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We present several new fixed point results for admissible self-maps in extension-type
spaces. We also discuss a continuation-type theorem for maps between topological spaces.

1. Introduction

In Section 2, we begin by presenting most of the up-to-date results in the literature [3,
5, 6, 7, 8, 12] concerning fixed point theory in extension-type spaces. These results are
then used to obtain a number of new fixed point theorems, one concerning approximate
neighborhood extension spaces and another concerning inward-type maps in extension-
type spaces. Our first result was motivated by ideas in [12] whereas the second result is
based on an argument of Ben-El-Mechaiekh and Kryszewski [9]. Also in Section 2 we
present a new continuation theorem for maps defined between Hausdorff topological
spaces, and our theorem improves results in [3].

For the remainder of this section we present some definitions and known results which
will be needed throughout this paper. Suppose X and Y are topological spaces. Given a
class � of maps, �(X ,Y) denotes the set of maps F : X → 2Y (nonempty subsets of Y)
belonging to �, and �c the set of finite compositions of maps in �. We let

�(�)= {Z : FixF �= ∅ ∀F ∈�(Z,Z)
}

, (1.1)

where FixF denotes the set of fixed points of F.
The class � of maps is defined by the following properties:

(i) � contains the class � of single-valued continuous functions;
(ii) each F ∈�c is upper semicontinuous and closed valued;

(iii) Bn ∈�(�c) for all n∈ {1,2, . . .}; here Bn = {x ∈Rn : ‖x‖ ≤ 1}.
Remark 1.1. The class � is essentially due to Ben-El-Mechaiekh and Deguire [7]. It in-
cludes the class of maps � of Park (� is the class of maps defined by (i), (iii), and (iv) each
F ∈�c is upper semicontinuous and compact valued). Thus if each F ∈�c is compact
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valued, the classes � and � coincide and this is what occurs in Section 2 since our maps
will be compact.

The following result can be found in [7, Proposition 2.2] (see also [11, page 286] for a
special case).

Theorem 1.2. The Hilbert cube I∞ (subset of l2 consisting of points (x1,x2, . . .) with |xi| ≤
1/2i for all i) and the Tychonoff cube T (Cartesian product of copies of the unit interval) are
in �(�c).

We next consider the class �κ
c (X ,Y) (resp., �κ

c (X ,Y)) of maps F : X → 2Y such that
for each F and each nonempty compact subset K of X , there exists a map G∈�c(K ,Y)
(resp., G∈�c(K ,Y)) such that G(x)⊆ F(x) for all x ∈ K .

Theorem 1.3. The Hilbert cube I∞ and the Tychonoff cube T are in �(�κ
c ) (resp., �(�κ

c )).

Proof. Let F ∈�κ
c (I∞,I∞). We must show that FixF �= ∅. Now, by definition, there exists

G ∈�c(I∞,I∞) with G(x) ⊆ F(x) for all x ∈ I∞, so Theorem 1.2 guarantees that there
exists x ∈ I∞ with x ∈Gx. In particular, x ∈ Fx so FixF �= ∅. Thus I∞ ∈�(�κ

c ). �

Notice that �κ
c is closed under compositions. To see this, letX , Y , and Z be topological

spaces, F1 ∈ �κ
c (X ,Y), F2 ∈ �κ

c (Y ,Z), and K a nonempty compact subset of X . Now
there existsG1 ∈�c(K ,Y) withG1(x)⊆ F1(x) for all x ∈ K . Also [4, page 464] guarantees
that G1(K) is compact so there exists G2 ∈�κ

c (G1(K),Z) with G2(y)⊆ F2(y) for all y ∈
G1(K). As a result,

G2G1(x)⊆ F2G1(x)⊆ F2F1(x) ∀x ∈ K (1.2)

and G2G1 ∈�c(X ,Z).
For a subset K of a topological space X , we denote by CovX(K) the set of all coverings

of K by open sets of X (usually we write Cov(K) = CovX(K)). Given a map F : X →
2X and α ∈ Cov(X), a point x ∈ X is said to be an α-fixed point of F if there exists a
member U ∈ α such that x ∈ U and F(x)∩U �= ∅. Given two maps F,G : X → 2Y and
α ∈ Cov(Y), F and G are said to be α-close if for any x ∈ X there exists Ux ∈ α, y ∈
F(x)∩Ux, and w ∈G(x)∩Ux.

The following results can be found in [5, Lemmas 1.2 and 4.7].

Theorem 1.4. LetX be a regular topological space and F : X → 2X an upper semicontinuous
map with closed values. Suppose there exists a cofinal family of coverings θ ⊆ CovX(F(X))
such that F has an α-fixed point for every α∈ θ. Then F has a fixed point.

Theorem 1.5. Let T be a Tychonoff cube contained in a Hausdorff topological vector space.
Then T is a retract of span(T).

Remark 1.6. From Theorem 1.4 in proving the existence of fixed points in uniform spaces
for upper semicontinuous compact maps with closed values, it suffices [6, page 298] to
prove the existence of approximate fixed points (since open covers of a compact set A
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admit refinements of the form {U[x] : x ∈ A} where U is a member of the uniformity
[14, page 199], so such refinements form a cofinal family of open covers). Note also that
uniform spaces are regular (in fact completely regular) [10, page 431] (see also [10, page
434]). Note in Theorem 1.4 if F is compact valued, then the assumption that X is regular
can be removed. For convenience in this paper we will apply Theorem 1.4 only when the
space is uniform.

2. Extension-type spaces

We begin this section by recalling some results we established in [3]. By a space we mean
a Hausdorff topological space. Let Q be a class of topological spaces. A space Y is an
extension space for Q (written Y ∈ ES(Q)) if for all X ∈Q and all K ⊆ X closed in X , any
continuous function f0 : K → Y extends to a continuous function f : X → Y .

Using (i) the fact that every compact space is homeomorphic to a closed subset of the
Tychonoff cube and (ii) Theorem 1.3, we established the following result in [3].

Theorem 2.1. Let X ∈ ES(compact) and F ∈�κ
c (X ,X) a compact map. Then F has a fixed

point.

Remark 2.2. If X ∈ AR (an absolute retract as defined in [11]), then of course X ∈
ES(compact).

A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if for all
α ∈ Cov(Y), all X ∈ Q, all K ⊆ X closed in X , and any continuous function f0 : K → Y ,
there exists a continuous function f : X → Y such that f |K is α-close to f0.

Theorem 2.3. Let X ∈ AES(compact) be a uniform space and F ∈�κ
c (X ,X) a compact

upper semicontinuous map with closed values. Then F has a fixed point.

Remark 2.4. This result was established in [3]. However, we excluded some assumptions
(X uniform and F upper semicontinuous with closed values) so the proof in [3] has to be
adjusted slightly.

Proof. Let α∈ CovX(K) where K = F(X). From Theorem 1.4 (see Remark 1.6), it suffices
to show that F has an α-fixed point. We know (see [13]) that K can be embedded as
a closed subset K∗ of T ; let s : K → K∗ be a homeomorphism. Also let i : K↩X and
j : K∗↩T be inclusions. Next let α′ = α∪{X\K} and note that α′ is an open covering of
X . Let the continuous map h : T → X be such that h|K∗ and s−1 are α′-close (guaranteed
since X ∈ AES(compact)). Then it follows immediately from the definition (note that
α′ = α∪ {X\K}) that hs : K → X and i : K → X are α-close. Let G = jsFh and notice
that G ∈ �κ

c (T ,T). Now Theorem 1.3 guarantees that there exists x ∈ T with x ∈ Gx.
Let y = h(x), and so, from the above, we have y ∈ h jsF(y), that is, y = h js(q) for some
q ∈ F(y). Now since hs and i are α-close, there exists U ∈ α with hs(q)∈U and i(q)∈U ,
that is, q ∈ U and y = h js(q) = hs(q) ∈ U since s(q) ∈ K∗. Thus q ∈ U and y ∈ U , so
y ∈U and F(y)∩U �= ∅ since q ∈ F(y). As a result, F has an α-fixed point. �

Definition 2.5. Let V be a uniform space. Then V is Schauder admissible if for every com-
pact subset K of V and every covering α∈ CovV (K), there exists a continuous function
(called the Schauder projection) πα : K →V such that
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(i) πα and i : K↩V are α-close;
(ii) πα(K) is contained in a subset C ⊆V with C ∈ AES(compact).

Theorem 2.6. Let V be a uniform space and Schauder admissible and F ∈�κ
c (V ,V) a

compact upper semicontinuous map with closed values. Then F has a fixed point.

Proof. Let K = F(X) and let α ∈ CovV (K). From Theorem 1.4 (see Remark 1.6), it suf-
fices to show that F has an α-fixed point. There exists πα : K →V (as described in Defini-
tion 2.5) and a subset C ⊆V with C ∈ AES(compact) such that (here Fα = παF)

Fα(V)= παF(V)⊆ C. (2.1)

Notice that Fα ∈�κ
c (C,C) is a compact upper semicontinuous map with closed (in fact

compact) values. So Theorem 2.3 guarantees that there exists x ∈ C with x ∈ παF(x), that
is, x = παq for some q ∈ F(x). Now Definition 2.5(i) guarantees that there exists U ∈ α
with πα(q) ∈ U and i(q) ∈ U , that is, x ∈ U and q ∈ U . Thus x ∈ U and F(x)∩U �= ∅
since q ∈ F(x), so F has an α-fixed point. �

A space Y is a neighborhood extension space for Q (written Y ∈ NES(Q)) if for all
X ∈ Q, all K ⊆ X closed in X , and any continuous function f0 : K → Y , there exists a
continuous extension f :U → Y of f0 over a neighborhood U of K in X .

Let X ∈NES(Q) and F ∈�κ
c (X ,X) a compact map. Now let K , K∗, s, and i be as in

the proof of Theorem 2.3. Let U be an open neighborhood of K∗ in T and let hU :U → X
be a continuous extension of is−1 : K∗ → X on U (guaranteed since X ∈NES(compact)).
Let jU : K∗↩U be the natural embedding, so hU jU = is−1. Now consider span(T) in a
Hausdorff locally convex topological vector space containing T . Now Theorem 1.5 guar-
antees that there exists a retraction r : span(T)→ T . Let i∗ : U↩ r−1(U) be an inclusion
and consider G= i∗ jUsFhUr. Notice that G∈�κ

c (r−1(U),r−1(U)). We now assume that

G∈�κ
c

(
r−1(U),r−1(U)

)
has a fixed point. (2.2)

Now there exists x ∈ r−1(U) with x ∈ Gx. Let y = hUr(x), so y ∈ hUri∗ jUsF(y), that is,
y = hUri∗ jUs(q) for some q ∈ F(y). Since hU(z)= is−1(z) for z ∈ K∗, we have

hUri
∗ jUs(q)= (hUri∗ jU)s(q)= i(q), (2.3)

so y ∈ F(y).

Theorem 2.7. LetX ∈NES(compact) and F ∈�κ
c (X ,X) a compact map. Also assume that

(2.2) holds with K , K∗, s, i, i∗, jU , hU , and r as described above. Then F has a fixed point.

Remark 2.8. Theorem 2.7 was also established in [3]. Note that if F is admissible in the
sense of Gorniewicz and the Lefschetz set Λ(F) �= {0}, then we know [11] that (2.2) holds.
Note that if X ∈ ANR (see [11]), then of course X ∈NES(compact).

A spaceY is an approximate neighborhood extension space forQ (writtenY∈ANES(Q))
if for all α∈ Cov(Y), all X ∈Q, all K ⊆ X closed in X , and any continuous function f0 :
K → Y , there exists a neighborhood Uα of K in X and a continuous function fα :Uα→ Y
such that fα|K and f0 are α.
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LetX ∈ ANES(compact) be a uniform space and F ∈�κ
c (X ,X) a compact upper semi-

continuous map with closed values. Also let α∈ CovX(K) where K = F(X). To show that
F has a fixed point, it suffices (Theorem 1.4 and Remark 1.6) to show that F has an α-fixed
point. Let α′ = α∪{X\K} and let K∗, s, and i be as in the proof of Theorem 2.3. Since
X ∈ ANES(compact), there exists an open neighborhood Uα of K∗ in T and fα :Uα→ X
a continuous function such that fα|K∗ and s−1 are α′-close and as a result fαs : K → X and
i : K → X are α-close. Let jUα : K∗↩Uα be the natural imbedding. We know (see [5, page
426]) thatUα ∈NES(compact). Also notice thatGα = jUαsF fα ∈�κ

c (Uα,Uα) is a compact
upper semicontinuous map with closed values. We now assume that

Gα = jUαsF fα ∈�κ
c

(
Uα,Uα

)
has a fixed point for each α∈ CovX

(
F(X)

)
. (2.4)

We still have α∈ CovX(K) fixed and we let x be a fixed point of Gα. Now let yα = fα(x),
so y = fα jUαsF(y), that is, y = fα jUαs(q) for some q ∈ F(y). Now since fαs and i are α-
close, there existsU ∈ α with fαs(q)∈U and i(q)∈U , that is, q ∈U and y = fα jUαs(q)=
fαs(q)∈U since s(q)∈ K∗. Thus q ∈U and y ∈U , so

y ∈U , F(y)∩U �= ∅ since q ∈ F(y). (2.5)

Theorem 2.9. Let X ∈ ANES(compact) be a uniform space and F ∈�κ
c (X ,X) a compact

upper semicontinuous map with closed values. Also assume that (2.4) holds with K , s, Uα,
jUα , and fα as described above. Then F has a fixed point.

Next we present continuation results for multimaps. Let Y be a completely regular
topological space and U an open subset of Y . We consider a subclass � of �κ

c . This sub-
class must have the following property: for subsets X1, X2, and X3 of Hausdorff topologi-
cal spaces, if F ∈�(X2,X3) is compact and f ∈�(X1,X2), then F ◦ f ∈�(X1,X3).

Definition 2.10. The map F ∈�∂U(U ,Y) if F ∈�(U ,Y) with F compact and x /∈ Fx for
x ∈ ∂U ; here U (resp., ∂U) denotes the closure (resp., the boundary) of U in Y .

Definition 2.11. A map F∈�∂U(U ,Y) is essential in �∂U(U ,Y) if for everyG∈�∂U(U ,Y)
with G|∂U = F|∂U , there exists x ∈U with x ∈Gx.

Theorem 2.12 (homotopy invariance). Let Y and U be as above. Suppose F ∈�∂U(U ,Y)
is essential in �∂U(U ,Y) and H ∈�(U × [0,1],Y) is a closed compact map with H(x,0)=
F(x) for x ∈U . Also assume that

x /∈Ht(x) for any x ∈ ∂U , t ∈ (0,1]
(
Ht(·)=H(·, t)). (2.6)

Then H1 has a fixed point in U .

Proof. Let

B = {x ∈U : x ∈Ht(x) for some t ∈ [0,1]
}
. (2.7)

When t = 0,Ht = F, and since F ∈�∂U(U ,Y) is essential in �∂U(U ,Y), there exists x ∈U
with x ∈ Fx. Thus B �= ∅ and note that B is closed, in fact compact (recall that H is
a closed, compact map). Notice also that (2.6) implies B ∩ ∂U = ∅. Thus, since Y is
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completely regular, there exists a continuous function µ : U → [0,1] with µ(∂U)= 0 and
µ(B)= 1. Define a map R by R(x)=H(x,µ(x)) for x ∈U . Let j :U →U × [0,1] be given
by j(x)= (x,µ(x)). Note that j is continuous, so R=H ◦ j ∈�(U ,Y) (see the description
of the class � before Definition 2.10). In addition, R is compact, and for x ∈ ∂U , we
have R(x)=H0(x)= F(x). As a result, R∈�∂U(U ,Y) with R|∂U = F|∂U . Now since F is
essential in �∂U(U ,Y), there exists x ∈U with x ∈ R(x), that is, x ∈Hµ(x)(x). Thus x ∈ B
and so µ(x)= 1. Consequently, x ∈H1(x). �

Next we give an example of an essential map.

Theorem 2.13 (normalization). Let Y and U be as above with 0∈U . Suppose the follow-
ing conditions are satisfied:

for any map θ ∈�∂U(U ,Y) with θ|∂U = {0}, the map J is in �κ
c (Y ,Y);

J(x)=


θ(x), x ∈U ,

{0}, x ∈ Y\U ,

(2.8)

and

J ∈�κ
c (Y ,Y) has a fixed point. (2.9)

Then the zero map is essential in �∂U(U ,Y).

Remark 2.14. Note that examples of spaces Y for (2.9) to be true can be found in Theo-
rems 2.1, 2.3, 2.6, 2.7, and 2.9 (notice that J is compact).

Proof of Theorem 2.13. Let θ ∈�∂U(U ,Y) with θ|∂U = {0}. We must show that there ex-
ists x ∈U with x ∈ θ(x). Define a map J as in (2.8). From (2.8) and (2.9), we know that
there exists x ∈ Y with x ∈ J(x). Now if x /∈U , we have x ∈ J(x)= {0}, which is a contra-
diction since 0∈U . Thus x ∈U so x ∈ J(x)= θ(x). �

Remark 2.15. Other homotopy and essential map results in a topological vector space
setting can be found in [1, 2].

To conclude this paper, we discuss inward-type maps for a general class of admissible
maps. The proof presented involves minor modifications of an argument due to Ben-
El-Mechaiekh and Kryszewski [9]. Let Y be a normed space and X ⊆ Y , and consider
a subclass �(X ,Y) of �κ

c (X ,Y). This subclass must have the following properties: (i) if
X ⊆ Z ⊆ Y and if I : X↩Z is an inclusion, t > 0, and F ∈�(X ,Y) with (I + tF)(X)⊆ Z,
then I + tF ∈�κ

c (X ,Z), and (ii) each F ∈�(X ,Y) is upper semicontinuous and compact
valued.

In our next result we assume that Ω is a compact �-retract [9], that is,

(A) Ω is a compact neighborhood retract of a normed space E = (E,‖ · ‖) and there
exist β > 0, r : B(Ω,β)→Ω a retraction, and L > 0 such that ‖r(x)− x‖ ≤ Ld(x;Ω)
for x ∈ B(Ω,β).
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As a result,

∃η > 0, η <
β

2
with

∥∥r(x)− x∥∥ < η ∀x ∈ B(Ω,η). (2.10)

Theorem 2.16. Let E = (E,‖ · ‖) be a normed space and Ω as in assumption (A), and as-
sume either (i) Ω is Schauder admissible or (ii) (2.2) holds with X =Ω. In addition, suppose
F ∈�(Ω,E) with

F(x)⊆ CΩ(x) ∀x ∈Ω. (2.11)

Then there exists x ∈Ω with 0∈ Fx.

Remark 2.17. Here CΩ is the Clarke tangent cone, that is,

CΩ(x)= {v ∈ E : c(x,v)= 0
}

, (2.12)

where

c(x, y)= limsup
y→x, y∈Ω

t↓0

d(x+ tv;Ω)
t

. (2.13)

Remark 2.18. If Ω is a compact neighborhood retract, then of course Ω∈NES(compact).

Remark 2.19. The proof is basically due to Ben-El-Mechaiekh and Kryszewski [9] and is
based on [9, Lemma 5.1] (this lemma is a modification of a standard argument in the
literature using partitions of unity).

Proof. Now [9, Lemma 5.1] (chooseΨ(x)= {x ∈ E : c(x,v) < δ} (δ > 0 appropriately cho-
sen), Φ(x) = co(F(x)) and apply the argument in [9, page 4176]) implies that there ex-
ists M > 0 such that for each x ∈ K and each y ∈ Fx, we have ‖y‖ ≤M. Choose τ > 0
with Mτ < η (here η is as in (2.10)) and a sequence (tn)n∈N in (0,τ] with tn ↓ 0; here
N = {1,2, . . .}. Define a sequence of maps ψn, n∈N , by

ψn(x)= r(x+ tnF(x)
)

for x ∈Ω; (2.14)

note that d(x+ tn y;Ω) < η for x ∈Ω and y ∈ F(x) sinceMτ < η. Fixn∈N and notice that
ψn ∈�κ

c (Ω,Ω) is a compact map (note that Ω is compact and ψn is upper semicontinu-
ous with compact values). Now Theorem 2.6 or Theorem 2.7 guarantees that there exists
xn ∈Ω and yn ∈ Fxn with

xn = r
(
xn + tn yn

)
. (2.15)

Also notice from (2.15) and assumption (A) (note that Mτ < η < β/2 < β) that

tn
∥∥yn∥∥= ∥∥xn + tn yn− r

(
xn + tn yn

)∥∥≤ Ld(xn + tn yn;Ω
)
. (2.16)

Now Ω is compact so F(Ω) is compact, and as a result, there exists a subsequence S of N
with (xn, yn) ∈ GraphF and (xn, yn)→ (x, y) as n→∞ in S. Of course, since F is upper
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semicontinuous, we have y ∈ F(x). Also from (2.11), we have F(x) ⊆ CΩ(x) and as a
result, y ∈ F(x)⊆ CΩ(x), so c(x, y)= 0. Note also that

d
(
xn + tn yn;Ω

)≤ d(xn + tn y;Ω
)

+ tn
∥∥yn− y

∥∥ (2.17)

and this together with (2.16) yields

∥∥y∥∥= limsup
n→∞

∥∥yn∥∥≤ limsup
(
Ld
(
xn + tn y;Ω

)
tn

+
∥∥yn− y

∥∥)= c(x, y
)= 0, (2.18)

so 0∈ F(x). �
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