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The Nielsen number is a homotopic invariant and a lower bound for the number of co-
incidences of a pair of continuous functions. We give two homotopic (topological) def-
initions of this number in general situations, based on the approaches of Wecken and
Nielsen, respectively, and we discuss why these definitions do not coincide and corre-
spond to two completely different approaches to coincidence theory.

1. Introduction

The Nielsen number in its original form is a homotopic invariant which provides a lower
bound for the number of fixed points of a map under homotopies. Many definitions have
been suggested in the literature, and in “topologically good” situations all these defini-
tions turn out to be equivalent.

Having the above property in mind, it might appear most reasonable to define the
Nielsen number simply as the minimal number of fixed points of all maps of a given
homotopy class. We call this the “Wecken property definition” of the Nielsen number (the
reason for this name will soon become clear). However, although this abstract definition
has certainly some nice topological aspects, it is almost useless for applications, because
there is hardly a chance to calculate this number even in simple situations. Moreover, in
most typical infinite-dimensional situations, the homotopy classes are often too large to
provide any useful information.

The latter problem is not so severe: instead of considering all homotopies, one could
restrict attention only to certain classes of homotopies like compact or so-called con-
densing homotopies. But the difficulty about the calculation (or at least estimation) of
the Nielsen number remains. Therefore, the taken approach is usually different: one di-
vides the fixed point set into several (possibly empty) classes (induced by the map) and
proves that certain “essential” classes remain stable under homotopies in the sense that
the classes remain nonempty and different. The number of essential classes thus remains
stable and this is what is usually called the Nielsen number. In “topologically good”
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situations, this Nielsen number has the so-called Wecken property, that is, it gives exactly
the same number as the above “Wecken property definition” (see, e.g., [12]).

The various approaches to the Nielsen number in literature differ in the way how the
classes and “essentiality” are defined. In most approaches, “essentiality” is defined in a
homologic way (e.g., with respect to some fixed point index or Lefschetz number). How-
ever, in view of the above-described Wecken property definition, and since the existence
of a fixed point index or Lefschetz number requires certain additional assumptions on the
involved maps, we take in this paper the position that “essentiality” should be defined in
a homotopic way instead. The homologic approach (if available) can then be used to prove
that a certain class is essential (in the homotopic sense) and in this sense can be used to
find lower bounds for the Nielsen number. Such a situation occurs when, for example,
one wants to define a Nielsen number for a multivalued condensing map. This was one
of our main stimulations of the present paper.

Instead of considering fixed points, one can use essentially the same approach to look
also for coincidence points of two maps, intersection points of two maps, or preimage
points of a set under a given map. These three aspects were compared with each other
and also a homotopic definition of “essentiality” was suggested in [44]. However, it ap-
pears that in the infinite-dimensional (i.e., noncompact) situation a different definition
is necessary to avoid the problem with too large homotopy classes.

We are mainly interested in a Nielsen number for coincidence points of two contin-
uous maps p,q : Γ→ X , that is, in (homotopically stable) lower estimates for the coinci-
dence set

Coin(p,q) := {x ∈ Γ : p(x)= q(x)
}
. (1.1)

Note that the classical Nielsen number for fixed points is the special case for the situa-
tion when Γ = X and p = id. If Γ and X are both manifolds of the same dimension, the
Nielsen number for coincidence points is a classical topic [10, 11, 34, 35, 50] (for more
current result, see, e.g., [13, 30, 32]), and it is known that the corresponding number has
the Wecken property [36] with some famous exceptions [37]. However, if Γ and X have
different dimensions or are not even manifolds, the classical theory does not apply (al-
though some approaches are still possible [8]). Nevertheless, one should of course be able
to define a Nielsen number in an appropriate way.

There are two different definitions of the Nielsen classes: one is based on the original
idea of Nielsen, and the other is based on an idea of Wecken. In the fixed point case
(p = id), these definitions turn out to be equivalent. However, in the general setting, these
definitions do not coincide and in fact correspond to two different topological approaches
to the study of coincidences. We firstly recall these approaches.

2. The two approaches: epi maps and multivalued theory

Definition 2.1. Let X be a topological (Hausdorff) vector space, Γ a normal space, Ω ⊆
Γ open, and p,q : Ω→ X continuous. The map p is called q-admissible if Coin(p,q)∩
∂Ω=∅.
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A q-admissible map p is called q-epi if, for each continuous map Q : Ω→ X for which
the set conv((Q− q)(Ω)) is compact and which satisfies Q(x) = q(x) on ∂Ω, we have
Coin(p,Q) �= ∅.

Clearly, if p is q-epi, then p and q have a coincidence point. Moreover, this coincidence
point is even homotopically stable, because the property of being q-epi is stable under
admissible compact perturbations.

Proposition 2.2 (homotopic stability). Let p be q-epi on Ω, and h : [0,1]×Ω→ X con-
tinuous with h(0,·) = 0 and compact conv(h([0,1]×Ω)). Assume in addition that p −
h(t,·) is q-admissible for each t ∈ [0,1]. Then p−h(t,·) is q-epi for each t ∈ [0,1].

Proof. It suffices to prove that p+h(1,·) is q-epi. Thus, let a map Q : Ω→ X be given with
compact conv((Q− q)(Ω)) and Q(x)= q(x) on ∂Ω. Note that the set

M := conv
(
(Q− q)(Ω)

)
+ conv

(
h
(
[0,1]×Ω

))
(2.1)

is compact and convex. Moreover, by the compactness of [0,1], one can conclude that the
canonical projection π : [0,1]×Ω→ Ω is a closed map. This implies in particular that
the set C :=⋃t∈[0,1] Coin(p− h(t,·),q) is closed. Since C is, by the hypothesis, disjoint
from ∂Ω, we find by Urysohn’s lemma a continuous function λ : Γ→ [0,1] with λ|∂Ω = 0
and λ|C = 1. Put Q1(x) := Q(x) + h(λ(x),x). Since M is closed and convex, it contains
conv(Q1(Ω)) which thus is compact. Moreover, for x ∈ ∂Ω, we have λ(x) = 0, and so
Q1(x)=Q(x). Hence, there is some x0 ∈ Coin(p,Q1)⊆ C. Since λ(x0)= 1, it follows that
p(x0) +h(1,x0)=Q(x0), that is, Coin(p+h(1,·),Q) �= ∅. �

It turns out that if p−1 has “sufficiently good” compactness properties, then also cer-
tain noncompact homotopies can be considered [26, 56].

Proposition 2.3 (restriction property). If p is q-epi on Ω, Ω0 ⊆Ω is open, and Coin(p,q)
⊆Ω0, then p is q-epi on Ω0.

Proof. Given a continuous Q : Ω0 → X with compact conv((Q− q)(Ω0)) and Q(x)= q(x)
on ∂Ω0, extend Q to Ω by putting Q(x) := q(x) for x /∈Ω0. Since p is q-epi, there is some
x0 ∈ Coin(p,Q), and the assumption implies x0 ∈Ω0. �

In the context of Banach spaces and for q = 0, the corresponding 0-epimaps had been
defined for the first time in [22] (see also [31]). The same definition was introduced
independently by Granas under the name essential maps (see, e.g., [28]). Meanwhile, the
above definition was generalized in many respects; for example, the assumption that X
is a (full) vector space could be dropped with some technical effort and also multivalued
maps were considered [7]. The crucial property of 0-epi maps is that they are in a sense
very similar to maps with nonzero degree: they share the “coincidence point property”
(Coin(p,q) �= ∅), the homotopy invariance (Proposition 2.2), and a weak form of the
additivity of the degree (Proposition 2.3). In fact, if a reasonable degree is defined for p :
X → X , then p is 0-epi if and only if p has nonzero degree [26]. However, it makes sense to
speak about q-epi maps even if no degree is defined and even in general topological spaces
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(not only in topological vector spaces). In the latter case, one can use the homotopic
stability as the definition (see [23]).

Remark 2.4. It will later turn out important that Proposition 2.3 is not a full replacement
for the additivity of the degree because its converse is not valid. This somewhat reflects
the fact that homotopy theory does not satisfy the excision axiom of homology theory
(on which the degree is based).

It appears that besides degree theory, there are no homologic methods available to
prove that a map p : Γ→ X is q-epi. Currently, we know only about the following homo-
logic methods which might be used to prove that a map is q-epi.

(1) If Γ = X and p is a compact (or at least condensing) perturbation of the identity,
then the Nussbaum-Sadovskiı̆ degree might apply (see, e.g., [1, 15, 47, 49]).

(2) If Γ and X are Banach spaces and p is a (compact perturbation of a) linear Fred-
holm operator with 0, respectively positive, index, then the Mawhin degree [43] (see also
[25, 48]), respectively the Nirenberg degree [45, 46], might apply (for an approach which
combines this with the multivalued theory described below, see [24, 41]).

(3) If Γ is a Banach space with a dual space X and p is a (compact perturbation of a)
uniformly monotone operator, then the Skrypnik degree [39, 53] might apply.

At a first glance, it might appear that also the case of a Vietoris map p should belong
to this list of homologic methods, because for such maps a powerful coincidence index
for pairs (p,q) of maps is known. In fact, this is the known fixed point index of the mul-
tivalued map qp−1. However, this index is of a different nature, as we will see. In fact, this
is the second approach to coincidences which we announced before. For simplicity, we
consider only the fixed point degree.

Let in what follows p : Γ→ X be a Vietoris map, that is, p is onto, closed, and proper
(i.e., preimages of compact sets are compact; in metric spaces this already implies the
closedness), and the fibres p−1(x) are acyclic with respect to the Čech homology with
coefficients in the field Q of rational numbers. In the case of noncompact spaces, we
will consider the Čech homology functor with compact carriers (cf. [3] or [27]). If X is
“sufficiently nice” (a metric ANR), then one can associate to each open set Ω ⊆ X and
each continuous map q : p−1(Ω)→ X with relatively compact range a fixed point degree
degp(q,Ω) provided that the fixed point set

Fix(p,q)= {x : x ∈ qp−1(x)
}= {p(x) : p(x)= q(x)

}
= p

(
Coin(p,q)

)= q
(

Coin(p,q)
) (2.2)

contains no point from ∂Ω. This degree has the following properties.
(1) (Coincidence point property). If degp(q,Ω) �= 0, then Fix(p,q) �= ∅ (which is

equivalent to Coin(p,q) �= ∅).
(2) (Homotopy invariance). If h : [0,1]× p−1(Ω)→ X is continuous with precompact

range and if Fix(p,h(t,·))∩ ∂Ω=∅ for each t ∈ [0,1], then

degp

(
h(0,·),Ω

)= degp

(
h(0,·),Ω

)
. (2.3)
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(3) (Additivity). If Ω1,Ω2 ⊆ Ω are disjoint and open in X with Fix(p,q) ⊆ Ω1 ∪Ω2,
then

degp(q,Ω)= degp

(
q,Ω1

)
+ degp

(
q,Ω2

)
. (2.4)

The existence of this degree (and a more general index with additional properties) is
well known, see, for example, [16, 21, 40, 52, 58] or [27, Sections 50–53]. It can also be
generalized for noncompact mappings [6, 55]. The basic idea for its definition was already
employed in [17]: the crucial observation is that, by a theorem of Vietoris, p induces an
isomorphism on the corresponding Čech (co)homologies, and using the corresponding
inverse, one can proceed analogously to the case when an inverse of p would exist.

We note that the above fixed point index is usually employed to prove the existence
of fixed points of multivalued maps ϕ. In fact, each upper semicontinuous multivalued
map in X with compact acyclic values can be written in the form ϕ= qp−1 with a Vietoris
map p. To see this, let Γ be the graph of ϕ, and p and q the canonical projections onto the
first, respectively second, component. Even a composition of acyclic maps can be written
in the form qp−1, see [27].

Note that, for the fixed point index, the requirements for q take place on sets of the
form p−1(Ω), where Ω is an open subset of X , while for Definition 2.1, we consider open
subsets of Γ. For this reason, if p is not one-to-one, these two approaches are of a different
nature: one should think of the fixed point index as a tool to calculate the fixed points
of qp−1, while Definition 2.1 is appropriate to calculate the coincidence points (i.e., the
fixed points of p−1q). Of course, Fix(p,q) �= ∅ if and only if Coin(p,q) �= ∅; however,
the cardinality of these sets may differ. Since the Nielsen number is concerned with the
cardinality, it is not surprising that the two approaches, if applied to define “essentiality
of classes,” must differ in their nature.

We note that also for pairs with a nonzero fixed point index, a purely homotopic char-
acterization (in a sense similar to Definition 2.1) can be given [57]. So, despite the first
impression about the applied tools, the two approaches cannot be considered as “typical
homotopic,” respectively “typical homologic.” Instead, the authors feel that the first ap-
proach, (Definition 2.1) is a “typical homotopic or homologic” approach, while the sec-
ond approach (by the fixed point index) is of a “typical cohomotopic or cohomologic”
nature, but this terminology is of course very vague.

It turns out that for the Nielsen number, the choice of the approach is determined by
the definition of coincidence point classes. The first approach corresponds in a sense to
the Wecken definition of coincidence point classes, and the second approach corresponds
to the definition by Nielsen’s original idea. The former definition is based on homotopic
paths and the latter on liftings to the universal covering, and so implicitly both definitions
refer to the first homotopy group. Unfortunately, this group is nontrivial only if, roughly
speaking, the space contains a “hole” of codimension 1. Thus, although all the following
theory may sound very general, it can essentially only deal with such a situation (if one
is interested in Nielsen numbers larger than 1). However, since in all “good” cases this
gives a Nielsen number with the Wecken property, this is the best which can be done.
This indicates that actually the Nielsen theory is more involved with the structure of the
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spaces than with the involved maps. This reminds us of the usage of Nielsen theory in
Thurston’s classification of surfaces (see, e.g., [14] or, for an application, [29]).

3. Definition by Wecken classes

The Wecken definition of coincidence point classes has the advantage that it is geometri-
cally easy to understand. The disadvantage is that we will have to impose some restrictions
on the space Γ which in many cases excludes applications to multivalued maps.

Let p,q : Γ → X be two continuous maps. We call two points x1,x2 ∈ Γ Wecken-
equivalent if there exists a path joining x1 with x2 in Γ such that the images of this path un-
der p, respectively q, are homotopic (with fixed endpoints). It is clear that this defines an
equivalence relation, and so we can speak of corresponding classes of coincidence points.

Unfortunately, even if X is a “nice” space, p = id, and Coin(p,q) is compact, it may
happen that these classes are not topologically separated, as shown by the following ex-
ample.

Example 3.1. Let Γ ⊆ R2 be the topologist’s sine curve, that is, the closure of the graph
of the function sin1/x on (0,1], X := R2, p(x, y) := (x, y), and q(x, y) := (x,0). Then
Coin(p,q)= {0}∪{(1/nπ,0) : n= 1,2, . . .} obviously divides into the Wecken classes {0}
and {(1/nπ,0) : n= 1,2, . . .}.

For this reason, we put the following requirements on our spaces:

(1) Γ is a locally pathwise connected normal space;
(2) X is a Hausdorff space and each point in X has a simply connected neighborhood.

Unfortunately, the requirement that Γ be locally pathwise connected excludes many
applications in the context of multivalued maps, because graphs of (acyclic upper semi-
continuous) multivalued maps are typically not locally pathwise connected.

Proposition 3.2. Under the above assumptions, all unions of Wecken classes are closed in
Γ and relatively open in Coin(p,q). Moreover, for each Wecken class C ⊆ Coin(p,q), there
is an open set Ω⊆ Γ with Ω⊇ C = Coin(p,q)∩Ω.

Proof. Let x0 ∈ Coin(p,q) and let V ⊆ X be a simply connected neighborhood of p(x0)=
q(x0). There is a pathwise connected neighborhood U ⊆ Γ of x0 with p(U) ⊆ V and
q(U)⊆V . For any x ∈U ∩Coin(p,q), there is a path from x0 to x in U witnessing that x
and x0 are Wecken-equivalent. Hence, x0 is an interior (in Coin(p,q)) point of its Wecken
class. This proves that the Wecken classes are relatively open.

If U is a union of Wecken classes, then the complement V := Coin(p,q) \U is the
union of the remaining Wecken classes, and so U and V are both relatively open in
Coin(p,q), and thus also both relatively closed in Coin(p,q). Since Coin(p,q) is closed (it
is the preimage of the closed diagonal under the continuous map (p,q)), it follows that
U and V are also closed in Γ.

Applying this observation on a Wecken class U := C, we find, since Γ is normal, an
open set Ω⊆ Γ with C ⊆Ω and Ω∩V =∅. �

In order to define the notion of an “essential” Wecken class, we must pay attention
to the class of homotopies under which our obtained “Nielsen number” is supposed to
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be stable. To make this precise, we assume that a certain family of homotopies is given.
Of course, a larger family of homotopies means that our Nielsen number will be “more
stable.” On the other hand, a larger family will possibly decrease the family of essential
classes, that is, it will decrease the Nielsen number.

Since two maps p and q are involved, we will actually not consider homotopies but
pairs of homotopies. Thus, let a (nonempty) subset

H⊆ {(h1,h2
) | hi : [0,1]×Γ−→ X continuous

}
(3.1)

be given.
In order to simplify our notation, we require that for each (h1,h2)∈H and each a,b ∈

[0,1] there is a continuous function ϕ : [0,1]→ [min{a,b},max{a,b}] with ϕ(0)= a and
ϕ(1) = b such that h̃i(t,x) := hi(ϕ(t),x) satisfies (h̃1, h̃2) ∈ H. (If we would not require
this, we would have to require locally the property of Definition 3.3 below.)

By P we denote the set of all pairs (p,q) of the form (h1(0,·),h2(0,·)) with (h1,h2)∈H.
Now, we want to define when a Wecken class is called essential. One possible definition

is that for all homotopic perturbations of the map, the “corresponding” Wecken class is
nonempty. This is the original definition of Brooks [10, 11], and we will give a precise
formulation later.

However, it is rather technical to make precise what is meant by “corresponding”
Wecken class. Therefore, we choose a different definition which is also more natural from
the viewpoint of q-epi maps: having Definition 2.1 and Proposition 2.2 in mind, it might
appear natural to call a class essential if all admissible homotopic perturbations of this
class have a coincidence point. Note that the admissibility is crucial for Proposition 2.2,
that is, that the homotopies have no coincidence points on the boundary of the consid-
ered domain. If a Wecken class is always nonempty, under admissible homotopic pertur-
bations, we call it 1-essential (the precise definition will be given below).

But this straightforward definition alone is not sufficient to prove stability of the cor-
responding “Nielsen number” (i.e., of the number of 1-essential classes) under nonad-
missible homotopies. However, it turns out that it suffices to know that the homotopies
are “locally” admissible, if we are allowed to adjust the domain in the course of the homo-
topy appropriately. Since we can only restrict the domain in Proposition 2.3 and cannot
extend it (recall Remark 2.4), the straightforward definition of 1-essential classes is not
sufficient for our purpose. So we have to require that our notion of essentiality does not
change also under extension of the domain. Unfortunately, this requires a recursive def-
inition: in a sense, we want to define essentiality by the fact that admissible homotopic
perturbations are essential. This makes the following definition rather technical.

Maybe this is the reason why we found no similar approach in literature: the only paper
with a somewhat related approach is [51] where, however, immediately the existence of
an appropriate index was assumed. The latter does not appear natural to us, because, as
remarked before, the Nielsen number should be defined in a homotopic way, not by a
(homologic) index.

Definition 3.3. Each Wecken class C ⊆ Γ of a pair (p,q) ∈ P is called 0-essential. A
Wecken class C is called n-essential if the following holds for each (h1,h2) ∈ H with
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p = h1(0,·), q = h2(0,·): if there is an open set Ω⊆ Γ satisfying Ω⊇ C =Ω∩Coin(p,q)
and

⋃
t∈[0,1]

Coin
(
h1(t,·),h2(t,·))∩ ∂Ω=∅ (3.2)

and such that the set D := Coin(h1(1,·),h2(1,·))∩Ω is either empty or precisely one
Wecken class of the pair (h1(1,·),h2(1,·)), then D �= ∅ and, moreover, D is an (n− 1)-
essential class of (h1(1,·),h2(1,·)).

If C is n-essential for every n, then C is called essential.
The (possibly infinite) cardinality NH

Wecken(p,q) of the set of essential Wecken classes
is called the Nielsen number (with respect to H in the Wecken sense).

The crucial property is of course that NH
Wecken(p,q) is stable under homotopies which

we will prove next.
Note that even if p is a Vietoris map, the corresponding multivalued fixed point index

(for pairs) cannot be used to prove that a fixed point class is essential, because one has
to verify requirements on subsets Ω of Γ: unfortunately, it does not appear that this fixed
point index is valid under restrictions of the maps to subsets of Γ.

Thus, to our knowledge, the only currently available homologic techniques which al-
low to prove that a class is essential are the three degree theories mentioned in the first
part of the previous section. For the particular choice of the Mawhin degree, one obtains
then results in the spirit of [18, 19, 20]; the other degree theories have not been considered
yet in this connection.

Theorem 3.4. Suppose, in addition to the above requirements on Γ and X , that Γ× [0,1] is
normal. If (h1,h2)∈H are such that Coin(h1,h2) is compact, then

NH
Wecken

(
h1(0,·),h2(0,·))=NH

Wecken

(
h1(1,·),h2(1,·)), (3.3)

and these numbers are finite.

The proof of Theorem 3.4 goes along the lines of [51]. We first need some observa-
tions concerning the auxiliary pair (P,Q), where P,Q : [0,1]× Γ→ X × [0,1] are defined
by P(t,x) := (h1(t,x), t) and Q(t,x) := (h2(t,x), t). This pair will play the role of “fat ho-
motopies” in the fixed point case (cf. [38, 51]). For a set M ⊆ [0,1]× Γ and t ∈ [0,1], we
use in the following proof the notation

Mt := {x : (t,x)∈M
}
. (3.4)

Lemma 3.5. For each Wecken class C of (P,Q) and each t ∈ [0,1], the set Ct is either empty
or a Wecken class of (h1(t,·),h2(t,·)). Conversely, all Wecken classes of (h1(t,·),h2(t,·)) have
such a form.
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Proof. The second statement follows from the first one and the fact that Wecken classes
are disjoint, because for each point x∈Coin(h1(t,·),h2(t,·)), we have trivially that (x, t)∈
Coin(P,Q), and so x ∈ Ct, for some Wecken class C of (P,Q).

Suppose that x0 ∈ Ct is Wecken-equivalent to x with respect to the pair (h1(t,·),
h2(t,·)), that is, there is some path in Γ connecting x0 with x witnessing this. Then
the canonical embedding of this path into Γ× {t} determines that (t,x0) and (t,x) are
Wecken-equivalent with respect to the pair (P,Q), that is, x ∈ Ct.

Conversely, suppose that x0,x ∈ Ct, that is, that (t,x0) and (t,x) are Wecken-equivalent
with respect to the pair (P,Q), and consider a path (γ1,γ2) : [0,1]→ [0,1]× Γ witnessing
this, that is, γ1(0) = γ1(1) = t, γ2(0) = x0, γ2(1) = x, and there is a homotopy (H1,H2) :
[0,1]× [0,1]→ X × [0,1] with fixed endpoints such that (H1,H2)(0,·)= P ◦ (γ1,γ2) and
(H1,H2)(1,·)=Q ◦ (γ1,γ2). In particular,H1(0,·)=h1(t,γ2(·)) andH1(1,·)=h2(t,γ2(·)).
Hence, γ2 and the fixed endpoint homotopy H1 determine that x0 and x are Wecken-
equivalent with respect to the pair (h1(t,·),h2(t,·)). �

Lemma 3.6. Under the additional assumptions of Theorem 3.4, the following holds: for each
Wecken class C of (P,Q) and each t0 ∈ [0,1], there is a neighborhood of t0 such that for each
t in this neighborhood, the set Ct is an essential Wecken class of (h1(t,·),h2(t,·)) if and only
if Ct0 is an essential Wecken class of (h1(t0,·),h2(t0,·)).

Proof. By Proposition 3.2, there is some openΩ⊆ Γ× [0,1] withΩ⊇C=Coin(P,Q)∩ Ω.
Note that Coin(P,Q) = Coin(h1,h2) is compact by hypothesis. Each point (x, t) ∈ C

has a neighborhood of the form O× J with some open O ⊆ Γ and an open J ⊆ [0,1] such
that O× J ⊆Ω and such that t0 /∈ ∂J (the boundary is understood relative to [0,1]). By
compactness, C is covered by finitely many such neighborhoods. Let O denote the union
of such a finite cover. By construction, there is some neighborhood T of t0 such that for
each t ∈ T0, we have Ot =Ot0 =: Ω̃. We may assume that T = [a,b].

If Ω̃ = ∅, we have Ct = Ct0 = ∅ for all t ∈ T , and so neither Ct nor Ct0 can be an
essential Wecken class. Thus, assume that Ω̃ �= ∅.

Since C ⊆ O ⊆ Ω, it is clear that Coin(h1(t,·),h2(t,·))∩ ∂Ω̃ �= ∅ for each t ∈ T . We
choose some continuous ϕ : [0,1]→ T with ϕ(0)= t0 and ϕ(1)= t such that for h̃i(t,x) :=
hi(ϕ(t),x), we have (h̃1, h̃2)∈H. Then

Coin
(
h̃1(τ,·), h̃2(τ,·))∩ ∂Ω̃=∅ (3.5)

for each τ ∈ T , and so if Ct0 is n-essential for (h1(t0,·),h2(t0,·)) = (h̃1(0,·), h̃2(0,·)), it
follows from Definition 3.3 that Ω̃ contains a point of an (n− 1)-essential class of the
pair (h̃1(1,·), h̃2(1,·)) = (h1(t,·),h2(t,·)). Since the only coincidence points of this pair
in Ω̃ are those from Ct, it follows that Ct is (n− 1)-essential. In particular, if Ct0 is essen-
tial, then also Ct must be essential. Conversely, if Ct is (n)-essential, then an analogous
argument (with ϕ(0)= t and ϕ(1)= t0) shows that Ct0 is (n− 1)-essential. �

Proof of Theorem 3.4. The compactness of Coin(P,Q) = Coin(h1,h2) implies in view of
Proposition 3.2 that (P,Q) has only a finite number N of Wecken classes. Lemma 3.5
thus implies that the number of Wecken classes of Coin(h1(t,·),h2(t,·)) is at most N .
Since (P,Q) has at most N Wecken classes, the number ε > 0 in Lemma 3.6 can be chosen
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independent of the Wecken class C. Lemma 3.6 thus shows that the number of essential
Wecken classes of (h1(t,·),h2(t,·)) of the form Ct with a Wecken class C of (P,Q) is lo-
cally constant with respect to t. By Lemma 3.5, this means that NH

Wecken(h1(t,·),h2(t,·)) is
locally constant with respect to t. Since [0,1] is connected, the claim follows. �

Before Definition 3.3, we have remarked that Brooks’ definition of essentiality (and
thus of a Nielsen number) is slightly different. We briefly sketch how Brooks’ definition
reads in our framework.

Definition 3.7. Let Ĉ ⊆ Γ be a Wecken class of a pair (p,q)∈P. Given some (h1,h2)∈H

with (h1(0,·),h2(0,·)) = (p,q), let (P,Q) be the corresponding fat homotopy as defined
above. By Lemma 3.5, there is precisely one Wecken class C of (P,Q) with Ct = Ĉ for
t = 0.

The class Ĉ is called Brooks-essential for (h1,h2) if Ct �= ∅ for each t ∈ [0,1]. If Ĉ is
Brooks-essential for each (h1,h2) ∈ H with (h1(0,·),h2(0,·)) = (p,q), then Ĉ is called
Brooks-essential for (p,q).

The (possibly infinite) cardinality NH
Brooks(p,q) of Brooks-essential classes of (p,q) is

called the Nielsen number for H in Brooks’ sense.

The definition is made in such a way that Lemma 3.6 holds (without any additional as-
sumptions), when we replace “essential” by “Brooks-essential.” Therefore, the invariance
under homotopic perturbations from H follows analogously as before.

Theorem 3.8. The symbol NH
Brooks(p,q) is a lower bound for the number of coincidence

points of (p,q). Moreover, for each (h1,h2)∈H,

NH
Brooks

(
h1(0,·),h2(0,·))=NH

Brooks

(
h1(1,·),h2(1,·)). (3.6)

The following connection with Definition 3.3 is an immediate consequence of Lemma
3.6 and the fact that essential classes are nonempty.

Theorem 3.9. Suppose (in addition to our general requirements) that Γ× [0,1] is normal.
(1) Let (h1,h2) ∈ H be such that Coin(h1,h2) is compact. If a Wecken class of (h1(0,·),

h2(0,·)) is essential, then this class is Brooks-essential for (h1,h2).
(2) Suppose that Coin(h1,h2) is compact for every (h1,h2)∈H. If a Wecken class of some

pair (p,q)∈P is essential, then this class is Brooks-essential. In particular,

NH
Brooks(p,q)≥NH

Wecken(p,q). (3.7)

We note that the assumption that Coin(h1,h2) is compact, for every (h1,h2)∈H, can
simply be achieved by restricting the family H correspondingly.

We close this section with a very simple example, where we can estimate the Nielsen
number, but where a usual index theory does not apply, because we have a map from one
Banach space into another. However, the (homologic) Skrypnik degree does apply and
can be used to verify the essentiality of the classes.

Theorem 3.10. Let 1 < p <∞, 1/p+ 1/p′ = 1, and H : [0,1]× �p → �p′ be locally bounded
with continuous component functions Hn : [0,1]× �p → R (i.e., H = (Hn)n). Suppose that
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there is some x0 ∈R2 with (H1(t,x),H2(t,x)) �= x0, for all (t,x)∈ [0,1]× �p. Assume that,
for each x ∈ �p and each sequence (tn,xn)∈ [0,1]× �p, the implication

(
xn⇀ x, limsup

n→∞

〈
H
(
tn,xn

)
,xn− x

〉≤ 0
)
=⇒ ∥∥xn− x

∥∥−→ 0 (3.8)

holds, where 〈·,·〉 : �p′ × �p → R denotes the canonical pairing. Suppose that H(0,·) has
precisely two zeroes z1,z2 ∈ �p and that H(0,·− zk) is odd in a neighborhood of 0, for k =
1,2. Assume also that the set K of all x ∈ �p with 0∈H([0,1],x) is bounded.

Finally, assume that there is a continuous path γ from z1 to z2 such that

P(t) := (H1
(
0,γ(t)

)
,H2

(
0,γ(t)

))∈R2 (3.9)

has nonzero winding number around x0 ∈R2.
Then H(1,·) has at least two zeroes.

Condition (3.8) is satisfied if H is a compact perturbation of a uniformly monotone
operator. In particular, if �p = �p′ (i.e., if p = 2), condition (3.8) holds if H is a compact
perturbation of the identity. Actually, our proof shows that condition (3.8) can even be
slightly relaxed: the full strength of (3.8) is only needed if tn ≡ 0; if tn ≡ t �= 0, it suffices
that (3.8) holds for those sequences which additionally satisfy H(tn,xn)⇀ 0; for all other
sequences (tn,xn), one may replace (3.8) by the milder requirement

(
xn⇀ x, H

(
tn,xn

)
⇀ 0,

〈
H
(
tn,xn

)
,xn
〉−→ 0

)=⇒ ∥∥xn− x
∥∥−→ 0. (3.10)

Proof. Our first assumption is equivalent to the demicontinuity of H (i.e., (tn,xn)→ (t,x)
implies H(tn,xn)⇀H(t,x)). Since the considered spaces are reflexive and separable, con-
dition (3.8) thus implies that if Ω⊆ Γ := �p is open and bounded, and 0 /∈H([0,1]× ∂Ω),
then the Skrypnik degree deg(H(t,·),Ω,0) is defined and independent of t, see [53, The-
orem 1.3.1].

We interpret H as a mapping from [0,1]× Γ into X := (R2 \ {x0})× �p′ . Then K =
Coin(H ,0) is compact. Let P2 : X → R2 denote the projection onto the first two compo-
nents. Since the path P = P2 ◦H ◦ γ is not contractible, also H ◦ γ is not contractible, and
so z1 and z2 belong to two different Wecken classes of the pair (H(0,·),0). We claim that
both these classes are essential with respect to H, where H denotes the family of all pairs
H(ϕ(·),0) with continuous ϕ : [0,1]→ [0,1] (it follows then that NH

Wecken(H(0,·),0)= 2).
Since K is bounded, X is reflexive, and H is demicontinuous, K is weakly sequen-

tially compact, and (3.8) implies that K is actually compact (and so Theorem 3.4 applies).
Since K is bounded, we can by the additivity also define the degree deg(H(t,·),Ω,0) for
unbounded open Ω⊆ �p (namely, as the number deg(H(t,·),Ω∩B,0), for a sufficiently
large open ball B).

We prove by induction that whenever a Wecken class C of (p,q) = (H(t0,·),0) ∈P

has the property that for some open Ω0 ⊆ Γ with Ω0 ⊇ C = Ω0 ∩ Coin(p,q) we have
deg(H(t0,·),Ω0,0) �= 0, then C is n-essential. In fact, let Ω ⊆ Γ be as in Definition 3.3,
that is, Ω is open with Ω ⊇ C = Ω∩Coin(p,q), 0 /∈ H(ϕ([0,1])× ∂Ω) for some con-
tinuous function ϕ : [0,1]× [0,1] with H(ϕ(0),·) = p, and the set D of all x ∈ Ω with
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H(ϕ(1),x) = 0 is either empty or precisely one Wecken class of the pair (H(ϕ(1),·),0).
Then we have by the homotopy invariance and the additivity of the degree that

deg
(
H
(
ϕ(1),·),Ω)= deg

(
H
(
ϕ(0),·),Ω)= deg

(
H
(
ϕ(0),·),Ω0

) �= 0, (3.11)

and so the solution property of the degree implies that D �= ∅ and, by the induction
assumption, D is an (n− 1)-essential Wecken class, as required.

It thus suffices to prove that there are sufficiently small neighborhoods Ωk ⊆ Γ (k =
1,2) which contain the Wecken class of zk such that deg(H(0,·),Ωk,0) �= 0. Since zk are
the only zeroes of H(0,·), the corresponding Wecken classes are {z1} and {z2}. Since
H(0,· − zk) is odd in each sufficiently small symmetric neighborhood Ω0 about 0, the
Borsuk theorem for the Skrypnik degree [53, Theorem 1.3.5] implies that

deg
(
H(0,·),Ω0 + zk,0

)= deg
(
H
(
0,·− zk

)
,Ω0,0

)
(3.12)

is odd (to see the above equality in our case, apply successively the homotopy invariance
with H(0,·− tzk) and the additivity with Ω0 + tzk). �

4. Definition by Nielsen classes

The Nielsen approach to coincidences of two continuous maps p : Γ→ X ⊆ Y and q : Γ→
Y was essentially elaborated in [4, 5] (see also [3] for more detailed proofs). We provide
here some details which cannot be found in the above references, but we do not repeat
the proofs.

The approach is based on universal coverings X̃ and Ỹ of X and Y , respectively (see,
e.g., [9, 54]). We must assume, of course, that such universal coverings exist. This is a
consequence of the following assumptions which we make throughout in the sequel:

(1) X and Y are paracompact, connected, and locally contractible;
(2) p : Γ→ X is a Vietoris map;
(3) for each x ∈ X , the restriction of q to the set p−1(x) admits a lift to the universal

covering space Ỹ , that is, if pY : Ỹ → Y denotes the covering map, then there is a
continuous map q̃ : p−1(x)→ Ỹ with pY ◦ q̃ = q on p−1(x).

The last requirement is automatically satisfied for x ∈ X if p−1(x) is ∞-proximally con-
nected [42]. If X is a metric ANR, the latter is satisfied for the compact set p−1(x) if
and only if p−1(x) is a so-called Rδ-set, that is, the intersection of a decreasing (count-
able) sequence of compact contractible spaces (see, e.g., [3]). We point out that, from the
viewpoint of applications, the difference between Rδ-sets and acyclic sets is not very large.
Moreover, the difference between Rδ-sets and ∞-proximally connected sets can only be
seen by some pathologic examples which show that the notions are not equivalent. In a
certain sense, if p−1(x) is ∞-proximally connected, for each x, then p−1 is homotopic to
a single-valued map. Thus, the above assumption can be interpreted as a homotopic re-
quirement (which is not surprising for the Nielsen number); it is unknown whether the
purely homologic condition of acyclicity is sufficient for this.

Besides the universal coverings pX : X̃ → X and pY : Ỹ → Y , we also need the pullback

Γ̃ := {(x̃,z
)∈ X̃ ×Γ : pX

(
x̃
)= p(z)

}
(4.1)
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together with the canonical projections p̃ : Γ̃→ X̃ and pΓ : Γ̃→ Γ. It can be proved under
our assumptions (see [3, 4, 5]) that there is a lift q̃ of q which makes the following diagram
commutative:

X̃

pX

Γ̃
p̃ q̃

pΓ

Ỹ

pY

X Γ
p q

Y.

(4.2)

Another ingredient is needed, namely, the deck transformation group

θX := {α : X̃ −→ X̃ | α is a homeomorphism, pXα= pX
}
. (4.3)

The group θY is defined analogously, and

θΓ := {(x̃,z
)∈ Γ̃ �−→ (αx̃,z

)
: α∈ θX

}
. (4.4)

The lift p̃ in diagram (4.2) defines a group homomorphism p̃! : θX → θΓ by

p̃!(α)
(
x̃,z
)

:= (α(x̃),z). (4.5)

Then the diagram

X̃

α

Γ̃
p̃

p̃!(α)

X̃ Γ̃
p̃

(4.6)

is commutative. Moreover, also q̃ induces a group homomorphism q̃! : θΓ → θY by the
requirement that the diagram

Γ̃
q̃

β

Ỹ

q̃!(β)

Γ̃
q̃

Ỹ

(4.7)

commutes. In particular, (4.2) induces a map q̃! p̃! : θX → θY such that the diagram

X̃

α

Γ̃
p̃ q̃

p̃!(α)

Ỹ

(q̃! p̃!)(α)

X̃ Γ̃
p̃ q̃

Ỹ

(4.8)

commutes. We point out that q̃!, and thus the composition q̃! p̃! in general, depend on the
choice of the lift q̃. In addition to our previous requirements (1), (2), and (3), we assume
now the following:



62 Topological definition of a Nielsen number

(4) X = Y ;
(5) we fix a normal subgroup H ⊆ θX which is invariant under the homomorphism

q̃! p̃!.

The action of H on X̃ then gives the quotient space X̃H , and the corresponding map pXH
induced by pX is also a covering. Moreover, defining the action of H on Γ̃ by h ◦ (x̃,z) :=
(hx̃,z), we obtain a quotient space Γ̃H and corresponding projections p̃H and pΓH onto
the first and the second components. In view of (5), the map q̃ induces a continuous map
q̃H , and the diagram

X̃H

pXH

Γ̃H
p̃H q̃H

pΓH

X̃H

pXH

XH ΓH
pH qH

XH

(4.9)

commutes. Since the subgroup H ⊆ θX is normal, each α∈ θX induces a map on X̃H , and
thus an element of the set θXH of all deck transformations of the covering pXH . Con-
versely, all the elements of θXH have such a form, because they are determined by their
action on a single point, and θX acts transitively on each fibre of the covering. We put

θΓH := {(x̃,z
) �−→ (αx̃,z

)
: α∈ θXH

}
(4.10)

and define p̃!
H : θXH → θΓH by

p̃!
H(α)

(
x̃,z
)

:= (α(x̃),z). (4.11)

Finally, we define q̃H! : θΓH → θXH by the commutativity requirement

Γ̃H
q̃H

β

X̃H

q̃H!(β)

Γ̃H
q̃H

X̃H .

(4.12)

Note that if we keep the covering pX : X̃ → X and the subgroup H once and for all fixed,
all the above definitions depend besides the pair (p,q) only on the choice of the lift q̃.

Definition 4.1. Two elements α,β ∈ θXH are in the H-Reidemeister relation with respect
to (p,q, q̃) if there is some γ ∈ θXH such that

β = γα
((
q̃H! p̃

!
H

)
(γ)
)−1

. (4.13)

Since the group θXH operates onto itself by the right-hand side, it splits into correspond-
ing classes, the H-Reidemeister classes.

The following proposition has been proved in [3, 4, 5] (the last statement only in the
case of the trivial group H , and the second statement was formulated a bit weaker).
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Proposition 4.2. Given (p,q) and some lift q̃ as above, put

Cα := Cα
(
p,q, q̃

)
:= pΓH

(
Coin

(
p̃H ,αq̃H

)) (
α∈ θXH

)
. (4.14)

Then

(1) Coin(p,q) is the union of the sets Cα;
(2) the sets Cα are pairwise-disjoint and depend (for fixed (p,q, q̃)) only on the H-

Reidemeister class of α;
(3) if Cα �= ∅, then the set Cα determines the H-Reidemeister class of α uniquely;
(4) the family NH(p,q) := {Cα : α∈ θXH} (but not necessarily Cα) is independent of the

choice of the lift q̃ (and thus actually also independent of the choice of the universal
covering).

Definition 4.3. Elements of the set NH(p,q) above are called the H-Nielsen classes of the
pair (p,q).

Remark 4.4. It is important to understand in the following that the particular choice of
the space Γ in the above definitions plays no role in the following sense: if Γ0 is another
space which is homeomorphic to Γ with a homeomorphism J : Γ0 → Γ, then everything
of the above which holds with the pair (p,q) also holds with the pair (p ◦ J ,q ◦ J). In
this sense, we “identify” the pair (p,q) with the pair (p ◦ J ,q ◦ J). However, some care
has to be taken: we will tacitly understand that the lift of the map q ◦ J is then chosen as

(̃q ◦ J)(x,z) := q̃(x, J(z)).

Now we intend to define essential H-Nielsen classes in a homotopic way. To this end,
let a fixed class H of homotopies be given.

We first explain what we mean by a homotopy: since our philosophy now is to for-
mulate assumptions on subsets of X , it is not reasonable to require that a homotopy
always corresponds to a fixed space Γ. Rather, we call a pair (P,Q) with continuous maps
P : Γ→ [0,1]×X and Q : Γ→ Y a homotopy if P and Q satisfy our above requirements
(1), (2), and (3) (with [0,1]×X instead of X , of course). Such a homotopy induces a
family of pairs (Pt,Qt), where Qt : Γt → Y is the restriction of Q to Γt := P−1({t} ×X),
and Pt : Γt → X is defined by (t,Pt(x))= P(x) (x ∈ Γt). We write (Pt0 ,Qt0 )∼ (Pt1 ,Qt1 ) for
each t0, t1 ∈ [0,1].

This definition becomes natural in connection with Remark 4.4: we tacitly allow to
replace (Pti ,Qti) (i= 0,1) by pairs (Pti ◦ Ji,Qti ◦ Ji), where Ji : Γ′i → Γt is a homeomorphism.

By P we denote the class of all pairs (Pt,Qt)∈P (for all homotopies and all t ∈ [0,1]).
We assume that each (p,q)∈P satisfies our previous requirements (1), (2), and (3) and
in addition that assumptions (2) (with [0,1]×X) and (3) are satisfied for each (P,Q)∈H.
In other words, the requirements (1), (2), and (3) hold for each (P,Q)∈H.

Each lifting of a homotopy (P,Q)∈H is itself a homotopy (P̃,Q̃) (only for Q̃, there is
a choice of the lifting), and to this homotopy there correspond pairs (P̃t,Q̃t) (0≤ t ≤ 1)
which are liftings of the pairs (Pt,Qt) associated to the original homotopy (P,Q). In this
situation, we call for each t1, t2 ∈ [0,1] the pair (Q̃t1 ,Q̃t2 ) a (P,Q)-admissible lifting for
the two pairs (Pt1 ,Qt1 ) and (Pt2 ,Qt2 ).
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Definition 4.5. A pair (q̃0, q̃1) is an H-admissible lifting for two pairs (p0,q0),(p1,q1)∈P

if it is (P,Q)-admissible for some (P,Q)∈H.

Note that an H-admissible lifting exists if and only if (p0,q0)∼ (p1,q1).

Remark 4.6. If the pairs (p0,q0) and (p1,q1) are only identified via two homeomorphisms
with pairs (Pt0 ,Qt0 ) and (Pt1 ,Qt1 ) of a homotopy (P,Q)∈H (in the sense of Remark 4.4),
then also the notion of H-admissible liftings has to be understood in the sense of this
remark (i.e., the liftings (q̃0, q̃1) have to take the identifying homeomorphisms into ac-
count).

Now, we define essential H-Nielsen classes in a manner which is somewhat analogous
to Definition 3.3.

Definition 4.7. An H-Nielsen class C ∈NH(p,q) is called 0-essential for a pair (p,q)∈P

if C �= ∅.
For n = 1,2, . . . , the class C is called n-essential if, for each (p1,q1) ∈P with (p,q) ∼

(p1,q1) and for each corresponding H-admissible lifting (q̃, q̃1), the following holds: there
is some α∈θXH withC=Cα(p,q, q̃) such thatCα(p1,q1, q̃1) is (n− 1)-essential for (p1,q1).

The class C is called essential if C is n-essential for each n.
The cardinality of the set of n-essential H-Nielsen classes is denoted by N∼,(n)

H (p,q).
The cardinality of the set of essential H-Nielsen classes is denoted by N∼

H (p,q).

Before we discuss this definition, we note that it is equivalent to replace “some α” by
“every α” in Definition 4.7. More precisely, the class Cα(p1,q1, q̃1) in the above definition
is actually independent of the particular choice of α in the following sense.

Proposition 4.8. IfC is n-essential and (p,q)∼ (p1,q1) with a corresponding H-admissible
lifting (q̃, q̃1), then, for every α,β ∈ θXH with C = Cα(p,q, q̃)= Cβ(p,q, q̃),

Cα
(
p1,q1, q̃1

)= Cβ
(
p1,q1, q̃1

)
, (4.15)

and, in case n≥ 1, this class is (n− 1)-essential for (p1,q1).

We now formulate the main properties of the Nielsen number N∼
H (p,q).

Proposition 4.9. Each n-essential H-Nielsen class is m-essential for each m≤ n. In partic-
ular, n-essential H-Nielsen classes are nonempty. Moreover,

N∼,(0)
H (p,q)≥N∼,(1)

H (p,q)≥N∼,(2)
H (p,q)≥ ··· ≥N∼

H (p,q), (4.16)

and all these numbers are lower bounds for the cardinality of Coin(p,q).

Theorem 4.10 (homotopy invariance). If (p0,q0)∼ (p1,q1), then there exists a one-to-one
map of the set of 1-essential H-Nielsen classes of (p0,q0) into the set of 0-essential H-Nielsen
classes of (p1,q1), and this mapping sends (n + 1)-essential H-Nielsen classes of (p0,q0)
into n-essential H-Nielsen classes, and essential classes into essential classes. In particular,

N∼,(1)
H (p0,q0) is a lower bound for the cardinality of Coin(p1,q1). Moreover,

N∼,(n)
H

(
p1,q1

)≥N∼,(n+1)
H

(
p0,q0

)
, N∼

H

(
p1,q1

)=N∼
H

(
p0,q0

)
. (4.17)
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Theorem 4.10 shows impressively that for most applications it suffices to calculate

N∼,(1)
H (p0,q0), that is, for applications it usually suffices to verify that a class is 1-essential

(and so actually the complicated recursion in Definition 4.7 is not needed). This is not
too surprising. In fact, if we are interested only in a fixed homotopy and let H consist
only of this homotopy, then each 1-essential class is essential. However, we do not know

whether N∼,(1)
H (p,q) is homotopically invariant even if H is stable under concatenations

of homotopies: Theorem 4.10 only guarantees the homotopy invariance of the possibly
smaller number N∼

H (p,q).
Definition 4.7 differs from the homologic definitions in [3, 4, 5] where an (under ad-

ditional assumptions defined) Lefschetz number was used to define the notion of es-
sentiality. Of course, if such a Lefschetz number is defined (such that the Lefschetz fixed
point theorem holds) and is nonzero, then the corresponding class is nonempty, that is, 0-
essential in the sense of Definition 4.7. Moreover, if this Lefschetz number is stable under
the homotopies from H (which holds of course for the classes of homotopies considered
in [3, 4, 5]), then this class is essential in the sense of Definition 4.7. Hence, N∼

H (p,q) is
always at least as large as the Nielsen numbers defined in [3, 4, 5] when H corresponds to
the class of homotopies considered in these papers. But N∼

H (p,q) might be larger (and is
defined for a richer class of maps), so it is—at least from a theoretical point of view—a
better homotopically invariant number which estimates the number of coincidences.

Now, we prove the above results. The proof of Proposition 4.9 is rather straightfor-
ward.

Proof of Proposition 4.9. Assume that C ∈NH(p,q) is n-essential for some n≥ 1. Choose
some homotopy (P,Q) ∈ H with p = Pt and q = Qt for some t. Fix some lift of this ho-
motopy. This lift shows that there is some H-admissible lifting of the form (q̃, q̃) for
(p,q) and (p1,q1) := (p,q). Since C is an H-Nielsen class, we find some α ∈ θXH with
C = Cα(p,q, q̃). We have by Definition 4.7 thatCα(p,q, q̃) is (n− 1)-essential for (p1,q1)=
(p,q). �

The proof of the other results needs more preparation.

Lemma 4.11. If (q̃, q̃1) is an H-admissible lifting for (p,q) and (p1,q1), then q̃H! p̃
!
H =

q̃1H! p̃
!
1H . In particular, the H-Reidemeister relation with respect to (p,q, q̃) and (p1,q1, q̃1)

is the same.

For the trivial group H , Lemma 4.11 has been proved in [3, 4, 5].

Proof of Proposition 4.8. Since C is n-essential, it is nonempty by Proposition 4.9. Hence,
C = Cα(p,q, q̃) = Cβ(p,q, q̃) �= ∅ implies in view of Proposition 4.2 that α and β are in
H-Reidemeister relation with respect to (p,q, q̃). By Lemma 4.11, α and β are in H-
Reidemeister relation with respect to (p1,q1, q̃1), and so Proposition 4.2 implies (4.15).
In case n ≥ 1, we find by definition some choice of α as above such that Cα(p1,q1, q̃1) is
(n− 1)-essential for (p1,q1). �

Proof of Theorem 4.10. Fix some H-admissible lifting (q̃0, q̃1) for (p0,q0) and (p1,q1).
Proposition 4.8 implies that for each (n+ 1)-essential Nielsen class C = Cα(p0,q0, q̃0)

to (p0,q0) there corresponds precisely one n-essential Nielsen class D := Cα(p1,q1, q̃1)
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of (p1,q1). Note that this association is actually independent of n, that is, the mapping
C �→ D defined in this way is actually a restriction of the corresponding map for n = 1.
We claim that this mapping (for n= 1) is one-to-one.

Thus, assume that D is, under this map, the image of two 1-essential Nielsen classes
Cα := Cα(p0,q0, q̃0) and Cβ := Cβ(p0,q0, q̃0), that is,

D = Cα
(
p1,q1, q̃1

)= Cβ
(
p1,q1, q̃1

)
. (4.18)

Since D is 0-essential, that is, D �= ∅, Proposition 4.2 implies that α and β are in H-
Reidemeister relation with respect to (p1,q1, q̃1). By Lemma 4.11, we conclude that α and
β are also in H-Reidemeister relation with respect to (p0,q0, q̃0), and so Proposition 4.2
implies that actually Cα = Cβ, as required. �

We point out that the map constructed in the proof of Theorem 4.10 is by no means
canonical. In fact, even if (p0,q0) and (p1,q1) coincide in a canonical way, this map is in
general not the identity.

Example 4.12. Let X := Y := S1 ⊆ C, Γ := [0,1]× S1, and let H contain the pair (P,Q),
where P := id : Γ→ [0,1]×X and Q(t,z) := e2πitz3. We may identify the restrictions Pt
and Qt in a canonical way (i.e., via a canonical homeomorphism in the sense of Remark
4.4) for t = 0 and t = 1.

Choose X̃ := Ỹ :=R with the covering map t �→ e2πit, that is, θX = {t �→ t + k : k ∈ Z}.
Put H := {id} and note that

Γ̃= {((t,x),
(
t,eix

))
: t ∈ [0,1], x ∈R

}
. (4.19)

A lifting is Q̃((t,x),(t,eix)) := t + 3x. Hence, (Q̃0,Q̃1) is H-admissible for (P0,Q0) and
(P1,Q1), where

Q̃ j
(
( j,x),

(
j,eix

))
:= j + 3x ( j = 0,1). (4.20)

For α := id, we have Cα(P0,Q0,Q̃0)= {e0} = {1}, but Cα(P1,Q1,Q̃1)={e2πi·(−1/2)}={−1}.
Some further notes are in order. This second approach described in this section is

indeed more involved with the map qp−1 : X → X (resp., corresponding liftings) as can
already be guessed by the fact that a Lefschetz number for such a map was used for the
definition in the cited papers. Thus, it is somewhat surprising that the corresponding
Nielsen number is a lower bound for the number of coincidences Coin(p,q), but not on
the number of fixed points Fix(p,q) as shown by [5, Example 2.1] (see also [3]). On the
other hand, in this example, the map qp−1 does not assume simply connected values. So
we formulate the following conjecture.

Conjecture 4.13. If, in addition to the above requirements, the multivalued map qp−1

assumes only simply connected values, then N∼
H (p,q) is a lower bound for the number of

elements in Fix(p,q).

The conjecture is natural not only from our “philosophical” considerations about the
multivalued approach, but also from the fact that there exist several successful attempts
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in the literature to define a Nielsen number which gives a lower bound on the number of
fixed points of multivalued maps with “nice” images, namely [2, 33, 42].
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