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We discuss the existence and uniqueness of the solutions of the nonhomogeneous linear differential
equations of arbitrary positive real order by using the fractional B-Splines wavelets and theMittag-
Leffler function. The differential operators are taken in the Riemann-Liouville sense and the initial
values are zeros. The scheme of solving the fractional differential equations and the explicit
expression of the solution is given in this paper. At last, we show the asymptotic solution of the
differential equations of fractional order and corresponding truncated error in theory.

1. Introduction

Recently, there have been several schemes devoted to the solution of fractional differential
equations. These schemes can be broadly classified into two classes, numerical and analytical
([1]). As we know, with the help of some special functions, such as Mittag-Leffler function
and Green function, Miller and Ross have obtained the explicit representations of solutions of
some classes of homogeneous linear fractional differential equations (FDEs) in [2]; through
the use of the technique of Laplace and Fourier Transform, the analytical solutions have been
given by Podlubny in [3]. The numerical scheme we have encountered can be divided into
two groups. In the first group, the solution is approximated over the entire domain using
approximating functions such as polynomials and orthogonal functions. In the second group,
the entire domain is divided into several small domains like in a finite element technique, and
the solution is obtained for variables at the node points ([1]). As Edwards et al. declaimed in
[4], several forms of fractional differential equations have been proposed in standard models,
and there has been significant interest in developing numerical schemes for their solution.
Thus, several papers have been presented in dealing with approximate numerical techniques
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for FDEs. Among these, the papers of Diethelm, Edwards, Ford, Freed, and Simpson are
noteworthy (see, e.g., [1, 4–6]). One of these schemes which should be mentioned is the
use of a Predictor-Corrector (more precisely, PECE) method in [6]. In order to obtain higher
precision, they have replaced the PECE method by a P(EC)mE method with m ≥ 2 in [7].
In particular, the PECE method is an important numerical scheme which has been applied
in many fields; for example, Yang and Liu have applied the PECE method for simulating
fraction order dynamical control system in [8]. In addition, several numerical schemes have
also been proposed by other authors (see [9, 10]). In this paper, we present a new scheme
which contains the features of both two groups by using the fractional B-splines wavelet.
In paper [11], Unser and Blu have proved that the fractional B-splines generates a valid
multiresolution analyses of L2 for α > −1/2, which means that the orthogonal fractional B-
splines could be obtained by applying the standard technique described in [12]. And they
also obtained that the fractional B-splines deriving the asymptotic development of the L2

have a fractional order of approximation.
In fact, as the theories of wavelets analyses improve day by day, the wavelet has

become a powerful mathematical tool which widely used in signal processing, image
compression and enhancement, pattern recognition, control systems, and other fields in the
past two decades. But almost no papers or books have applied the theories of wavelets
to solve the fractional differential equations. And our fundamental purpose of this paper
is applying the fractional B-Splines wavelets to prove the existence and uniqueness of the
solution of the nonhomogeneous linear fractional differential equations (also so-called linear
multiterm fractional differential equations) with its initial conditions. Let us begin to discuss
the solution of multiterms fractional ordinary differential equations with the following form:

(bnDαn + bn−1Dαn−1 + · · · + b1Dα1)y(t) = f(t). (1.1)

For convenience, we consider the initial values:

[
Dαk−1y(t)

]
t=0

= 0,
[
Dαk−2y(t)

]
t=0

= 0, . . . ,
[
Dαk−rky(t)

]
t=0 = 0, (1.2)

where Dα are taken in the Riemann-Liouville sense, αn > αn−1 > · · · > α1, bn /= 0, αn ≥ 1,
and 0 ≤ rk − 1 ≤ αk < rk, rk ∈ N, αk ∈ R+, bk ∈ R, k = 1, . . . , n. The function f(t) belongs
to the space L2(Ω); without loss of generality, in this paper, we consider the interval as Ω =
[0, T], T ∈ R+.

The plan of this paper is as follows. In Section 2, we recall the definitions of fractional
derivative and integral and related properties which will be used in this paper, give the
representation of Mittag-Leffler function and generalized Mittag-Leffler function, and then
introduce the fractional B-splines and some related properties of wavelets. In Section 3,
by applying the technique of the Laplace Transforms, and considering the proprieties of
the generalized Mittag-Leffler function, we prove the lemma of the differential equations
of arbitrary positive real order, which make sure the solution belongs to the space L2; by
virtue of the solution that can be expressed as the form of wavelet series and the basis
function that is the orthogonal fractional B-splines wavelet which yields the Riesz basis for
the space L2, we can prove the uniqueness of the coefficients of the representation of the
solution, which gain the uniqueness of the solution of the fractional differential equations
and validate the representation of solution. Thus, we have finished the proof of the theorem.
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In Section 4, the asymptotic solution of the differential equations of fractional order α ∈ Q+

and corresponding truncated error will be discussed.
The present paper is essentially based on the works of the Unser and Blu in [11] and

Podlubny in [3], to which more general classes of the fractional differential equations we
shall refer in the following research. For more related review of fractional B-spline wavelet,
see the papers of the Unser and Blu ([11, 13, 14]), which have discussed somemore important
wavelet properties, such as Riesz bounds and two-scale relation.

2. Preliminary and Definitions

2.1. Definitions

We may recall the definition of the Left Riemann-Liouville differential operators of arbitrary
order α > 0, which take the form

0D
α
t y(t) :=

1
Γ(m − α)

dm

dtm

∫ t
0

y(τ)

(t − τ)α−m+1
dτ, (2.1)

where m is the integer defined by m − 1 ≤ α < m (see [3]), and Γ(·) is gamma function.
Similarly, the left Riemann-Liouville integral operators of order α > 0 is defined as

0D
−α
t y(t) :=

1
Γ(α)

∫ t
0
(t − τ)α−1y(τ)dτ. (2.2)

And then we should give the following expression for the Laplace transform of the Riemann-
Liouville differential operators of the order α > 0, which is

L
{
0D

α
t y(t); s

}
= sαY (s) −

m−1∑
k=0

sk
[
0D

α−k−1
t y(t)

]
t=0
, (m − 1 ≤ α < m). (2.3)

Let us now introduce the case of the Caputo differential operators of arbitrary order
α > 0, which is defined as

C
0D

α
t f(t) =

1
Γ(n − α)

∫ t
0

f (n)(τ)dτ

(t − τ)α+1−n
, (n − 1 < α ≤ n). (2.4)

And the formula of its Laplace transform can be expressed as

L
{
C
0D

α
t f(t); s

}
= sαF(s) −

n−1∑
k=0

sα−k−1f (k)(0), (n − 1 < α ≤ n). (2.5)

2.2. Mittag-Leffler Functions and Generalized

The Mittag-Leffler functions and its generalized forms have played a special role in solving
the fractional differential equations. In this section, we just give the definition of the following
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series of representation of the Mittag-Leffler function Eα(z)with α > 0, which validates in the
whole complex plane:

Eα(z) :=
+∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (2.6)

And for the generalized Mittag-Leffler function, we use the following definition:

Eα,β(z) :=
+∞∑
n=0

zn

Γ
(
αn + β

) , α > 0, β > 0, z ∈ C. (2.7)

Let us now consider the Laplace transforms of the function tαk+β−1Eα,β(±atα) (see [3]), which
is defined by

∫∞

0
e−sttαk+β−1E(k)

α,β(at
α)dt =

k!sα−β

(sα − a)k+1
,
(
Re(s) > |a|1/α

)
. (2.8)

2.3. Fractional B-Splines Wavelet

Splines have had a significant impact on the early development of the theory of the wavelet
transform (see [13]). And Unser and Blu have first mentioned the fractional B-Splines in [13],
who extended Schoenberg’s family of polynomial splines to all fractional degrees α > −1 and
defined the fractional causal B-splines by taking the (α + 1)th fractional difference of the one-
sided power function:

βα+(x) :=
1

Γ(α + 1)
�α+1

+ xα+ =
1

Γ(α + 1)

∑
k≥0

(−1)k
(
α + 1

k

)
(x − k)α+, (2.9)

where the one-side power function xα+ is defined as follows:

xα+ =

⎧
⎨
⎩
xα, x ≥ 0,

0, otherwise.
(2.10)

Then we introduce the fractional B-splines autocorrelation sequence as follows:

β2α+1∗ (k) :=
〈
βα(x), βα(x − k)〉. (2.11)

From [13], we know the explicit form of the fractional B-splines wavelet:

ψα+

(x
2

)
=
∑
k∈Z

(−1)k
2α
∑
l∈Z

(
α + 1

l

)
β2α+1∗ (l + k − 1)βα+(x − k), (2.12)
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which yields a Riesz basis for L2(Ω). Thus, using the standard orthogonalize technique
described in [12], we have

ϕ̂α+(ω) =

√
2ψ̂α+(w)

(∑∞
k=0

∣∣ψ̂α+(ω + 2kπ)
∣∣2)1/2

, (2.13)

where ψ̂α+(w) is the Fourier Transform of the function of ψα+(x). Thus we obtain the orthogonal
fractional B-splines ϕα+(x)which also yields a Riesz basis for L2(Ω). According to the theories
of wavelet analyses, the function y(t) ∈ L2(Ω) can be expressed as

y(t) =
+∞∑
k=−∞

c(k)ϕα+(t − k), (2.14)

where the coefficients c(k) are constants.

3. The Existence and Uniqueness of the Solution of
Multiterms Fractional Ordinary Differential Equations

In this section, we will prove the existence and uniqueness properties of the solutions of the
nonhomogeneous linear differential equations of arbitrary real order α > 0.

3.1. An Important Lemma

Under the hypothesis of the existence for the solutions of (1.1), we have the following lemma.

Lemma 3.1. Let αn > αn−1 > · · · > α1, and αn ≥ 1, and f(t) ∈ L2(Ω), then the solution of the initial
value problem (1.1) and (1.2) is also in L2(Ω).

Proof. In order to prove this lemma, we divide the proof into two steps.
Firstly, we consider the case of n = 1, then (1.1) can be rewritten as

0D
α1
t y(t) = f(t). (3.1)

Taking the transform of (3.1) to both sides, we obtain

y(t)=0D
−α1
t f(t). (3.2)

By virtue of the functions f(t) ∈ L2(Ω) and D−α : L2(Ω) → L2(Ω) that is a bounded linear
operator (see [15]), we can easily derive the function y(t) ∈ L2(Ω).

And then, let us consider the case of n > 1.
To (1.1), using the formula (2.2) and taking the Laplace transform to both sides, we

conclude that

(b1sα1 + b2sα2 + · · · + bnsαn)Y (s) = F(s), (3.3)
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and then

Y (s) =
F(s)

b1sα1 + b2sα2 + · · · + bnsαn = F(s)G(s). (3.4)

To prove the functions y(t) ∈ L2(Ω), we change the functions G(s) into the following form:

G(s) =
1

bnsαn + bn−1sαn−1
1

1 +
(∑n−2

k=0 bks
αk/(bnsαn + bn−1sαn−1)

) . (3.5)

Then replacing the factor 1/(bnsαn +bn−1sαn−1)with (b−1n s
−αn−1)/(sαn−αn−1 +bn−1/bn) in (3.5), and

expanding the second factor into a formal of series, we have

G(s) =
∞∑
m=0

(−1)mb−1n s−αn−1
(sαn−αn−1 + bn−1/bn)

m+1

(
n−2∑
k=0

(
bk
bn

)
sαk−αn−1

)m

. (3.6)

Using the method described in [3], we obtain the expression of G(s), which is

G(s) =
1
bn

∞∑
m=0

(−1)m
∑

k0+k1+···+kn−2=m
k0,k1,...,kn−2≥0

(m; k0, k1, . . . , kn−2)
n−2∏
i=0

(
bi
bn

)ki s−αn−1+
∑n−2

i=0 (αi−αn−1)ki

(sαn−αn−1 + bn−1/bn)
m+1

,

(3.7)

Substituting G(s) in (3.4), considering the formula (2.8), and taking the inverse Laplace
transform term-by-term, we obtain that the analytical solution of initial values problem (1.1)
and (1.2) in the following form:

y(t) = f(t) ∗ g(t) (3.8)

with

g(t) =
1
bn

∞∑
m=0

(−1)m
m!

∑
k0+k1+···+kn−2=m
k0,k1,...,kn−2≥0

(m; k0, k1, . . . , kn−2)
n−2∏
i=0

(
bi
bn

)ki
t(αn−αn−1)m+αn+

∑n−2
j=0 (αn−1−αj )kj−1

× E(m)
αn−αn−1,αn+

∑n−2
j=0 (αn−1−αj )kj

(
−bn−1
bn

tαn−αn−1
)
,

(3.9)

where (m; k0, k1, . . . , kn−2) = m!/
∏n−2

i=0 (ki!) is the multinomial coefficient, the representation
of f(t) ∗ g(t) is the convolution of functions f(t) and g(t), and E(k)

λ,μ is the kth derivative of the
Mittag-Leffler function with parameters λ and μ (see [16]).
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From the representation (3.9), the function E(m)
α,β (z) is bounded in z ∈ C, and the index

satisfies (αn − αn−1)m + αn +
∑n−2

j=0 (αn−1 − αj)kj − 1 ≥ 0; so we can easily gain that the function
g(t) is bounded in Ω. And then

∥∥y(t)∥∥L2(Ω) =
∥∥f(t) ∗ g(t)∥∥L2(Ω) ≤

∥∥f(t)∥∥L2(Ω)

∥∥g(t)∥∥L2(Ω) ≤ C
∥∥f(t)∥∥L2(Ω), (3.10)

it yields that the functions y(t) ∈ L2(Ω), and so we have finished the proof of the lemma.

3.2. The Proof of Existence and Uniqueness

Considering the solution of the fractional differential equation y(t) ∈ L2(Ω) and the fractional
B-spline wavelet ϕα+(x) which generates a Riesz basis for L2(Ω), we can prove the following
theorem.

Theorem 3.2. Let αn > αn−1 > · · · > α1, and αn ≥ 1, and f(t) ∈ L2(Ω), then the initial value
problems (1.1) and (1.2) have a unique solution. Further more, the solution has explicit representation
of fractional B-splines wavelets series.

Proof. From Lemma 3.1, we have obtained the functions y(t) ∈ L2(Ω), which can be expressed
as

y(t) =
+∞∑
k=−∞

c(k)ϕα+(t − k), (3.11)

where the index satisfies α > 0.
Then substituting (2.14) into (1.1), and taking the Fourier transform to both sides, we

obtain

ĉ(ω)
[
b1(iω)α1 + b2(iω)α2 + · · · + bn(iω)αn

]
ψ̂α+(w) = f̂(ω), (3.12)

where ĉ(ω) =
∑+∞

k=−∞ c(k)e−ikw, and (3.12) is equivalent to the following form:

ĉ(ω)ψ̂α+(w) =
f̂(ω)[

b1(iω)α1 + b2(iω)α2 + · · · + bn(iω)αn
] . (3.13)

And then, by taking the inverse Fourier transform to (3.13), we have

+∞∑
k=−∞

c(k)ϕα+(t − k) = f(t) ∗ g(t). (3.14)

Because the function ϕα+(t) is the orthogonal fractional B-splines, hence, the representation of
the coefficient c(k) is defined by

c(k) =
〈
f(t) ∗ g(t), ϕα+(t − k)

〉
, (3.15)
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where 〈•, •〉 is the inner product. Then substituting (3.15) in (2.14), we obtain the solution of
the initial value problems (1.1) and (1.2).

Let us suppose that the initial value problems (1.1) and (1.2) have another solution,
which can be expressed as

y1(t) =
+∞∑
n=−∞

d(n)ϕα+(t − n). (3.16)

Utilizing the similar scheme to c(k), we acquire the representation of d(n), which is

d(n) =
〈
f(t) ∗ g(t), ϕα+(t − n)

〉
. (3.17)

Taking (3.17) into (3.16), we obtain the representation of y1(t). Obviously, we have

y(t) − y1(t) =
+∞∑
k=−∞

c(k)ϕα+(t − k) −
+∞∑
n=−∞

d(n)ϕα+(t − n) = 0; (3.18)

it derives that y(t) = y1(t), which means that the solution of the initial value problems (1.1)
and (1.2) is unique. Then substituting y1(t) with its coefficient in (1.1), we can easily check
that the equation is correct. It indicates that the function y1(t) is a solution of the differential
equation (1.1), which yields the existence of solution. Finally, we have completed the proof of
the solution of existence and uniqueness of the nonhomogeneous linear differential equations
of arbitrary order.

4. The Asymptotic Solution of the Fractional Differential Equations
and Error Estimation

4.1. The Asymptotic Solution of the Fractional Differential Equations

The purpose of this section is to discuss the case of αi ∈ Q+ in (1.1), which appeared in
most practical applications we have encountered, and show the asymptotic solution of the
fractional differential equations and error estimation. In fact, the case of αi ∈ Q, i = 1, 2, . . . , n
in Theorem 3.2 is equivalent to the following corollary.

Corollary 4.1. Letmv ≥ 1, and f(t) ∈ L2(Ω), then the nonhomogeneous linear fractional differential
equations

(
amD

mv + am−1D(m−1)v + · · · + a0D0
)
y(t) = f(t) (4.1)

on the initial values

[
D(m−k)v−1y(t)

]
t=0

= 0,
[
D(m−k)v−2y(t)

]
t=0

= 0, . . . ,
[
D(m−k)v−rk−1y(t)

]
t=0

= 0, (4.2)

where 0 ≤ rk − 1 ≤ (m − k)v < rk, v ∈ Q+, rk ∈N, k = 0, 1, . . . , m, have a unique solution.
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In Section 3, we have proved the existence and uniqueness of the nonhomogeneous
linear fractional differential equations of arbitrary positive real order. Obviously, it also
satisfies the case of positive rational order. To (1.1), let q ∈ Z be the least common multiple
of the denominators of αi ∈ Q, i = 1, 2, . . . , n, so αi = qi/q, where qi ∈ Z, i = 1, 2, . . . , n. And
to (4.1), let v = 1/q and m − i0 = qn, m − i1 = qn−1, . . . , m − in−1 = q1, then considering the
conditions of am−ij = bn−j , ak = 0, k /=m − ij , where ij < m, ij ∈ Z, j = 1, 2, . . . , n − 1. Hence,
the initial value problems (4.1) and (4.2) have been changed into of the problems (1.1) and
(1.2)with the order αi ∈ Q+, respectively, whichmeans that Theorem 3.2 in the case of αi ∈ Q+

is equivalent to Corollary 4.1.
Similarity to the scheme of Theorem 3.2, we can easily prove Corollary 4.1 and give

the representation of explicit solution of the initial value problems (4.1) and (4.2), which can
be defined by

y(t) =
+∞∑
k=−∞

c(k)ϕα+(t − k), (4.3)

where c(k) = 〈f(t) ∗ g(t), ϕα+(t − k)〉, and g(t) is the inverse of the Laplace Transform of the
function G(s), where

G(s) =
1

amsmv + am−1s(m−1)v + · · · + a0
. (4.4)

To obtain the asymptotic solution of (4.1), we will give the explicit formulation of the function
g(t). Let P(sv) = ams

mv + am−1s(m−1)v + · · · + a0 and x = sv; thus the P(x) is a polynomial of
the degree m. Moreover, we suppose that γ1, γ2,...,γj are distinct zeros of P(x) with the order
of l1, l2,...,lj , respectively; by applying the theories of polynomials, the P(x) can be rewritten in
the following form

P(x) = am
(
x − γ1

)l1(x − γ2
)l2 · · · (x − γj

)lj , (4.5)

where
∑j

i=1 li = m, j, li ∈ N, i = 1, 2, . . . , j, Then, substituting the function P(x) in (4.2) and
expanding it to the sum of partial fractions, we have

G(s) =
j∑
i=1

li−1∑
n=0

Ai,li−n(
sv − γi

)li−n , (4.6)

where the coefficients Ai,li−n, i = 1, 2, . . . , j; n = 0, 1, . . . , li − 1, are constants.
Thus, taking the inverse Laplace Transform to (4.6) and using the formulation (2.8),

we obtain explicit formulation of the function g(t), defined by

g(t) =
j∑
i=1

li−1∑
n=0

t(i+1)v−1

(li − n)!Ai,li−n
E
(li−n−1)
v,v

(
γit

v). (4.7)
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According to Unser and Blu in [13], the wavelet base generated by fractional B-splines
wavelet βα+(x) is denseness of the representation in L2(Ω). Let β̇α+(x) be the inverse of Fourier
Transform of ˆ̇βα+(ω), where

ˆ̇βα+(ω) =

√
2β̂α+(w)

(∑∞
k=0

∣∣∣β̂α+(ω + 2kπ)
∣∣∣
2
)1/2

. (4.8)

With the help of the theories of wavelet analyses, we know that the functions β̇α+(x) are an
orthogonal fractional B-splines wavelet and dense in L2(Ω) with α > 0. Thus the solutions of
initial value problems (4.1) and (4.2) have the following form:

y(t) =
+∞∑
k=−∞

c(k)β̇α+(t − k). (4.9)

Then substituting y(t) in (4.1), we obtain the representation of the coefficients c(k), defined
by

c(k) =
〈
f(t) ∗ g(t), β̇α+(t − k)

〉
. (4.10)

Finally, by combining (4.9) and (4.10), the obtained function y(t) is the asymptotic solution
of initial value problems (4.1) and (4.2) that we are looking for.

4.2. Order of the Error Estimation

To estimate the error of asymptotic solution of initial value problems (4.1) and (4.2), we
introduce the following properties of the fractional B-spines βα+(x), which have been proved
by Unser and Blu (see [13, Theorem 3.1]).

Proposition 4.2. For all α > 0, we have

βα+(x) =
Γ(α + 2) sinπα

πxα+2

∑
n≥1

e2niπx

(2niπ)α+1
+ o
(

1
xα+2

)
, (4.11)

when x tends to +∞.

To (4.8), the function a(ω) =
∑∞

k=0 |β̂α+(ω + 2kπ)|2 is 2π-periodic and symmetric, and
so we can restrict its study to ω ∈ [0, π]. In particular, one has

a(ω) ≥
∣∣∣sin cω

2

∣∣∣
2α+2

≥
(
2
π

)2α+2

, (4.12)

since sin cω/2 is strictly decreasing over [0, π] (see [13]).
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Combining (4.12) and (4.8) and taking the inverse of Fourier Transform, we obtain

β̇α+(t − k) ≤
(
2
π

)α+1
βα+(t − k). (4.13)

Then according to (4.10), (4.11), and (4.13), the asymptotic solution y(t) can be defined by

y(t) =
+∞∑
k=−∞

〈
f(t) ∗ g(t), β̇α+(t − k)

〉
β̇α+(t − k) ≤

∥∥f(t) ∗ g(t)∥∥L2

+∞∑
k=−∞

∣∣β̇α+(t − k)
∣∣2. (4.14)

To calculate the truncated error of the asymptotic solution, let yN(t) be the truncated sum
(|k| ≤N) corresponding to asymptotic solution (4.8), where

yN(t) =
N∑

k=−N

〈
f(t) ∗ g(t), β̇α+(t − k)

〉
β̇α+(t − k). (4.15)

Thus the truncated error y∗(t) will be obtained as follows:

y∗(t) = y(t) − yN(t)

=
∑
|k|>N

〈
f(t) ∗ g(t), β̇α+(t − k)

〉
β̇α+(t − k)

≤ ∥∥f(t) ∗ g(t)∥∥
∑
|k|>N

∣∣β̇α+(t − k)
∣∣2,

(4.16)

where the function g(t) is bounded in Ω and f(t) ∈ L2(Ω); with the help of (4.12), the
inequality of (4.16) can be amplified, which means that

y∗(t) ≤
(
2
π

)2α+2∥∥f(t) ∗ g(t)∥∥
∑
|k|>N

∣∣βα+(t − k)
∣∣2. (4.17)

Then substituting (4.10) in (4.16), we have

y∗(t) ≤
(
2
π

)2α+2∥∥f(t) ∗ g(t)∥∥
∑
|k|>N

∣∣∣∣∣
Γ(α + 2) sin πα

π(t − k)α+2
∑
n≥1

e2πinx

(2niπ)α+1
+ o

(
1

(t − k)α+2
)∣∣∣∣∣

2

.

(4.18)

To the right side of (4.17), we divided the representation into three parts for discussion.
Firstly, because the function g(t) is bounded inΩ and f(t) ∈ L2(Ω), there exists a constant C1

which holds

∥∥f(t) ∗ g(t)∥∥L2 ≤ c
∥∥f(t)∥∥L2 ≤ C1. (4.19)
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Secondly, we consider the series function

∣∣∣∣∣
∑
n≥1

e2πinx

(2niπ)α+1

∣∣∣∣∣
2

≤
∑
n≥1

∣∣∣∣∣
e2πinx

(2niπ)α+1

∣∣∣∣∣
2

≤
∑
n≥1

1

(2nπ)2α+2
, (4.20)

which is convergent in Ω; thus there exists a constant C2 which satisfies

∣∣∣∣∣
∑
n≥1

e2πinx

(2niπ)α+1

∣∣∣∣∣
2

≤ C2. (4.21)

At last, we denote a constant C3 which defined by

C3 =
22α+2Γ2(α + 2)sin2πα

π2α+4
. (4.22)

Then combining (4.19), (4.21), and (4.22), the inequality of (4.18) can be amplified to the
following form:

y∗(t) ≤ C1C
2
2C3

∑
|k|>N

∣∣∣∣∣
1

(t − k)α+2
+ o

(
1

(t − k)α+2
)∣∣∣∣∣

2

≤ C1C
2
2C3

∑
|k|>N

∣∣∣∣∣
1 + C0

(t − k)α+2

∣∣∣∣∣
2

, (4.23)

when |t − k| tends to +∞.
Thus, from the above discussion, it is evident to derive that the truncated error

converges as
∑

|k|>N C/(k − t)2α+4, where C = C1C
2
2C3(1 + C0)

2. Note that we should choose
a suitable N which should be much more greater than T , where, t ∈ Ω = [0, T]. Finally, we
have obtained the error order of the asymptotic truncated sum in theory.

Remark 4.3. Noting that the process of the proof of the existence and uniqueness of the
solution of the initial value problems (1.1) and (1.2) in the case of Riemann-Liouville
fractional differential operator, and considering the formula of the Laplace transform of
Caputo differential operator, we can be easily replaced the case of Riemann-Liouville
fractional differential operator by Caputo sense with its initial values. It means the following
corollary is correct.

Corollary 4.4. Let αn > αn−1 > · · · > α1 > 0, and αn ≥ 1, and f(t) ∈ L2(Ω), then the multiterms
fractional ordinary differential equations

(bnDαn + bn−1Dαn−1 + · · · + b1Dα1)y(t) = f(t) (4.24)

with its initial values

y(k)(0) = 0, (k = 0, 1, 2, . . . , �αn� − 1), (4.25)

where �αn� = max{m | m ≤ αn,m ∈ Z}, have a unique solution.
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5. Conclusion

In this paper, we have proved the existence and uniqueness of the solution of the differential
equations of arbitrary positive real order. And the representation of the solution of (1.1)
has been given in the process of proof. We have obtained the asymptotic solution of the
differential equations of fractional order α ∈ Q+ and corresponding error estimation. The
most notable feature is the order of the asymptotic truncated error, namely, (2α + 4)th,
which is effective to calculate the numerical solution of (4.1). In particular, the case of
Riemann-Liouville differential operator is replaced by Caputo sense with its initial values
in Corollary 4.4. Similarly to the scheme of the proof as showen in the paper, by considering
the relationship between Riemann-Liouville and Caputo differential operator, we can easily
complete the proof of the corollary in the case of the Caputo differential operator, which
shows that the method we have discussed can be applied more widely.

References

[1] P. Kumar and O. P. Agrawal, “Numerical scheme for the solution of fractional differential equations
of order greater than one,” Journal of Computational and Nonlinear Dynamics, vol. 1, no. 2, 8 pages, 2006.

[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,
A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.

[3] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,
Academic Press, San Diego, Calif, USA, 1999.

[4] J. T. Edwards, N. J. Ford, and A. C. Simpson, “The numerical solution of linear multi-term fractional
differential equations; systems of equations,” Journal of Computational and Applied Mathematics, vol.
148, no. 2, pp. 401–418, 2002.

[5] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical
Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.

[6] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution
of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.

[7] K. Diethelm, “Efficient solution of multi-term fractional differential equations using P(EC)mE
methods,” Computing, vol. 71, no. 4, pp. 305–319, 2003.

[8] C. Yang and F. Liu, “A computationally effective predictor-corrector method for simulating fractional
order dynamical control system,” The ANZIAM Journal, vol. 47, pp. C168–C184, 2005.

[9] K. Diethelm and N. J. Ford, “Multi-order fractional differential equations and their numerical
solution,” Applied Mathematics and Computation, vol. 154, no. 3, pp. 621–640, 2004.

[10] V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511–522, 2004.

[11] M. Unser and T. Blu, “Construction of fractional spline wavelet bases,” in Wavelets Applications in
Signal and Image Processing VII, vol. 3813 of Proceedings of SPIE, pp. 422–431, Denver, Colo, USA, July
1999.

[12] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Calif, USA, 2nd edition,
1998.

[13] M. Unser and T. Blu, “Fractional splines and wavelets,” SIAM Review, vol. 42, no. 1, pp. 43–67, 2000.
[14] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet transforms,” Signal

Processing, vol. 30, pp. 141–162, 1993.
[15] V. J. Ervin and J. P. Roop, “Variational formulation for the stationary fractional advection dispersion

equation,” Numerical Methods for Partial Differential Equations, vol. 22, no. 3, pp. 558–576, 2005.
[16] F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,”

Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283–299, 2000.


