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The methods of lower and upper solutions and monotone iterative technique are employed to
the study of integral boundary value problems for a class of first-order impulsive functional
differential equations. Sufficient conditions are obtained for the existence of extreme solutions.

1. Introduction and Preliminaries

In this paper, we study the following integral boundary value problems (BVPs for short) of
the impulsive functional differential equation

x′(t) + b(t)x(t) = f(t, x(t), [Kx](t)), t /= tk, t ∈ J = [0, T],

Δx(tk) = Ik(x(tk)), k = 1, 2, . . . , m,

x(0) + μ
∫T
0
x(s)ds = x(T), μ ≤ 0,

(1.1)

where f ∈ C(J × R2, R), Ik ∈ C(R,R), (1 ≤ k ≤ m), b(t) ∈ C(R), b(t) ≤ 0, J = [0, T], 0 =
t0 < t1 < t2 < · · · < tm < tm+1 = T . K : PC(J) → PC(J), where PC(J) = {u : J → R, u is
continuous for t ∈ J, t /= tk, u(t+i ), u(t−i ) exist, and u(t−i ) = u(ti), i = 1, 2, . . . , m}. Furthermore,
we will assume that K is continuous and monotone nondecreasing, and for any bounded
set A ⊆ PC(J), KA is bounded. Δx(tk) = x(t+k) − x(t−k) denotes the jump of x(t) at t = tk;
x(t+k) and x(t−k) represent the right and left limits of x(t) at t = tk, respectively. Denote J ′ =
J \ {t1, t2, . . . , tm}.
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Let PC1(J) = {u ∈ PC(J) : u be continuously differentiable for t ∈ J, t /= tk}. PC(J)
and PC1(J) are Banach spaces with the norms

‖u‖PC(J) = sup{|u(t)| : t ∈ J}, ‖u‖PC1(J) = max
{
‖u‖PC(J),

∥∥u′∥∥PC(J)
}
. (1.2)

By a solution of (1.1) we mean a u ∈ PC1(J) for which problem (1.1) is satisfied.
Note that (1.1) has a very general form, as special instances resulting from (1.1),

one can have impulsive differential equations with deviating arguments and impulsive
differential equations with the Volterra or Fredholm operators. When μ = 0, Ik ≡ 0, (1.1)
reduces to

x′(t) + b(t)x(t) = f(t, x(t), [Kx](t)), t ∈ J = [0, T],

x(0) = x(T).
(1.3)

In [1], Cao and Li. studied and understood existence and stability of solution of this equation
by using fixed theorem and monotone iteration techniques.

When μ = 0, b(t) ≡ 0, (1.1) reduces to

x′(t) = f(t, x(t), [Kx](t)), t /= tk, t ∈ J = [0, T],

Δx(tk) = Ik(x(tk)), k = 1, 2, . . . , m,

x(0) = x(T).

(1.4)

In [2], Li discussed and built the existence theorem of solutions of this equation by using
fixed theorem, upper and lower solutions methods and monotone iterative techniques.

When μ = 0, b(t) ≡ 0, [Kx](t) = x(t), the equation (1.1) reduces to the periodic
boundary value problem of the impulsive differential equation

x′(t) = f(t, x(t)), t /= tk, t ∈ J = [0, T],

Δx(tk) = Ik(x(tk)), k = 1, 2, . . . , m,

x(0) = x(T).

(1.5)

There are plenty of results on studying the periodic boundary value problem of impulsive
differential equations (see [3–8]). According to author’s know, there are no dependent
references for studying the (1.1) yet. To fill in this void, we try to find the conditions on f
and Ik, so that make sure that the (1.1) exists extremal solution.

It is well known that the monotone iterative technique offers an approach for
obtaining approximate solutions of nonlinear differential equations, for details, see [4] and
the references therein. There also exist several works devoted to the applications of this
technique to boundary value problems of impulsive differential equations, see, for example,
[1–3, 5–14]. In this paper, we consider (1.1) by using the method of upper and lower
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solutions combined with monotone iterative technique. This technique plays an important
role in constructing monotone sequences which converge to the solutions of our problems. In
presence of a lower solution α and an upper solution β with α ≤ β, we show under suitable
conditions the sequences converge to the solutions of (1.1) by using the method of upper and
lower solutions and monotone iterative technique.

Definition 1.1. The functions α, β ∈ PC1(J) are called lower solution and upper solution of
(1.1), respectively, if

α′(t) + b(t)α(t) ≤ f(t, α(t), [Kα](t)), t /= tk, t ∈ J,
Δα(tk) ≤ Ik(α(tk)), k = 1, 2, . . . , m,

α(0) + μ
∫T
0
α(s)ds ≤ α(T), μ ≤ 0.

β′(t) + b(t)β(t) ≥ f(t, β(t), [Kβ](t)), t /= tk, t ∈ J,
Δβ(tk) ≥ Ik

(
β(tk)

)
, k = 1, 2, . . . , m,

β(0) + μ
∫T
0
β(s)ds ≥ β(T), μ ≤ 0.

(1.6)

In what follows we define the set

[
α, β
]
=
{
w ∈ PC(J, R) : α(t) ≤ w(t) ≤ β(t), t ∈ J} (1.7)

for α, β ∈ PC(J, R) and α ≤ β.
We list the following conditions.

(H1) α(t), β(t) are lower and upper solutions of (1.1) such that α(t) ≤ β(t).

(H2) There existsM ≥ 0 such that

f
(
t, x, y

) − f(t, x, y) ≥ −M(x − x), (1.8)

for α(t) ≤ x ≤ x ≤ β(t), [Tα](t) ≤ y ≤ y ≤ [Tβ](t), t ∈ J.

(H3) There exist 0 ≤ Lk < 1, k = 1, 2, . . . , m such that

Ik(x) − Ik
(
y
) ≥ −Lk

(
x − y), k = 1, 2, . . . , m, (1.9)

for α(t) ≤ y ≤ x ≤ β(t), t ∈ J.
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2. Main Results

To obtain our main results, we need the following lemmas.

Lemma 2.1 (see [9]). Suppose that the following conditions are satisfied.

(A0) Sequence {tk} satisfies 0 ≤ t0 < t1 < t2 · · · , and limn→∞tn = ∞.

(A1) m ∈ PC1[J, R] andm(t) is left continuous at tk, k = 1, 2, . . ..

(A2) For k = 1, 2, . . . , t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t /= tk, t ∈ J,
m
(
t+k
) ≤ dkm(tk) + bk, k = 1, 2, . . . , m,

(2.1)

where q, p ∈ C[R+, R], bk, dk ≥ 0 are constants, then

m(t) ≤ m(t0)
∏
t0<tk≤t

dk exp

(∫ t
t0

p(s)ds

)

+
∑

t0<tk≤t

⎛
⎝∏

tk<tj≤t
dj exp

(∫ t
tk

p(s)ds

)⎞
⎠bk

+
∫ t
t0

∏
s<tk<t

dk exp

(∫ t
s

p(σ)dσ

)
q(s)ds.

(2.2)

Lemma 2.2 (see [12]). Ifm ∈ PC1(J) and

m′(t) ≤ −Mm(t), t /= tk, t ∈ J = [0, T],

Δm(tk) ≤ −Lkm(tk), k = 1, 2, . . . , m,

m(0) ≤ m(T),

(2.3)

whereM > 0, 0 < Lk ≤ 1, thenm(t) ≤ 0, t ∈ J.

Lemma 2.3. If x ∈ PC(J), M > 0, 0 < Lk ≤ 1, k = 1, 2, . . . , m, and (1/(1 − e−MT))
∑m

k=0 Lk < 1,
then the equation

x′(t) +Mx(t) = σ(t), t /= tk, t ∈ J = [0, T],

Δx(tk) = −Lkx(tk) + dk, k = 1, 2, . . . , m,

x(0) + d = x(T), d ∈ R
(2.4)

has one unique solution.
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Proof. Firstly, we prove that (2.4) is equivalent to the integral equation

x(t) = − e−Mt

1 − e−MT
d +
∫T
0
G(t, s)σ(s)ds +

m∑
k=0

G(t, tk)(−Lkx(tk) + dk), (2.5)

where

G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−M(t−s)

1 − e−MT
, 0 ≤ s < t ≤ T,

e−M(T+t−s)

1 − e−MT
, 0 ≤ t ≤ s ≤ T.

(2.6)

If x(t) ∈ PC1(J) is solution of (2.4), then, by directly integrating we obtain

x(t) = − e−Mt

1 − e−MT
d +
∫T
0
G(t, s)σ(s)ds +

m∑
k=0

G(t, tk)(−Lkx(tk) + dk). (2.7)

If x(t) ∈ PC1(J) is solution of the above-mentioned integral equation, then

x′(t) = −M
[
− e−Mt

1 − e−MT
d +
∫T
0
G(t, s)σ(s)ds +

m∑
k=0

G(t, tk)(−Lkx(tk) + dk)
]
+ σ(t)

= −Mx(t) + σ(t), t /= tk,

Δx(tk) = −Lk(x(tk)) + dk, k = 1, 2, . . . , m,

x(0) = − 1
1 − e−MT

d +
∫T
0

e−M(T−s)

1 − e−MT
σ(s)ds +

m∑
k=0

e−M(T−tk)

1 − e−MT
(−Lkx(tk) + dk),

x(T) = − e−MT

1 − e−MT
d +
∫T
0

e−M(T−s)

1 − e−MT
σ(s)ds +

m∑
k=0

e−M(T−tk)

1 − e−MT
(−Lkx(tk) + dk).

(2.8)

This yields x(0) + d = x(T). So (2.4) is equivalent to the integral equation

x(t) = − e−Mt

1 − e−MT
d +
∫T
0
G(t, s)σ(s)ds +

m∑
k=0

G(t, tk)(−Lkx(tk) + dk). (2.9)

Now, we define operator A : PC(J) → PC(J) as

(Ax)(t) = − e−Mt

1 − e−MT
d +
∫T
0
G(t, s)σ(s)ds +

m∑
k=0

G(t, tk)(−Lkx(tk) + dk). (2.10)
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For each x, y ∈ PC(J),

∣∣(Ax)(t) − (Ay)(t)∣∣ ≤ 1
1 − e−MT

m∑
k=0

Lk
∣∣x − y∣∣ ≤ 1

1 − e−MT

m∑
k=0

Lk
∥∥x(tk) − y(tk)∥∥, (2.11)

and so

∥∥(Ax)(t) − (Ay)(t)∥∥ ≤ 1
1 − e−MT

m∑
k=0

Lk
∥∥x(tk) − y(tk)∥∥. (2.12)

This indicates that A : PC(J) → PC(J) is a contraction mapping. Then there is one
unique x ∈ PC(J) such that Ax = x, that is, (2.4) has an unique solution x(t). The proof is
complete.

Theorem 2.4. If the conditions (H1), (H2), (H3) are all satisfied, and, in addition, if there exist
M > 0, 0 < Lk ≤ 1, k = 1, 2, . . . , m, such that (1/(1 − e−MT))

∑m
k=0 Lk < 1, then the

impulsive equation (1.1) has minimal and maximal solutions ρ(t), r(t) ∈ PC1(J) in [α, β], and
there are monotone sequences {αn}, {βn} convergeing uniformly to ρ(t), r(t) in J , respectively, where
α0 = α, β0 = β, and αn(t), βn(t) are lower and upper solutions of (1.1), respectively.

Proof. For each ψ ∈ [α, β], we consider the equation

x′(t) = f
(
t, ψ(t),

[
Kψ
]
(t)
) − b(t)ψ(t) −M(x(t) − ψ(t)), t /= tk, t ∈ J,

Δx(tk) = Ik
(
ψ(tk)

) − Lk(x(tk) − ψ(tk)), k = 1, 2, . . . , m,

x(0) + μ
∫T
0
ψ(s)ds = x(T), μ ≤ 0.

(2.13)

By Lemma 2.3, we know that (2.13) has a unique solution x(t) ∈ PC1(J). Now, we define
operator A : PC1(J) → PC1(J) as Aψ = x.

We will prove that {αn}, {βn} have the following properties.

(a) α0 ≤ Aα0, Aβ0 ≤ β0.
(b) A is monotone nondecreasing on [α0, β0].

Proofs of properties (a), (b) are divided into three steps to proceed.

Step 1. Suppose that p = α0 − α1, then

p′ = α′0 − α′1 ≤ −b(t)α(t) + f(t, α(t), [Kα](t)) − f(t, α(t), [Kα(t)](t))
+ b(t)α(t) +M(α1(t) − α(t)) = −Mp(t), t /= tk,

Δp(tk) = Δα0 −Δα1 ≤ Ik(α(tk)) − Ik(α(tk)) + Lk(α1(tk) − α(tk)) = −Lkp(tk), t = tk,

p(0) = α0(0) − α1(0) ≤ p(T).

(2.14)

By Lemma 2.2, we obtain p(t) ≤ 0, t ∈ J , so α0(t) ≤ α1(t).
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Step 2. Suppose that p = β1 − β0, then

p′ = β′1 − β′0 ≤ b(t)β(t) − f
(
t, β(t),

[
Kβ
]
(t)
)
+ f
(
t, β(t),

[
Kβ(t)

]
(t)
)

− b(t)β(t) −M(β1(t) − β(t)) = −Mp(t), t = tk,

Δp(tk) = Δβ1 −Δβ0 ≤ −Ik
(
β(tk)

)
+ Ik
(
β(tk)

) − Lk(β1(tk) − β(tk)) = −Lkp(tk), t = tk,

p(0) = β1(0) − β0(0) ≤ p(T).

(2.15)

By Lemma 2.2, we obtain p(t) ≤ 0, t ∈ J , so β1(t) ≤ β0(t).

Similary we can show that α1(t) ≤ β1(t), hence α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t).

Step 3. If n = m, αm−1 ≤ αm ≤ βm ≤ βm−1, then when n = m + 1, let p = αm − αm+1. Then

p′ = α′m − α′m+1 ≤ −b(t)αm−1(t) + f(t, αm−1(t), [Kαm−1](t))

−M(αm(t) − αm−1(t)) − f(t, αm(t), [Kαm(t)](t))
+ b(t)αm(t) +M(αm+1(t) − αm(t))

= −b(t)(αm−1 − αm) −Mp(t), t /= tk.

(2.16)

Furthermore, b(t) ≤ 0, αm−1 − αm ≤ 0, thus p′ = α′m − α′m+1 ≤ −Mp(t),

Δp(tk) = Δαm −Δαm+1 = Ik(αm−1(tk)) − Lk(αm(tk) − αm−1(tk))

− Ik(αm(tk)) + Lk(αm+1(tk) − αm(tk)) ≤ −Lkp(tk), t = tk,

p(0) = αm(0) − αm+1(0) = μ
∫T
0
(αm(s) − αm−1(s))ds + p(T) ≤ p(T).

(2.17)

By Lemma 2.2, we obtain p(t) ≤ 0, t ∈ J , so αm(t) ≤ αm+1(t).
Similarly, we can assume that p = βm+1 − βm.When t /= tk,

p′ = β′m+1 − β′m ≤ −b(t)βm(t) + f
(
t, βm(t),

[
Kβm

]
(t)
) −M(βm+1(t) − βm(t)

)
− f(t, βm−1(t),

[
Kβm−1(t)

]
(t)
)
+ b(t)βm−1(t) +M

(
βm(t) − βm−1(t)

)
= −b(t)(βm − βm−1

) −Mp(t).

(2.18)

Furthermore, b(t) ≤ 0, βm − βm−1 ≤ 0, thus p′ = β′m+1 − β′m ≤ −Mp(t),when t = tk,

Δp(tk) = Δβm+1 −Δβm = Ik
(
βm(tk)

) − Lk(βm+1(tk) − βm(tk)
)

− Ik
(
βm−1(tk)

)
+ Lk

(
βm(tk) − βm−1(tk)

) ≤ −Lkp(tk),

p(0) = βm+1(0) − βm(0) = μ
∫T
0

(
βm−1(s) − βm(s)

)
ds + p(T) ≤ p(T),

(2.19)

hence by Lemma 2.2, we obtain p(t) ≤ 0, t ∈ J , so βm+1(t) ≤ βm(t).
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In the same way we can prove that αm+1(t) ≤ βm+1(t).
Thus by mathematical induction we can know that

αn−1 ≤ αn ≤ βn ≤ βn−1, n = 0, 1, 2, . . . , t ∈ J. (2.20)

So far, we finish the proof of the properties (a), (b).
Now we prove that αn, βn, n = 0, 1, 2, . . . , are lower and upper solutions of (1.1).

Similarly, we can use mathematical induction to prove this.
When n = 0, α0, β0 are already lower and upper solutions of (1.1).
When n = 1,

α1(t) = f(t, α(t), [Kα](t)) − b(t)α(t) −M(α1(t) − α(t))
− f(t, α1(t), [Kα1](t)) + f(t, α1(t), [Kα1](t))

≤ f(t, α1(t), [Kα1](t)) − b(t)α1(t), t /= tk, t ∈ J,
Δα1(tk) = Ik(α(tk)) − Lk(α1(tk) − α(tk)) + Ik(α1(tk)) − Ik(α1(tk))

≤ Ik(α1(tk)), k = 1, 2, . . . , m,

α1(0) + μ
∫T
0
α1(s)ds ≤ α1(0) + μ

∫T
0
α(s)ds = α1(T), μ ≤ 0.

(2.21)

Thus α1 is lower solution of (1.1).
Suppose that αn is lower solution of (1.1) when n = m.
Then when n = m + 1,

αm+1(t) = f(t, αm(t), [Kαm](t)) − b(t)αm(t) −M(αm+1(t) − αm(t))
− f(t, αm+1(t), [Kαm+1](t)) + f(t, αm+1(t), [Kαm+1](t))

≤ f(t, αm+1(t), [Kαm+1](t)) − b(t)αm+1(t), t /= tk, t ∈ J,
Δαm+1(tk) = Ik(αm(tk)) − Lk(αm+1(tk) − αm(tk)) + Ik(αm+1(tk))

− Ik(αm+1(tk)) ≤ Ik(αm+1(tk)), k = 1, 2, . . . , m,

αm+1(0) + μ
∫T
0
αm+1(s)ds ≤ αm+1(0) + μ

∫T
0
αm(s)ds = αm+1(T).

(2.22)

Thus by mathematical induction we can know that αn is lower solution of (1.1). In the
same way we can prove that βn is upper solution of (1.1).

By αn−1 ≤ αn ≤ βn ≤ βn−1, n = 0, 1, 2, . . . , t ∈ J , we can know that when
n → +∞, {αn},{βn} have limits ρ(t), r(t), respectively. Since they are independent of t when
n → +∞{αn}, {βn} converge uniformly to ρ(t), r(t) and αn ≤ ρ(t) ≤ r(t) ≤ βn ≤ βn−1, n =
0, 1, 2, . . . , t ∈ J.
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According to αn,βn satisfying (2.13), that is,

α′n(t) = f(t, αn−1(t), [Kαn−1](t)) − b(t)αn−1(t) −M(αn(t) − αn−1(t)), t /= tk, t ∈ J,
Δαn(tk) = Ik(αn−1(tk)) − Lk(αn(tk) − αn−1(tk)), k = 1, 2, . . . , m,

αn(0) + μ
∫T
0
αn−1(s)ds = αn(T), μ ≤ 0,

β′n(t) = f
(
t, βn−1(t),

[
Kβn−1

]
(t)
) − b(t)βn−1(t) −M(βn(t) − βn−1(t)), t /= tk, t ∈ J,

Δβn(tk) = Ik
(
βn−1(tk)

) − Lk(βn(tk) − βn−1(tk)), k = 1, 2, . . . , m,

βn(0) + μ
∫T
0
βn−1(s)ds = βn(T), μ ≤ 0,

(2.23)

when n → +∞, we have

ρ′(t) = f
(
t, ρ(t),

[
Kρ
]
(t)
) − b(t)ρ(t), t /= tk, t ∈ J,

Δρ(tk) = Ik
(
ρ(tk)

)
, k = 1, 2, . . . , m,

ρ(0) + μ
∫T
0
ρ(s)ds = ρ(T), μ ≤ 0.

r ′(t) = f(t, r(t), [Kr](t)) − b(t)r(t), t /= tk, t ∈ J,
Δr(tk) = Ik(r(tk)), k = 1, 2, . . . , m,

r(0) + μ
∫T
0
r(s)ds = r(T), μ ≤ 0.

(2.24)

Equation (2.24) indicates that ρ(t), r(t) are solutions of (1.1).
Lastly, we prove that ρ(t), r(t) are minimal andmaximal solutions of the equation (1.1)

in [α, β].
Suppose that x(t) is a solution of the equation and satisfies x(t) ∈ [α, β], t ∈ J ,

obviously, we can assume that there is an n such that αn ≤ x ≤ βn.
If p(t) = αn+1 − x, then

p′ = α′n+1 − x′ ≤ −b(t)αn(t) + f(t, αn(t), [Kαn](t))
−M(αn+1(t) − αn(t)) − f(t, x(t), [Kx(t)](t)) + b(t)x(t)

≤ −b(t)(αn − x) −Mp(t), t /= tk.

(2.25)
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And since b(t) ≤ 0, αm − x ≤ 0, p′ ≤ −Mp(t),

Δp(tk) = Δαn+1 −Δx = Ik(αn(tk)) − Lk(αn+1(tk) − αn(tk)) − Ik(x(tk)) ≤ −Lkp(tk), t = tk,

p(0) = αn+1(0) − x(0) = μ
∫T
0
(x(s) − αn(s))ds + p(T) ≤ p(T).

(2.26)

Hence by Lemma 2.2, we can obtain p(t) ≤ 0, t ∈ J , so αn+1(t) ≤ x(t). Similarly, we can obtain:
x(t) ≤ βn+1(t), t ∈ J. This indicates that αn(t) ≤ x(t) ≤ βn+1(t), t ∈ J, n = 0, 1, 2, . . . . Hence
when n → +∞, we can obtain that ρ(t) ≤ x(t) ≤ r(t), t ∈ J . This ends the proof.

Finally, we give an example to illustrate the efficiency of our results.

Example 2.5. Consider the problem of

x′(t) − x(t) sin t = −x(t) + t +
∫ t
0
x(s)ds, 0 < t < 1, t /= t1,

Δx(t1) = −1
8
x(t1), t1 =

1
2
,

x(0) −
∫1

0
x(s)ds = x(1),

(2.27)

where b(t) = sin t, f(t, x(t), Kx(t)) = −x(t) + t +
∫ t
0x(s)ds, I1(x) = −x. Obviously, α(t) =

0, β(t) = 1 − t are the lower solution and upper solution for (2.27) with α(t) ≤ β(t),
respectively. f(t, x,Kx) − f(t, y,Ky) = −(x − y) − ∫ t0(x(s) − y(s))ds, I1(x) − I1(y) = −(x − y).
Let T = 1, Lk = 1/8, the conditions of Theorem 2.4 are all satisfied, so problem (2.27) has the
maximal and minimal solutions in the segement [α(t), β(t)].
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