final state constraints are

x1(1) = A,

x2(1) = 0.
(3.6)

According to [22], we can approximate the operator aD
α
t using a state space definition

aD
α
t x = u⇐⇒

{
ż = Az + bu

x = cz

}
. (3.7)
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Such approximation is called rational approximation of the fractional operator. To ensure the
applicability of our method, we need to define a new state vector y(t) such that

y(t) =

⎡
⎢⎢⎣
x1(t)

z(t)

T

⎤
⎥⎥⎦, (3.8)

where z(t) is the state vector of the rational approximation for the fractional-order system
described by 0D

α
t x2 = u.

Using the methodology proposed in [6], we reformulate the problem defined by (3.1)-
(3.2). Find the control u(t) (satisfying umin ≤ u(t) ≤ umax), which minimizes the quadratic
performance index

J(u) = T, (3.9)

subjected to the following dynamics:

ẏ =

⎡
⎢⎢⎣

c
[
y2(t) · · ·yN+1(t)

]T
A
[
y2(t) · · ·yN+1(t)

]T + bu(t)
0

⎤
⎥⎥⎦, (3.10)

the initial condition

y(0) =
[
0 0 · · · 0 T

]T
, (3.11)

and the final state constraints given by

y1(T) = 300,

c
[
y2(T) · · ·yN+1(T)

]T = 0.
(3.12)

Such a definition allows the problem to be solved by any traditional optimal control
problem solver.
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3.2. Solution Using Bang-Bang Control Theory

The solution to the problem defined by (3.1)–(3.2) can also be solved using bang-bang control
theory. In the integer case (α = 1), the solution in the time domain is well documented and is
given by

T1 =

√
− 2Aumin

umax(umax − umin)
,

T = T1 +

√
− 2Aumax

umin(umax − umin)
,

(3.13)

where T1 is the switching time.
Such a solution is obtained by deriving the system’s dynamic equations in the time

domain: for t ∈ [0, T1] (acceleration)

u(t) = umax,

x2(t) = umaxt,

x1(t) = umax
t2

2
,

(3.14)

and for t ∈ [T1, T] (deceleration)

u(t) = umin,

x2(t) = umin(t − T1) + x2(T1),

x1(t) = umin
(t − T1)2

2
+ x2(T1)(t − T1) + x1(T1).

(3.15)

Finding the switching time T1 and the final time T can be done by solving the system of final
time conditions:

x1(T2) = A,

x2(T2) = 0.
(3.16)

We can apply a similar technique to solve the fractional problem. For t ∈ [0, T1] (acceleration)

u(t) = umax,

x2(t) = umax · tα

Γ(α + 1)
,

x1(t) = umax · tα+1

Γ(α + 2)
,

(3.17)



International Journal of Differential Equations 11

and for t ∈ [T1, T2] (deceleration)

u(t) = umin,

x2(t) = umin · (t − T1)α

Γ(α + 1)
+ x2(T1)

(t − T1)
α−1

Γ(α)
,

x1(t) = umin · (t − T1)
α+1

Γ(α + 2)
+ x2(T1) · (t − T1)α

Γ(α + 1)
+ x1(T1).

(3.18)

Finding the switching time T1 and the final time T can be achieved by solving the system of
final time conditions:

x1(T2) = A,

x2(T2) = 0.
(3.19)

When expanded, it becomes

(T2 − T1)
α+1

Γ(α + 2)
umin +

Tα1
Γ(α + 1)

(T2 − T1)α

Γ(α + 1)
umax +

Tα+1
1

Γ(α + 2)
umax = A,

(T2 − T1)α

Γ(α + 1)
umin +

Tα1
Γ(α + 1)

(T2 − T1)
α−1

Γ(α)
umax = 0.

(3.20)

Renaming T21 = T − T1, we get

Tα+1
21

Γ(α + 2)
umin +

Tα1 T
α
21

Γ(α + 1)2
umax +

Tα+1
1

Γ(α + 2)
umax = A,

Tα21

Γ(α + 1)
umin +

Tα1 T
α−1
21

Γ(α + 1)Γ(α)
umax = 0.

(3.21)

The solution to the system of equations is as follows: solve for T21

− umin

αΓ(α + 2)
Tα+1

21 − uminΓ(α)
Γ(α + 2)

(
Γ(α)

umin

umax

)1/α

T
(α+1)/α
21 = A,

T1 =
(
−Γ(α)umin

umax
T21

)1/α

,

T = T21 + T1 .

(3.22)
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Figure 1: States x(t) as functions of time t for the Bang-Bang control problem for α = 1.

4. Results

In this section, we find the solution to the problem defined in Section 3 for the following
parameter values:

(i) umin = −2,

(ii) umax = 1,

(iii) A = 300.

The analytical solution for this system for α = 1 (the traditional double integrator) is
given in [23] by T ∗ = 30 as

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ t < 20,

−2 for 20 ≤ t ≤ 30,

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

t2

2
for 0 ≤ t < 20,

−t2 + 60t − 600 for 20 ≤ t ≤ 30,

ẋ(t) =

⎧⎪⎪⎨
⎪⎪⎩
t for 0 ≤ t < 20,

60 − 2t for 20 ≤ t ≤ 30.

(4.1)
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Figure 2: States x(t) as functions of time t for the Bang-Bang control problem for α = 0.9.
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Figure 3: States x(t) as functions of time t for the Bang-Bang control problem for α = 0.8.

To solve the problem, we use the RIOTS 95 Matlab Toolbox [24]. The acronym RIOTS means
“recursive integration optimal trajectory solver.” It is a Matlab toolbox developed to solve
a wide variety of optimal control problems. For more information about the toolbox, please
refer to [25].

Figure 1 shows the states x(t) as functions of t for α = 1. Figures 2, 3, 4, 5 and 6 show
the state x(t) as functions of t for different values of α (0.9, 0.8, 0.7, 0.6, and 0.5, respectively).
We can observe that when the order α approaches 1, the optimal duration nears its value for
the double integrator case.

Since it is possible to obtain the analytical solution of the problem from (3.22), we
give in Figure 7 the plot of the duration of the control T versus the order of the fractional
derivative. As we can see, for α = 1, the solution matches the results obtained for a double
integrator.
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Figure 4: States x(t) as functions of time t for the Bang-Bang control problem for α = 0.7.
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Figure 5: States x(t) as functions of time t for the Bang-Bang control problem for α = 0.6.

5. Conclusions

We developed a formulation for fractional time-optimal control problems. Such problems
occur when the dynamics of the system can be modeled using the fractional derivatives
operator. The formulation made use of the the Lagrange multiplier technique, Pontryagin’s
minimum principle, and the state and costate equations. Considering a specific set of
dynamical equations, we were able to demonstrate the bang-bang nature of the solution of
fractional time-optimal control problems, just like in the integer-order case. We were able
to solve a special case using both optimal control theory and bang-bang control theory. The
optimal control solution can be obtained using a rational approximation of the fractional
derivative operator whereas the bang-bang control solution is derived from the time-domain
solution for the final time constraints. Both methods showed similar results, and in both cases
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Figure 6: States x(t) as functions of time t for the Bang-Bang control problem for α = 0.5.
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Figure 7: Duration of the control T as a function of the order α.

as the order α approaches the integer value 1, the numerical solutions for both the state and
the control variables approach the analytical solutions for α = 1.
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