FIXED POINT THEORY ON EXTENSION-TYPE SPACES AND ESSENTIAL MAPS ON TOPOLOGICAL SPACES

DONAL O'REGAN

Received 19 November 2003

We present several new fixed point results for admissible self-maps in extension-type spaces. We also discuss a continuation-type theorem for maps between topological spaces.

1. Introduction

In Section 2, we begin by presenting most of the up-to-date results in the literature [3, 5, 6, 7, 8, 12] concerning fixed point theory in extension-type spaces. These results are then used to obtain a number of new fixed point theorems, one concerning approximate neighborhood extension spaces and another concerning inward-type maps in extension-type spaces. Our first result was motivated by ideas in [12] whereas the second result is based on an argument of Ben-El-Mechaiekh and Kryszewski [9]. Also in Section 2 we present a new continuation theorem for maps defined between Hausdorff topological spaces, and our theorem improves results in [3].

For the remainder of this section we present some definitions and known results which will be needed throughout this paper. Suppose *X* and *Y* are topological spaces. Given a class \mathscr{X} of maps, $\mathscr{X}(X, Y)$ denotes the set of maps $F : X \to 2^Y$ (nonempty subsets of *Y*) belonging to \mathscr{X} , and \mathscr{X}_c the set of finite compositions of maps in \mathscr{X} . We let

$$\mathcal{F}(\mathcal{X}) = \{ Z : \operatorname{Fix} F \neq \emptyset \ \forall F \in \mathcal{X}(Z, Z) \},$$
(1.1)

where Fix F denotes the set of fixed points of F.

The class \mathcal{A} of maps is defined by the following properties:

- (i) \mathcal{A} contains the class \mathcal{C} of single-valued continuous functions;
- (ii) each $F \in \mathcal{A}_c$ is upper semicontinuous and closed valued;
- (iii) $B^n \in \mathcal{F}(\mathcal{A}_c)$ for all $n \in \{1, 2, ...\}$; here $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$.

Remark 1.1. The class \mathcal{A} is essentially due to Ben-El-Mechaiekh and Deguire [7]. It includes the class of maps \mathcal{U} of Park (\mathcal{U} is the class of maps defined by (i), (iii), and (iv) each $F \in \mathcal{U}_c$ is upper semicontinuous and compact valued). Thus if each $F \in \mathcal{A}_c$ is compact

Copyright © 2004 Hindawi Publishing Corporation Fixed Point Theory and Applications 2004:1 (2004) 13–20 2000 Mathematics Subject Classification: 47H10 URL: http://dx.doi.org/10.1155/S1687182004311046

14 Fixed point theorems

valued, the classes \mathcal{A} and \mathcal{U} coincide and this is what occurs in Section 2 since our maps will be compact.

The following result can be found in [7, Proposition 2.2] (see also [11, page 286] for a special case).

THEOREM 1.2. The Hilbert cube I^{∞} (subset of l^2 consisting of points $(x_1, x_2,...)$ with $|x_i| \le 1/2^i$ for all i) and the Tychonoff cube T (Cartesian product of copies of the unit interval) are in $\mathcal{F}(\mathcal{A}_c)$.

We next consider the class $\mathfrak{U}_c^{\kappa}(X, Y)$ (resp., $\mathscr{A}_c^{\kappa}(X, Y)$) of maps $F: X \to 2^Y$ such that for each F and each nonempty compact subset K of X, there exists a map $G \in \mathfrak{U}_c(K, Y)$ (resp., $G \in \mathscr{A}_c(K, Y)$) such that $G(x) \subseteq F(x)$ for all $x \in K$.

THEOREM 1.3. The Hilbert cube I^{∞} and the Tychonoff cube T are in $\mathcal{F}(\mathcal{A}_{c}^{\kappa})$ (resp., $\mathcal{F}(\mathfrak{U}_{c}^{\kappa})$).

Proof. Let $F \in \mathcal{A}_{c}^{\kappa}(I^{\infty}, I^{\infty})$. We must show that Fix $F \neq \emptyset$. Now, by definition, there exists $G \in \mathcal{A}_{c}(I^{\infty}, I^{\infty})$ with $G(x) \subseteq F(x)$ for all $x \in I^{\infty}$, so Theorem 1.2 guarantees that there exists $x \in I^{\infty}$ with $x \in Gx$. In particular, $x \in Fx$ so Fix $F \neq \emptyset$. Thus $I^{\infty} \in \mathcal{F}(\mathcal{A}_{c}^{\kappa})$.

Notice that \mathfrak{U}_c^{κ} is closed under compositions. To see this, let X, Y, and Z be topological spaces, $F_1 \in \mathfrak{U}_c^{\kappa}(X,Y)$, $F_2 \in \mathfrak{U}_c^{\kappa}(Y,Z)$, and K a nonempty compact subset of X. Now there exists $G_1 \in \mathfrak{U}_c(K,Y)$ with $G_1(x) \subseteq F_1(x)$ for all $x \in K$. Also [4, page 464] guarantees that $G_1(K)$ is compact so there exists $G_2 \in \mathfrak{U}_c^{\kappa}(G_1(K),Z)$ with $G_2(y) \subseteq F_2(y)$ for all $y \in G_1(K)$. As a result,

$$G_2G_1(x) \subseteq F_2G_1(x) \subseteq F_2F_1(x) \quad \forall x \in K$$
(1.2)

and $G_2G_1 \in \mathcal{U}_c(X, Z)$.

For a subset *K* of a topological space *X*, we denote by $\text{Cov}_X(K)$ the set of all coverings of *K* by open sets of *X* (usually we write $\text{Cov}(K) = \text{Cov}_X(K)$). Given a map $F: X \to 2^X$ and $\alpha \in \text{Cov}(X)$, a point $x \in X$ is said to be an α -fixed point of *F* if there exists a member $U \in \alpha$ such that $x \in U$ and $F(x) \cap U \neq \emptyset$. Given two maps $F, G: X \to 2^Y$ and $\alpha \in \text{Cov}(Y)$, *F* and *G* are said to be α -close if for any $x \in X$ there exists $U_x \in \alpha$, $y \in$ $F(x) \cap U_x$, and $w \in G(x) \cap U_x$.

The following results can be found in [5, Lemmas 1.2 and 4.7].

THEOREM 1.4. Let X be a regular topological space and $F: X \to 2^X$ an upper semicontinuous map with closed values. Suppose there exists a cofinal family of coverings $\theta \subseteq \text{Cov}_X(\overline{F(X)})$ such that F has an α -fixed point for every $\alpha \in \theta$. Then F has a fixed point.

THEOREM 1.5. Let T be a Tychonoff cube contained in a Hausdorff topological vector space. Then T is a retract of span(T).

Remark 1.6. From Theorem 1.4 in proving the existence of fixed points in uniform spaces for upper semicontinuous compact maps with closed values, it suffices [6, page 298] to prove the existence of approximate fixed points (since open covers of a compact set *A*

admit refinements of the form $\{U[x] : x \in A\}$ where *U* is a member of the uniformity [14, page 199], so such refinements form a cofinal family of open covers). Note also that uniform spaces are regular (in fact completely regular) [10, page 431] (see also [10, page 434]). Note in Theorem 1.4 if *F* is compact valued, then the assumption that *X* is regular can be removed. For convenience in this paper we will apply Theorem 1.4 only when the space is uniform.

2. Extension-type spaces

We begin this section by recalling some results we established in [3]. By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y is an *extension space* for Q (written $Y \in ES(Q)$) if for all $X \in Q$ and all $K \subseteq X$ closed in X, any continuous function $f_0: K \to Y$ extends to a continuous function $f: X \to Y$.

Using (i) the fact that every compact space is homeomorphic to a closed subset of the Tychonoff cube and (ii) Theorem 1.3, we established the following result in [3].

THEOREM 2.1. Let $X \in ES(compact)$ and $F \in \mathcal{U}_c^{\kappa}(X, X)$ a compact map. Then F has a fixed point.

Remark 2.2. If $X \in AR$ (an absolute retract as defined in [11]), then of course $X \in ES(compact)$.

A space *Y* is an *approximate extension space* for *Q* (written $Y \in AES(Q)$) if for all $\alpha \in Cov(Y)$, all $X \in Q$, all $K \subseteq X$ closed in *X*, and any continuous function $f_0 : K \to Y$, there exists a continuous function $f : X \to Y$ such that $f|_K$ is α -close to f_0 .

THEOREM 2.3. Let $X \in AES(compact)$ be a uniform space and $F \in \mathfrak{A}_c^{\kappa}(X,X)$ a compact upper semicontinuous map with closed values. Then F has a fixed point.

Remark 2.4. This result was established in [3]. However, we excluded some assumptions (*X* uniform and *F* upper semicontinuous with closed values) so the proof in [3] has to be adjusted slightly.

Proof. Let $\alpha \in \text{Cov}_X(K)$ where $K = \overline{F(X)}$. From Theorem 1.4 (see Remark 1.6), it suffices to show that *F* has an α -fixed point. We know (see [13]) that *K* can be embedded as a closed subset K^* of *T*; let $s: K \to K^*$ be a homeomorphism. Also let $i: K \hookrightarrow X$ and $j: K^* \hookrightarrow T$ be inclusions. Next let $\alpha' = \alpha \cup \{X \setminus K\}$ and note that α' is an open covering of *X*. Let the continuous map $h: T \to X$ be such that $h|_{K^*}$ and s^{-1} are α' -close (guaranteed since $X \in \text{AES}(\text{compact})$). Then it follows immediately from the definition (note that $\alpha' = \alpha \cup \{X \setminus K\}$) that $hs: K \to X$ and $i: K \to X$ are α -close. Let G = jsFh and notice that $G \in \mathfrak{M}_c^\kappa(T,T)$. Now Theorem 1.3 guarantees that there exists $x \in T$ with $x \in Gx$. Let y = h(x), and so, from the above, we have $y \in hjsF(y)$, that is, y = hjs(q) for some $q \in F(y)$. Now since hs and i are α -close, there exists $U \in \alpha$ with $hs(q) \in U$ and $i(q) \in U$, that is, $q \in U$ and $y = hjs(q) = hs(q) \in U$ since $s(q) \in K^*$. Thus $q \in U$ and $y \in U$, so $y \in U$ and $F(y) \cap U \neq \emptyset$ since $q \in F(y)$. As a result, *F* has an α -fixed point.

Definition 2.5. Let *V* be a uniform space. Then *V* is *Schauder admissible* if for every compact subset *K* of *V* and every covering $\alpha \in \text{Cov}_V(K)$, there exists a continuous function (called the Schauder projection) $\pi_{\alpha} : K \to V$ such that

16 Fixed point theorems

(i) π_{α} and $i: K \hookrightarrow V$ are α -close;

(ii) $\pi_{\alpha}(K)$ is contained in a subset $C \subseteq V$ with $C \in AES(compact)$.

THEOREM 2.6. Let V be a uniform space and Schauder admissible and $F \in \mathfrak{A}_{c}^{\kappa}(V, V)$ a compact upper semicontinuous map with closed values. Then F has a fixed point.

Proof. Let $K = \overline{F(X)}$ and let $\alpha \in \text{Cov}_V(K)$. From Theorem 1.4 (see Remark 1.6), it suffices to show that *F* has an α -fixed point. There exists $\pi_{\alpha} : K \to V$ (as described in Definition 2.5) and a subset $C \subseteq V$ with $C \in \text{AES}(\text{compact})$ such that (here $F_{\alpha} = \pi_{\alpha}F$)

$$F_{\alpha}(V) = \pi_{\alpha} F(V) \subseteq C. \tag{2.1}$$

Notice that $F_{\alpha} \in \mathfrak{U}_{c}^{\kappa}(C, C)$ is a compact upper semicontinuous map with closed (in fact compact) values. So Theorem 2.3 guarantees that there exists $x \in C$ with $x \in \pi_{\alpha}F(x)$, that is, $x = \pi_{\alpha}q$ for some $q \in F(x)$. Now Definition 2.5(i) guarantees that there exists $U \in \alpha$ with $\pi_{\alpha}(q) \in U$ and $i(q) \in U$, that is, $x \in U$ and $q \in U$. Thus $x \in U$ and $F(x) \cap U \neq \emptyset$ since $q \in F(x)$, so F has an α -fixed point.

A space Y is a *neighborhood extension space* for Q (written $Y \in NES(Q)$) if for all $X \in Q$, all $K \subseteq X$ closed in X, and any continuous function $f_0 : K \to Y$, there exists a continuous extension $f : U \to Y$ of f_0 over a neighborhood U of K in X.

Let $X \in \text{NES}(Q)$ and $F \in \mathcal{U}_c^{\kappa}(X,X)$ a compact map. Now let K, K^* , s, and i be as in the proof of Theorem 2.3. Let U be an open neighborhood of K^* in T and let $h_U : U \to X$ be a continuous extension of $is^{-1} : K^* \to X$ on U (guaranteed since $X \in \text{NES}(\text{compact})$). Let $j_U : K^* \hookrightarrow U$ be the natural embedding, so $h_U j_U = is^{-1}$. Now consider span(T) in a Hausdorff locally convex topological vector space containing T. Now Theorem 1.5 guarantees that there exists a retraction $r : \text{span}(T) \to T$. Let $i^* : U \hookrightarrow r^{-1}(U)$ be an inclusion and consider $G = i^* j_U sFh_U r$. Notice that $G \in \mathcal{U}_c^{\kappa}(r^{-1}(U), r^{-1}(U))$. We now *assume* that

$$G \in \mathcal{U}_{c}^{\kappa}(r^{-1}(U), r^{-1}(U)) \text{ has a fixed point.}$$

$$(2.2)$$

Now there exists $x \in r^{-1}(U)$ with $x \in Gx$. Let $y = h_U r(x)$, so $y \in h_U ri^* j_U sF(y)$, that is, $y = h_U ri^* j_U s(q)$ for some $q \in F(y)$. Since $h_U(z) = is^{-1}(z)$ for $z \in K^*$, we have

$$h_U r i^* j_U s(q) = (h_U r i^* j_U) s(q) = i(q),$$
(2.3)

so $y \in F(y)$.

THEOREM 2.7. Let $X \in \text{NES}(\text{compact})$ and $F \in \mathcal{U}_c^{\kappa}(X, X)$ a compact map. Also assume that (2.2) holds with $K, K^*, s, i, i^*, j_U, h_U$, and r as described above. Then F has a fixed point.

Remark 2.8. Theorem 2.7 was also established in [3]. Note that if *F* is admissible in the sense of Gorniewicz and the Lefschetz set $\Lambda(F) \neq \{0\}$, then we know [11] that (2.2) holds. Note that if $X \in ANR$ (see [11]), then of course $X \in NES(compact)$.

A space *Y* is an *approximate neighborhood extension space* for *Q* (written $Y \in ANES(Q)$) if for all $\alpha \in Cov(Y)$, all $X \in Q$, all $K \subseteq X$ closed in *X*, and any continuous function $f_0 : K \to Y$, there exists a neighborhood U_{α} of *K* in *X* and a continuous function $f_{\alpha} : U_{\alpha} \to Y$ such that $f_{\alpha}|_{K}$ and f_0 are α . Let $X \in ANES(compact)$ be a uniform space and $F \in \mathcal{U}_c^{\kappa}(X,X)$ a compact upper semicontinuous map with closed values. Also let $\alpha \in Cov_X(K)$ where $K = \overline{F(X)}$. To show that F has a fixed point, it suffices (Theorem 1.4 and Remark 1.6) to show that F has an α -fixed point. Let $\alpha' = \alpha \cup \{X \setminus K\}$ and let K^* , s, and i be as in the proof of Theorem 2.3. Since $X \in ANES(compact)$, there exists an open neighborhood U_α of K^* in T and $f_\alpha : U_\alpha \to X$ a continuous function such that $f_\alpha|_{K^*}$ and s^{-1} are α' -close and as a result $f_\alpha s : K \to X$ and $i: K \to X$ are α -close. Let $j_{U_\alpha} : K^* \hookrightarrow U_\alpha$ be the natural imbedding. We know (see [5, page 426]) that $U_\alpha \in NES(compact)$. Also notice that $G_\alpha = j_{U_\alpha} sF f_\alpha \in \mathcal{U}_c^{\kappa}(U_\alpha, U_\alpha)$ is a compact upper semicontinuous map with closed values. We now *assume* that

$$G_{\alpha} = j_{U_{\alpha}} sF f_{\alpha} \in \mathcal{U}_{c}^{\kappa}(U_{\alpha}, U_{\alpha}) \text{ has a fixed point for each } \alpha \in \operatorname{Cov}_{X}(\overline{F(X)}).$$
(2.4)

We still have $\alpha \in \text{Cov}_X(K)$ fixed and we let x be a fixed point of G_{α} . Now let $y_{\alpha} = f_{\alpha}(x)$, so $y = f_{\alpha}j_{U_{\alpha}}sF(y)$, that is, $y = f_{\alpha}j_{U_{\alpha}}s(q)$ for some $q \in F(y)$. Now since $f_{\alpha}s$ and i are α close, there exists $U \in \alpha$ with $f_{\alpha}s(q) \in U$ and $i(q) \in U$, that is, $q \in U$ and $y = f_{\alpha}j_{U_{\alpha}}s(q) = f_{\alpha}s(q) \in U$ since $s(q) \in K^*$. Thus $q \in U$ and $y \in U$, so

$$y \in U, \quad F(y) \cap U \neq \emptyset \quad \text{since } q \in F(y).$$
 (2.5)

THEOREM 2.9. Let $X \in ANES(compact)$ be a uniform space and $F \in \mathfrak{U}_c^{\kappa}(X,X)$ a compact upper semicontinuous map with closed values. Also assume that (2.4) holds with K, s, U_{α} , $j_{U_{\alpha}}$, and f_{α} as described above. Then F has a fixed point.

Next we present continuation results for multimaps. Let Y be a completely regular topological space and U an open subset of Y. We consider a subclass \mathfrak{D} of \mathcal{U}_c^{κ} . This subclass must have the following property: for subsets X_1, X_2 , and X_3 of Hausdorff topological spaces, if $F \in \mathfrak{D}(X_2, X_3)$ is compact and $f \in \mathscr{C}(X_1, X_2)$, then $F \circ f \in \mathfrak{D}(X_1, X_3)$.

Definition 2.10. The map $F \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ if $F \in \mathfrak{D}(\overline{U}, Y)$ with F compact and $x \notin Fx$ for $x \in \partial U$; here \overline{U} (resp., ∂U) denotes the closure (resp., the boundary) of U in Y.

Definition 2.11. A map $F \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ is essential in $\mathfrak{D}_{\partial U}(\overline{U}, Y)$ if for every $G \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$, there exists $x \in U$ with $x \in Gx$.

THEOREM 2.12 (homotopy invariance). Let Y and U be as above. Suppose $F \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ is essential in $\mathfrak{D}_{\partial U}(\overline{U}, Y)$ and $H \in \mathfrak{D}(\overline{U} \times [0,1], Y)$ is a closed compact map with H(x,0) = F(x) for $x \in \overline{U}$. Also assume that

$$x \notin H_t(x)$$
 for any $x \in \partial U$, $t \in (0,1] (H_t(\cdot) = H(\cdot,t))$. (2.6)

Then H_1 has a fixed point in U.

Proof. Let

$$B = \{ x \in \overline{U} : x \in H_t(x) \text{ for some } t \in [0,1] \}.$$
(2.7)

When t = 0, $H_t = F$, and since $F \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ is essential in $\mathfrak{D}_{\partial U}(\overline{U}, Y)$, there exists $x \in U$ with $x \in Fx$. Thus $B \neq \emptyset$ and note that B is closed, in fact compact (recall that H is a closed, compact map). Notice also that (2.6) implies $B \cap \partial U = \emptyset$. Thus, since Y is

18 Fixed point theorems

completely regular, there exists a continuous function $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(B) = 1$. Define a map R by $R(x) = H(x,\mu(x))$ for $x \in \overline{U}$. Let $j : \overline{U} \to \overline{U} \times [0,1]$ be given by $j(x) = (x,\mu(x))$. Note that j is continuous, so $R = H \circ j \in \mathfrak{D}(\overline{U}, Y)$ (see the description of the class \mathfrak{D} before Definition 2.10). In addition, R is compact, and for $x \in \partial U$, we have $R(x) = H_0(x) = F(x)$. As a result, $R \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ with $R|_{\partial U} = F|_{\partial U}$. Now since F is essential in $\mathfrak{D}_{\partial U}(\overline{U}, Y)$, there exists $x \in U$ with $x \in R(x)$, that is, $x \in H_{\mu(x)}(x)$. Thus $x \in B$ and so $\mu(x) = 1$. Consequently, $x \in H_1(x)$.

Next we give an example of an essential map.

THEOREM 2.13 (normalization). Let Y and U be as above with $0 \in U$. Suppose the following conditions are satisfied:

for any map
$$\theta \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$$
 with $\theta|_{\partial U} = \{0\}$, the map J is in $\mathfrak{U}_c^{\kappa}(Y, Y)$;

$$J(x) = \begin{cases} \theta(x), & x \in \overline{U}, \\ \{0\}, & x \in Y \setminus \overline{U}, \end{cases}$$
(2.8)

and

$$J \in \mathcal{U}_{c}^{\kappa}(Y,Y) \text{ has a fixed point.}$$

$$(2.9)$$

Then the zero map is essential in $\mathfrak{D}_{\partial U}(\overline{U}, Y)$.

Remark 2.14. Note that examples of spaces *Y* for (2.9) to be true can be found in Theorems 2.1, 2.3, 2.6, 2.7, and 2.9 (notice that *J* is compact).

Proof of Theorem 2.13. Let $\theta \in \mathfrak{D}_{\partial U}(\overline{U}, Y)$ with $\theta|_{\partial U} = \{0\}$. We must show that there exists $x \in U$ with $x \in \theta(x)$. Define a map J as in (2.8). From (2.8) and (2.9), we know that there exists $x \in Y$ with $x \in J(x)$. Now if $x \notin U$, we have $x \in J(x) = \{0\}$, which is a contradiction since $0 \in U$. Thus $x \in U$ so $x \in J(x) = \theta(x)$.

Remark 2.15. Other homotopy and essential map results in a topological vector space setting can be found in [1, 2].

To conclude this paper, we discuss inward-type maps for a general class of admissible maps. The proof presented involves minor modifications of an argument due to Ben-El-Mechaiekh and Kryszewski [9]. Let *Y* be a normed space and $X \subseteq Y$, and consider a subclass $\Re(X, Y)$ of $\mathfrak{U}_c^{\kappa}(X, Y)$. This subclass must have the following properties: (i) if $X \subseteq Z \subseteq Y$ and if $I: X \hookrightarrow Z$ is an inclusion, t > 0, and $F \in \Re(X, Y)$ with $(I + tF)(X) \subseteq Z$, then $I + tF \in \mathfrak{U}_c^{\kappa}(X, Z)$, and (ii) each $F \in \Re(X, Y)$ is upper semicontinuous and compact valued.

In our next result we assume that Ω is a compact \mathscr{L} -retract [9], that is,

(A) Ω is a compact neighborhood retract of a normed space $E = (E, \|\cdot\|)$ and there exist $\beta > 0, r : B(\Omega, \beta) \to \Omega$ a retraction, and L > 0 such that $\|r(x) - x\| \le Ld(x; \Omega)$ for $x \in B(\Omega, \beta)$.

As a result,

$$\exists \eta > 0, \quad \eta < \frac{\beta}{2} \quad \text{with } ||r(x) - x|| < \eta \ \forall x \in B(\Omega, \eta).$$
(2.10)

THEOREM 2.16. Let $E = (E, \|\cdot\|)$ be a normed space and Ω as in assumption (A), and assume either (i) Ω is Schauder admissible or (ii) (2.2) holds with $X = \Omega$. In addition, suppose $F \in \Re(\Omega, E)$ with

$$F(x) \subseteq C_{\Omega}(x) \quad \forall x \in \Omega.$$
 (2.11)

Then there exists $x \in \Omega$ with $0 \in Fx$.

Remark 2.17. Here C_{Ω} is the Clarke tangent cone, that is,

$$C_{\Omega}(x) = \{ v \in E : c(x, v) = 0 \},$$
(2.12)

where

$$c(x,y) = \limsup_{\substack{y \to x, \ y \in \Omega \\ t \mid 0}} \frac{d(x+tv;\Omega)}{t}.$$
(2.13)

Remark 2.18. If Ω is a compact neighborhood retract, then of course $\Omega \in \text{NES}(\text{compact})$.

Remark 2.19. The proof is basically due to Ben-El-Mechaiekh and Kryszewski [9] and is based on [9, Lemma 5.1] (this lemma is a modification of a standard argument in the literature using partitions of unity).

Proof. Now [9, Lemma 5.1] (choose $\Psi(x) = \{x \in E : c(x, v) < \delta\}$ ($\delta > 0$ appropriately chosen), $\Phi(x) = co(F(x))$ and apply the argument in [9, page 4176]) implies that there exists M > 0 such that for each $x \in K$ and each $y \in Fx$, we have $||y|| \le M$. Choose $\tau > 0$ with $M\tau < \eta$ (here η is as in (2.10)) and a sequence $(t_n)_{n \in N}$ in $(0, \tau]$ with $t_n \downarrow 0$; here $N = \{1, 2, ...\}$. Define a sequence of maps ψ_n , $n \in N$, by

$$\psi_n(x) = r(x + t_n F(x)) \quad \text{for } x \in \Omega; \tag{2.14}$$

note that $d(x + t_n y; \Omega) < \eta$ for $x \in \Omega$ and $y \in F(x)$ since $M\tau < \eta$. Fix $n \in N$ and notice that $\psi_n \in \mathcal{A}_c^{\kappa}(\Omega, \Omega)$ is a compact map (note that Ω is compact and ψ_n is upper semicontinuous with compact values). Now Theorem 2.6 or Theorem 2.7 guarantees that there exists $x_n \in \Omega$ and $y_n \in Fx_n$ with

$$x_n = r(x_n + t_n y_n). (2.15)$$

Also notice from (2.15) and assumption (A) (note that $M\tau < \eta < \beta/2 < \beta$) that

$$t_n||y_n|| = ||x_n + t_n y_n - r(x_n + t_n y_n)|| \le Ld(x_n + t_n y_n; \Omega).$$
(2.16)

Now Ω is compact so $F(\Omega)$ is compact, and as a result, there exists a subsequence *S* of *N* with $(x_n, y_n) \in \operatorname{Graph} F$ and $(x_n, y_n) \rightarrow (\overline{x}, \overline{y})$ as $n \rightarrow \infty$ in *S*. Of course, since *F* is upper

semicontinuous, we have $\overline{y} \in F(\overline{x})$. Also from (2.11), we have $F(\overline{x}) \subseteq C_{\Omega}(\overline{x})$ and as a result, $\overline{y} \in F(\overline{x}) \subseteq C_{\Omega}(\overline{x})$, so $c(\overline{x}, \overline{y}) = 0$. Note also that

$$d(x_n + t_n y_n; \Omega) \le d(x_n + t_n \overline{y}; \Omega) + t_n ||y_n - \overline{y}||$$
(2.17)

and this together with (2.16) yields

$$\left|\left|\overline{y}\right|\right| = \limsup_{n \to \infty} \left|\left|y_n\right|\right| \le \limsup\left(\frac{Ld(x_n + t_n\overline{y};\Omega)}{t_n} + \left|\left|y_n - \overline{y}\right|\right|\right) = c(\overline{x},\overline{y}) = 0, \quad (2.18)$$

so $0 \in F(\overline{x})$.

References

- R. P. Agarwal and D. O'Regan, *Homotopy and Leray-Schauder principles for multi maps*, Nonlinear Anal. Forum 7 (2002), no. 1, 103–111.
- [2] _____, An essential map theory for \mathfrak{A}_c^{κ} and PK maps, Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 375–386.
- [3] R. P. Agarwal, D. O'Regan, and S. Park, *Fixed point theory for multimaps in extension type spaces*, J. Korean Math. Soc. **39** (2002), no. 4, 579–591.
- C. D. Aliprantis and K. C. Border, *Infinite-Dimensional Analysis*, Studies in Economic Theory, vol. 4, Springer-Verlag, Berlin, 1994.
- [5] H. Ben-El-Mechaiekh, *The coincidence problem for compositions of set-valued maps*, Bull. Austral. Math. Soc. 41 (1990), no. 3, 421–434.
- [6] _____, Spaces and maps approximation and fixed points, J. Comput. Appl. Math. 113 (2000), no. 1-2, 283–308.
- [7] H. Ben-El-Mechaiekh and P. Deguire, General fixed point theorems for nonconvex set-valued maps, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 6, 433–438.
- [8] _____, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170 (1992), no. 2, 477–500.
- H. Ben-El-Mechaiekh and W. Kryszewski, *Equilibria of set-valued maps on nonconvex domains*, Trans. Amer. Math. Soc. **349** (1997), no. 10, 4159–4179.
- [10] R. Engelking, *General Topology*, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.
- [11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications, vol. 495, Kluwer Academic Publishers, Dordrecht, 1999.
- [12] A. Granas, Fixed point theorems for the approximative ANR-s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1967), 15–19.
- [13] _____, Points Fixes pour les Applications Compactes: Espaces de Lefschetz et la Théorie de l'Indice, Séminaire de Mathématiques Supérieures, vol. 68, Presses de l'Université de Montréal, Montreal, 1980.
- [14] J. L. Kelley, General Topology, D. Van Nostrand, New York, 1955.

Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, Ireland *E-mail address*: donal.oregan@nuigalway.ie