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By combining the embedding arguments and the variational methods, we obtain infinitely many
solutions for a class of superlinear elliptic problems with the Robin boundary value under weaker
conditions.

1. Introduction

In this paper, we consider the following equation:

−Δu = f(x, u), in Ω,

∂u

∂n
+ b(x)u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain in R
n with smooth boundary ∂Ω and 0 ≤ b ∈ L∞(∂Ω). Denote

F(x, s) =
∫s

0
f(x, t)dt, F = f(x, s)s − 2F(x, s), (1.2)

and let λ1 ≤ λ2 ≤ · · · ≤ λj < · · · be the eigenvalues of −Δwith the Robin boundary conditions.
We assume that the following hold:
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(f1) f ∈ C(Ω × R), ∃q ∈ (2, 2∗) such that

∣∣f(x, s)∣∣ ≤ c
(
1 + |s|q−1

)
, (1.3)

where 1 ≤ s < 2N/(N − 2),N ≥ 3. IfN = 1, 2, let 2∗ = ∞;

(f2) f(x, s)s ≥ 0, lim|s|→+∞(f(x, s)s)/|s|2 = +∞ uniformly for x ∈ Ω.

(f3) there exist θ ≥ 1, s ∈ [0, 1] s.t.

θF(x, t) ≥ F(x, st), (x, t) ∈ Ω × R; (1.4)

(f4) f(x,−t) = −f(x, t), (x, t) ∈ Ω × R.

Because of (f2), (1.1) is usually called a superlinear problem. In [1, 2], the author
obtained infinitely many solutions of (1.1) with Dirichlet boundary value condition under
(f1), (f4) and

(AR) ∃μ > 2, R > 0 such that

x ∈ Ω, |s| ≥ R =⇒ 0 < μF(x, s) ≤ f(x, s)s. (1.5)

Obviously, (f2) can be deduced form (AR). Under (AR), the (PS) sequence can be deduced
bounded. However, it is easy to see that the example [3]

f(x, t) = 2t log(1 + |t|) (1.6)

does not satisfy (AR), while it satisfies the aforementioned conditions (take θ = 1 in (f3)).
(f3) is from [3, 4].

We need the following condition (C), see [3, 5, 6].

Definition 1.1. Assume that X is a Banach space, we say that J ∈ C1(X,R) satisfies Cerami
condition (C), if for all c ∈ R:

(i) any bounded sequence {un} ⊂ X satisfying J(un) → c, J ′(un) → 0 possesses a
convergent subsequence;

(ii) there exist σ,R, β > 0 s.t. for any u ∈ J−1([c − σ, c + σ])with ‖u‖ ≥ R, ‖J ′(u)‖‖u‖ ≥ β.

In the work in [2, 7], the Fountain theorem was obtained under the condition (PS).
Though condition (C) is weaker than (PS), the well-known deformation theorem is still true
under condition (C) (see [5]). There is the following Fountain theorem under condition (C).

Assume X =
⊕∞

j=1Xj , where Xj are finite dimensional subspace of X. For each k ∈ N,
let

Yk =
⊕k

j=1
Xj, Zk =

⊕
j≥kXj . (1.7)

Denote Sρ = {u ∈ X : ‖u‖ = ρ}.



International Journal of Differential Equations 3

Proposition 1.2. Assume that J ∈ C1(X,R) satisfies condition (C), and J(−u) = J(u). For each
k ∈ N, there exist ρk > rk > 0 such that

(i) bk := infu∈Zk∩srk J(u) → +∞, k → ∞,

(ii) ak := maxu∈Yk∩sρk J(u) ≤ 0.

Then J has a sequence of critical points un, such that J(un) → +∞ as n → ∞.

As a particular linking theorem, Fountain theorem is a version of the symmetric
Mountain-Pass theorem. Using the aforementioned theorem, the author in [6] proved
multiple solutions for the problem (1.1) with Neumann boundary value condition; the
author in [3] proved multiple solutions for the problem (1.1) with Dirichlet boundary value
condition. In the present paper, we also use the theorem to give infinitely many solutions for
problem (1.1). The main results are follows.

Theorem 1.3. Under assumptions (f1)–(f4), problem (1.1) has infinitely many solutions.

Remark 1.4. In the work in [1, 2], they got infinitely many solutions for problem (1.1) with
Dirichlet boundary value condition under condition (AR).

Remark 1.5. In the work in [8], they showed the existence of one nontrivial solution for
problem (1.1), while we get its infinitely many solutions under weaker conditions than [8].

Remark 1.6. In the work in [9], they also obtained infinitely many solutions for problem (1.1)
with Dirichlet boundary value condition under stronger conditions than the aforementioned
(f2) and (f3) above. Furthermore, function (1.6) does not satisfy all conditions in [9].
Therefore, Theorem 1.3 applied to Dirichlet boundary value problem improves those results
in [1, 2, 8, 9].

2. Preliminaries

Let the Sobolev space X = H1(Ω). Denote

‖u‖ =
(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

(2.1)

to be the norm of u in X, and |u|q the norm of u in Lq(Ω). Consider the functional J : X → R:

J(u) =
1
2

∫
Ω
|∇u|2dx +

1
2

∫
∂Ω
b(x)u2dS −

∫
Ω
F(x, u)dx. (2.2)

Then by (f1), J is C1 and

〈
J ′(u), φ

〉
=
∫
Ω
∇u∇φdx +

∫
∂Ω
b(x)uφdS −

∫
Ω
f(x, u)φdx, u, φ ∈ X. (2.3)

The critical point of J is just the weak solution of problem (1.1).
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Since we do not assume condition (AR), we have to prove that the functional J satisfies
condition (C) instead of condition (PS).

Lemma 2.1. Under (f1)–(f3), J satisfies condition (C).

Proof. For all c ∈ R, we assume that {un} ⊂ X is bounded and

J(un) −→ c, J ′(un) −→ 0, n −→ ∞. (2.4)

Going, if necessary, to a subsequence, we can assume that un ⇀ u in X, then

‖un − u‖2 =
∫
Ω

(
|∇(un − u)|2 + (un − u)2

)
dx

=
〈
J ′(un) − J ′(u), un − u

〉
+
∫
∂Ω

− b(x)(un − u)2dS

+
∫
Ω

[
(un − u)2 +

(
f(x, un) − f(x, u)

)
(un − u)

]
dx.

(2.5)

that is,

‖un − u‖2 +
∫
∂Ω
b(x)(un − u)2dS =

∫
Ω

(
|∇(un − u)|2 + (un − u)2

)
dx

=
〈
J ′(un) − J ′(u), un − u

〉

+
∫
Ω

[
(un − u)2 +

(
f(x, un) − f(x, u)

)
(un − u)

]
dx.

(2.6)

Since the Sobolev imbedding W1,2(Ω) ↪→ Lγ(Ω) (1 ≤ γ < 2∗) is compact, we have the
right-hand side of (2.6) converges to 0. While

∫
∂Ωb(x)(un−u)2dS ≥ 0, we have ‖un−u‖2 → 0.

It follows that un → u in X and J ′(u) = 0, that is, condition (i) of Definition 1.1 holds.
Next, we prove condition (ii) of Definition 1.1, if not, there exist c ∈ R and {un} ⊂ X

satisfying, as n → ∞

J(un) −→ c, ‖un‖ −→ ∞,
∥∥J ′(un)

∥∥‖un‖ −→ 0, (2.7)

then we have

lim
n→∞

∫
Ω

(
1
2
f(x, un)un − F(x, un)

)
dx = lim

n→∞

(
J(un) − 1

2
〈
J ′(un), un

〉)
= c. (2.8)
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Denote vn = un/‖un‖, then ‖vn‖ = 1, that is, {vn} is bounded inX, thus for some v ∈ X,
we get

vn ⇀ v, in X,

vn −→ v, in L2(Ω),

vn −→ v, a.e. in Ω.

(2.9)

If v = 0, define a sequence {tn} ⊂ R as in [4]

J(tnun) = max
t∈[0,1]

J(tun). (2.10)

If for some n ∈ N, there is a number of tn satisfying (2.10), we choose one of them. For all
m > 0, let vn = 2

√
mvn, it follows by vn(x) → v(x) = 0 a.e. x ∈ Ω that

lim
n→∞

∫
Ω
F(x, vn)dx = lim

n→∞

∫
Ω
F
(
x, 2

√
mvn

)
dx = 0. (2.11)

Then for n large enough, by (2.9), (2.11), and
∫
∂Ωb(x)v

2
n ≥ 0, we have

J(tnun) ≥ J(vn) =
1
2

∫
Ω
|∇vn|2dx +

1
2

∫
∂Ω
b(x)v2

ndS −
∫
Ω
F(x, vn)dx

= 2m
∫
Ω
|∇vn|2dx + 2m

∫
∂Ω
b(x)v2

ndS −
∫
Ω
F(x, vn)dx

= 2m‖vn‖2 −
∫
Ω
F(x, vn)dx + 2m

∫
∂Ω
b(x)v2

ndS − 2m
∫
Ω
v2
ndx

≥ 2m −
∫
Ω
F(x, vn)dx ≥ m.

(2.12)

That is, limn→∞J(tnun) = +∞. Since J(0) = 0 and J(un) → c, then 0 < tn < 1. Thus

∫
Ω
|∇tnun|2dx +

∫
∂Ω
b(x)(tnun)2dS −

∫
Ω
f(x, tnun)tnundx

=
〈
J ′(tnun), tnun

〉
= tn

d

dt

∣∣∣∣
t=tn

J(tun) = 0.

(2.13)

We see that

1
2

∫
Ω
f(x, tnun)tnundx −

∫
Ω
F(x, tnun)dx

=
1
2

∫
Ω
|∇tnun|2dx +

1
2

∫
∂Ω
b(x)(tnun)2dS −

∫
Ω
F(x, tnun)dx = J(tnun).

(2.14)
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From the aforementioned, we infer that

∫
Ω

(
1
2
f(x, un)un − F(x, un)

)
dx

=
1
2

∫
Ω
F̃(x, un)dx ≥ 1

2θ

∫
Ω
F̃(x, tnun)dx

=
1
θ

∫
Ω

[
1
2
f(x, tnun)tnun − F(x, tnun)

]
dx −→ +∞, n −→ ∞,

(2.15)

which contradicts (2.8).
If v /≡ 0, by (2.7)

∫
Ω
|∇un|2dx +

∫
∂Ω
b(x)u2

ndS −
∫
Ω
f(x, un) undx =

〈
J ′(un, un)

〉
= o(1). (2.16)

That is,

‖un‖2 −
∫
Ω
f(x, un)undx −

∫
Ω
u2
ndx +

∫
∂Ω
b(x)u2

ndS = o(1)

1 − o(1) =
∫
Ω

f(x, un)un

‖un‖2
dx +

∫
Ω

u2
n

‖un‖2
dx −

∫
∂Ω

b(x)u2
n

‖un‖2
dS.

(2.17)

Since limn→∞
∫
Ω(u

2
n/‖un‖2)dx = limn→∞

∫
Ωv

2
n = |v|22 exists, and by vn ⇀ v in X (the weakly

convergent sequence is bounded), we get

∫
∂Ω

b(x)u2
n

‖un‖2
dS =

∫
∂Ω
b(x)v2

ndS ≤ C‖b‖L∞(∂Ω)‖vn‖2 < ∞, (2.18)

where C is the constant of Sobolev Trace imbedding from H1(Ω) → L2(∂Ω), see [10]. We
have

1 − o(1) ≥
∫
Ω

f(x, un)un

‖un‖2
dx − C̃ =

(∫
v /= 0

+
∫
v=0

)
f(x, un)un

|un|2
|vn|2dx − C̃. (2.19)

For x ∈ Ω′ := {x ∈ Ω : v(x)/= 0}, we get |un(x)| → +∞. Then by (f2)

f(x, un(x))un(x)

|un(x)|2
|vn(x)|2 −→ +∞, n −→ ∞. (2.20)

By using Fatou lemma, since the Lebesgue measure |Ω′| > 0,

∫
v /= 0

f(x, un)un

|un|2
|vn|2dx −→ +∞, n −→ ∞. (2.21)
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On the other hand, by (f2), there exists γ > −∞, such that (f(x, s)s)/|s|2 ≥ γ for (x, s) ∈ Ω×R.
Moreover,

∫
v=0

‖vn‖2dx −→ 0, n −→ ∞. (2.22)

Now, there is Λ > −∞ s.t.

∫
v=0

f(x, un)un

|un|2
|vn|2dx ≥ γ

∫
v=0

‖vn‖2dx ≥ Λ > −∞. (2.23)

Together with (2.19) and (2.21), (2.23), it is a contradiction.
This proves that J satisfies condition (C).

3. Proof of Theorem 1.3

We will apply the Fountain theorem of Proposition 1.2 to the functional in (2.2). Let

Xj = ker(−Δ − λi), Yk =
⊕k

j=1
Xj, Zk =

⊕
j≥kXj , (3.1)

thenX =
⊕∞

j=1Xj . It shows that J ∈ C1(X,R) by (f1) and satisfies condition (C) by Lemma 2.1.

(i) After integrating, we obtain from (f1) that there exist c1 > 0 such that

|F(x, u)| ≤ c1
(
1 + |u|q). (3.2)

Let us define βk = supu∈Zk∩S1
|u|q. By [2, Lemma 3.8], we get βk → 0 as k → ∞. Since

|u|2 ≤ C(Ω)|u|q, let c = c1 + (1/2)C(Ω), and rk = (cqβqk)
1/2−q, then by (3.2), for u ∈ Zk with

‖u‖ = rk, we have

J(u) =
1
2

∫
Ω
|∇u|2dx +

1
2

∫
∂Ω
b(x)u2dS −

∫
Ω
F(x, u)dx

≥ 1
2
‖u‖2 − c1|u|qq − c1|Ω| + 1

2

∫
∂Ω
b(x)u2dS − 1

2

∫
Ω
u2dx

≥ 1
2
‖u‖2 − c1|u|qq − c1|Ω| − 1

2
|u|22

≥ 1
2
‖u‖2 − c|u|qq − c1|Ω|

≥
(
1
2
− 1
q

)(
cqβ

q

k

)2/(2−q) − c1|Ω|.

(3.3)
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Notice that βk → 0 and q > 2, we infer that

bk = inf
u∈Zk∩srk

J(u) −→ +∞, k −→ ∞. (3.4)

(ii) While

λ1 = inf
u∈H1(Ω)\{0}

∫
Ω|∇u|2dx +

∫
∂Ωα(x)u

2dS∫
Ωu

2dx
> 0, (3.5)

we can deduce that
∫
Ω|∇u|2dx +

∫
∂Ωα(x)u

2dS is the equivalent norm of ‖u‖2 in X. Since
dimYk < +∞ and all norms are equivalent in the finite-dimensional space, there exists Ck > 0,
for all u ∈ Yk, we get

1
2

∫
Ω
|∇u|2dx +

1
2

∫
∂Ω
b(x)u2dS =

1
2
‖u‖2 ≤ Ck|u|22. (3.6)

Next by (f2), there is Rk > 0 such that F(x, s) ≥ 2Ck|s|2 for |s| ≥ Rk. Take Mk := max{0,
inf|s|≤RkF(x, s)}, then for all (x, s) ∈ Ω × R, we obtain

F(x, s) ≥ 2Ck|s|2 −Mk. (3.7)

It follows from (3.6), (3.7), for all u ∈ Yk that

J(u) =
1
2

∫
Ω
|∇u|2dx +

1
2

∫
∂Ω
b(x)u2dS −

∫
Ω
F(x, u)dx

=
1
2
‖u‖2 −

∫
Ω
F(x, u)dx

≤ −Ck|u|22 +Mk|Ω|

≤ −1
2
‖u‖2 +Mk|Ω|.

(3.8)

Therefore, we get that for ρk large enough (ρk > rk),

ak = max
u∈Yk,‖u‖=ρk

J(u) ≤ 0. (3.9)

By Fountain theorem of Proposition 1.2, J has a sequence of critical points un ∈ X, such that
J(un) → +∞ as n → ∞, that is, (1.1) has infinitely many solutions.
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Remark 3.1. By Theorem 1.3, the following equation:

−Δu = 2u log(1 + |u|), in Ω,

∂u

∂n
+ b(x)u = 0, on ∂Ω,

(3.10)

has infinitely many solutions, while the results cannot be obtained by [1, 2, 8, 9]

Remark 3.2. In the next paper, we wish to consider the sign-changing solutions for problem
(1.1).
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