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We introduce a generalized form of the Fan-Browder fixed point theorem and apply it to
game-theoretic and economic equilibrium existence problem under the more generous
restrictions. Consequently, we state some of recent results of Urai (2000) in more general
and efficient forms.

1. Introduction

In 1961, using his own generalization of the Knaster-Kuratowski-Mazurkiewicz (simply,
KKM) theorem, Fan [2] established an elementary but very basic “geometric” lemma
for multimaps and gave several applications. In 1968, Browder [1] obtained a fixed point
theorem which is the more convenient form of Fan’s lemma. With this result alone, Brow-
der carried through a complete treatment of a wide range of coincidence and fixed point
theory, minimax theory, variational inequalities, monotone operators, and game theory.
Since then, this result is known as the Fan-Browder fixed point theorem, and there have
appeared numerous generalizations and new applications. For the literature, see Park
[7, 8, 9].

Recently, Urai [12] reexamined fixed point theorems for set-valued maps from a uni-
fied viewpoint on local directions of the values of a map on a subset of a topological
vector space to itself. Some basic fixed point theorems were generalized by Urai so that
they could be applied to game-theoretic and economic equilibrium existence problem
under some generous restrictions.

However, in view of the recent development of the KKM theory, we found that some
(not all) of Urai’s results can be stated in a more general and efficient way. In fact, compact
convex subsets of Hausdorff topological vector spaces that appeared in some of Urai’s
results can be replaced by mere convex spaces with finite open (closed) covers. Moreover,
Urai’s main tools are the partition of unity argument on such covers, where the Hausdorff

compactness is essential, and the Brouwer fixed point theorem.
In the present paper, we introduce a generalized form of the Fan-Browder fixed point

theorem, which is the main tool of our work. Using this theorem instead of Urai’s tools,
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we show that a number of Urai’s results [12] (e.g., Theorem 1 for the case (K∗), Theorem
2 for the case (NK∗), Theorem 3 for the case (K∗), Theorem 19, and their Corollaries)
can be stated in more generalized and efficient forms.

2. Preliminaries

A multimap (or simply, a map) F : X � Y is a function from a set X into the power
set 2Y of the set Y ; that is, a function with the values F(x) ⊂ Y for x ∈ X and the fibers
F−(y)= {x ∈ X | y ∈ F(x)} for y ∈ Y . For A⊂ X , let F(A) :=⋃{F(x) | x ∈A}.

For a set D, let 〈D〉 denote the set of nonempty finite subsets of D.
Let X be a subset of a vector space and D a nonempty subset of X . We call (X ,D) a

convex space if coD ⊂ X and X has a topology that induces the Euclidean topology on
the convex hulls of any N ∈ 〈D〉; see Lassonde [5] and Park [7]. If X =D is convex, then
X = (X ,X) becomes a convex space in the sense of Lassonde [4].

The following version of the KKM theorem for convex spaces is known.

Theorem 2.1. Let (X ,D) be a convex space and F :D� X a multimap such that

(1) F(z) is open (resp., closed) for each z ∈D;
(2) F is a KKM map (i.e., coN ⊂ F(N) for each N ∈ 〈D〉).

Then {F(z)}z∈D has the finite intersection property. (More precisely, for anyN ∈ 〈D〉, coN ∩
[
⋂
z∈N F(z)] �= ∅.)

The closed version is due to Fan [2] and the open version is motivated from the works
of Kim [3] and Shih and Tan [10], who showed that the original KKM theorem holds for
open-valued KKM maps on a simplex. Later, Lassonde [5] showed that the closed and
open versions of Theorem 2.1 can be derived from each other. More general versions of
Theorem 2.1 were recently known; for example, see Park [8, 9].

From Theorem 2.1, we deduce the following result.

Theorem 2.2. Let (X ,D) be a convex space and P : X � D a multimap. If there exist
z1,z2, . . . ,zn ∈D and nonempty open (resp., closed) subsetsGi ⊂ P−(zi) for each i= 1,2, . . . ,n
such that co{z1,z2, . . . ,zn} ⊂

⋃n
i=1Gi, then the map coP : X � X has a fixed point x0 ∈ X

(i.e., x0 ∈ coP(x0)).

Proof. Let Y := co{z1,z2, . . . ,zn} and D′ := {z1,z2, . . . ,zn} ⊂ D and consider the convex
space (Y ,D′). Define a map F : D′ � Y by F(zi) := Y\Gi for each zi ∈ D′. Then each
F(zi) is closed (resp., open) in Y , and

n⋂

i=1

F
(
zi
)= Y\

n⋃

i=1

Gi = Y\Y =∅. (2.1)

Therefore, the family {F(z)}z∈D′ does not have the finite intersection property, and hence,
F is not a KKM map by Theorem 2.1. Thus, there exists an N ∈ 〈D′〉 such that coN �
F(N) =⋃{Y\Gi | zi ∈ N}. Hence, there exists an x0 ∈ coN such that x0 ∈ Gi ⊂ P−(zi)
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for each zi ∈ N ; that is, N ⊂ P(x0). Therefore, x0 ∈ coN ⊂ coP(x0). This completes our
proof. �

Note that Theorem 2.2 is actually equivalent to Theorem 2.1.

Proof of Theorem 2.1 using Theorem 2.2. Suppose that there exists M ∈ 〈D〉 such that⋂
z∈M F(z)=∅ under the hypothesis of Theorem 2.1. Let M := {z1,z2, . . . ,zn} and define

P : X �D by P−(z) := X\F(z) for z ∈D. Then for each i, 1≤ i≤ n, the setGi := P−(zi)=
X\F(zi) is closed (resp., open). Moreover, coM ⊂ X = X\⋂z∈M F(z)=⋃z∈M(X\F(z))=⋃n
i=1Gi. Therefore, by Theorem 2.2, there exists an x0 ∈ X such that x0 ∈ coP(x0). Hence,

there exists N := {y1, y2, . . . , ym} ⊂ P(x0) such that x0 ∈ coN . Since yj ∈ P(x0) for all j,
1 ≤ j ≤ m, we have x0 ∈ P−(yj) = X\F(yj) on x0 /∈ F(yj). So x0 /∈ F(N) and we have
x0 ∈ coN �⊂ F(N). Then F can not be a KKM map, a contradiction. �

In our previous work (Sy and Park [11]), Theorem 2.2 is applied to obtain several
forms of the Fan-Browder fixed point theorem, other (approximate) fixed point theo-
rems, and so on.

In fact, from Theorem 2.2, we can easily deduce the following Fan-Browder fixed point
theorem.

Corollary 2.3 (Browder [1, Theorem 1]). Let X be a nonempty compact convex subset of
a Hausdorff topological vector space E and let φ be a nonempty convex-valued multimap on
X to X . If for all y ∈ X , φ−(y) is open in X , then φ has a fixed point.

Proof. Put X = D and coP = P = φ. Since {φ−(y)}y∈X covers the compact set X , there
exists z1,z2, . . . ,zn ∈ X such that

⋃n
i=1φ

−(zi)= X ⊃ co{z1,z2, . . . ,zn}. Therefore, by putting
Gi = φ−(zi)= P−(zi) in Theorem 2.2, we have the conclusion. �

Remark 2.4. Browder obtained his theorem by adopting the partition of unity argument
subordinated to a finite open cover of the Hausdorff compact subset X and applying the
Brouwer fixed point theorem. In our method using the KKM theorem, Hausdorffness is
removed and the compactness is replaced by a finite open (resp., closed) cover.

From now on, we consider mainly the case X = D for simplicity. The following is a
basis of some results of Urai [12].

Theorem 2.5. Let X be a convex space, T : X � X a map with convex values, and KT :=
{x ∈ X | x /∈ T(x)}. If there exist z1,z2, . . . ,zn ∈ X and nonempty open (resp., closed) subsets
Gi ⊂ T−(zi) for each i= 1,2, . . . ,n such that KT ⊂

⋃n
i=1Gi, then T has a fixed point.

Proof. Suppose that T has no fixed point, that is, X = KT . Then, by Theorem 2.2, T has a
fixed point, a contradiction. �

3. Fixed point theorems of the Urai type

In this section, we derive some of Urai’s results from Theorem 2.5.

Theorem 3.1. Let X be a convex space, Φ : X � X a map with convex values, and KΦ :=
{x ∈ X | x /∈Φ(x)}. Suppose that
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(I) for each x ∈ KΦ, there exists an open (resp., a closed) subset U(x) of X containing x
and a point yx ∈ X such that

z ∈U(x)∩KΦ =⇒ yx ∈Φ(z). (3.1)

If KΦ is covered by finitely many U(x)’s, then Φ has a fixed point.

Proof. Suppose that X = KΦ. Then for any x ∈ KΦ, by (I), we have yx ∈ Φ(z) or z ∈
Φ−(yx) for all z ∈U(x), that is,U(x)⊂Φ−(yx). We may assume thatX=KΦ =

⋃n
i=1U(xi)

for some {x1,x2, . . . ,xn} ⊂ KΦ. Note that U(xi) ⊂Φ−(yxi) for all i = 1,2, . . . ,n. Put Gi :=
U(xi) and zi := yxi ∈ X . Then, by Theorem 2.5, Φ has a fixed point, which contradicts
X = KΦ. Hence, KΦ � X and Φ has a fixed point. �

Corollary 3.2. Let X be a convex space, φ : X � X a map with nonempty values, and
Kφ := {x ∈ X | x /∈ φ(x)}. Suppose that

(K∗) there is a map Φ : X � X with convex values such that for each x ∈ Kφ, there exist
an open (resp., a closed) subset U(x) of X containing x and a point yx ∈ X such that

z ∈U(x)∩Kφ =⇒ z /∈Φ(z), yx ∈Φ(z). (3.2)

If Kφ is covered by finitely many U(x)’s, then φ has a fixed point.

Proof. Suppose that X = Kφ. Then Φ satisfies the requirement of (I) of Theorem 3.1, and
hence, Φ has a fixed point x0 ∈ X . On the other hand, by (K∗), for each x ∈ X = Kφ,
we should have x /∈ Φ(x). This contradiction leads to X �⊃ Kφ. Therefore, we have the
conclusion. �

Remarks 3.3. (1) In case Φ= φ, Corollary 3.2 reduces to Theorem 3.1.
(2) Urai (see [12, Theorem 1 for the case (K∗)]) obtained Corollary 3.2 under the

restriction that

(i) X is a compact convex subset of a Hausdorff topological vector space,
(ii) U(x) is open,

(iii) for each z ∈U(x) as in (K∗),

z ∈ Kφ =⇒ φ(z)⊂Φ(z), z /∈Φ(z), yx ∈Φ(z). (3.3)

Corollary 3.4. Let X be a convex subset of a real Hausdorff topological vector space E, E∗

the algebraic dual of E, and φ : X � X a map with nonempty values. Suppose that

(K∗1 ) for each x ∈ Kφ := {x ∈ X | x /∈ φ(x)}, there exists a vector px ∈ E∗ such that φ(x)−
x ⊂ {v ∈ E | 〈px,v〉 > 0}, and, for each x ∈ Kφ, there exist a point yx ∈ X and an
open (resp., a closed) subset U(x) containing x such that

z ∈U(x)∩Kφ =⇒
〈
pz, yx − z〉 > 0. (3.4)

If X is covered by finitely many U(x)’s for x ∈ Kφ, then φ has a fixed point.
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Proof. Define Φ : X � X by Φ(x) := {y ∈ X | 〈px, y− x〉 > 0} if x ∈ Kφ and Φ(x)=∅ if
x ∈ X\Kφ. Then Φ has convex values. Then, by (K∗1 ), for each x ∈ Kφ, there exist a subset
U(x) containing x and a point yx ∈ X such that

z ∈U(x)∩Kφ =⇒
〈
pz, yx − z〉 > 0⇐⇒ yx ∈Φ(z), z /∈Φ(z). (3.5)

Therefore, condition (K∗) is satisfied. Hence, by Corollary 3.2, φ has a fixed point. �

Remark 3.5. In case where X is compact and each U(x) is open, Corollary 3.4 reduces to
Urai [12, Corollary 1.1 for the case (K2)= (K∗1 )].

Corollary 3.6. Let X be a convex space and ψ : X � X . Suppose that a map ψ : X � X
such that

x /∈ ψ(x)=⇒ x /∈ φ(x), φ(x) �= ∅, (3.6)

satisfies condition (K∗) forKψ = {x ∈ X | x /∈ ψ(x)}. IfKψ is covered by finitely manyU(x)’s
for x ∈ Kφ, then ψ has a fixed point.

Proof. Suppose that ψ does not have a fixed point. Then ψ is nonempty valued and does
not have a fixed point. Moreover, X = Kψ ⊂ Kφ ⊂ X and hence φ satisfies condition (K∗)
even for Kφ. Now by applying Corollary 3.2 to nonempty-valued map φ, we have a fixed
point of φ, a contradiction. �

Remark 3.7. In case where X is compact and each U(x) is open, Corollary 3.6 reduces to
Urai [12, Corollary 1.2 for the case (K2)= (K∗)].

Theorem 3.8. Let I be a set. For each i ∈ I , let Xi be a convex space, Φi :
∏

i∈I Xi � Xi
a map with convex values, Φ=∏i∈IΦi : X � X , and KΦ := {x ∈ X | x /∈Φ(x)}. Suppose
that

(II) for each x ∈ KΦ, there exist at least one i∈ I , an element yx ∈ Xi, and an open (resp.,
a closed) subset U(x) of X containing x such that

z ∈U(x)∩KΦ =⇒ yx ∈Φi(z). (3.7)

If KΦ is covered by finitely many U(x)’s, then Φ has a fixed point.

Proof. Suppose that X = KΦ. Then there exist a finite set {x1,x2, . . . ,xk} ⊂ X , a cover
{U(x1),U(x2), . . . ,U(xk)} of X , and a finite sequence yx1

i1 , yx2
i2 , . . . , yxkik for some {i1, i2, . . . ,

ik} ⊂ I satisfying condition (II) for maps Φi1 ,Φi2 , . . . ,Φik . For each x ∈ X , let J(x) := {im |
x ∈ U(xm)} ⊂ I and N(x) := {m | x ∈ U(xm)} ⊂ {1,2, . . . ,m}. Let Φ : X � X be a map
defined by

Φ(x) :=
∏

i∈J(x)

Φi(x)×
∏

i∈I\J(x)

Xi (3.8)

for x ∈ X . For each x ∈ X , define y(x) := (yj) j∈I ∈ X by letting
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(1) yj be a yxmim for some im = j, m∈N(x), for j ∈ J(x);
(2) yj be an arbitrary element of Φ j(x) for j /∈ J(x).

Then, by considering the open (resp., closed) neighborhood
⋂
m∈N(x)U(xm) of x in X , the

map Φ satisfies condition (I) of Theorem 3.1.
In fact, for each x ∈ X , for each z ∈ ⋂m∈N(x)U(xm), and for each j ∈ {i1, i2, . . . , ik},

y(x) = (yj) j∈I is an element of Φ(z) since, for each j ∈ J(x), yj ∈ Φi(x) for all z ∈⋂
m∈N(x)U(xm).
Therefore, Φ has a fixed point by Theorem 3.1, and we have a contradiction. �

Corollary 3.9. Let I be a set. For each i∈ I , letXi be a convex space, φi : X =∏i∈I Xi � Xi
a map with nonempty values, φ =∏i∈I φi : X � X , and Kφ := {x ∈ X : x /∈ φ(x)}. Suppose
that

(NK∗) for each i ∈ I , there is a map Φi : X � Xi such that for each x = (xj) j∈I ∈ X , xi /∈
φi(x)⇒ xi /∈ Φi(x); and for each x ∈ Kφ, there exist at least one i ∈ I , an element
yx ∈ Xi, and an open (resp., a closed) subset U(x) of X containing x such that

z ∈U(x)∩Kφ =⇒ yx ∈Φi(z). (3.9)

If Kφ is covered by finitely many U(x)’s, then φ has a fixed point.

Proof. Suppose that X = Kφ. Then Φ as in Theorem 3.8 satisfies the requirement (II) of
Theorem 3.8, and hence, Φ has a fixed point. On the other hand, by (NK∗), for each
x ∈ X = Kφ, we should have x /∈Φ(x). This is a contradiction. �

Remark 3.10. (1) In case Φ= φ, Corollary 3.9 reduces to Theorem 3.8.
(2) Urai (see [12, Theorem 2 for the case (NK∗)]) obtained Corollary 3.9 under more

restrictions.

Corollary 3.11. Let I be a set. For each i∈ I , letXi be a convex space and ψi :
∏

i∈I Xi � Xi
a map. Define ψ =∏i∈I ψi : X � X . Suppose that for each i ∈ I , a nonempty-valued map
φi : X � Xi exists such that for each x = (xj) j∈I ,

xi /∈ ψi(x)=⇒ xi /∈ φi(x) (3.10)

(typically, each φi may be chosen as a selection of ψi when ψi is nonempty-valued), and
that each φi satisfy condition (NK∗) in Corollary 3.9 for Kψ = {x ∈ X | x /∈ ψ(x)}. If Kψi is
covered by finitely many U(x)’s, then Φ has a fixed point.

Proof. Suppose that ψ does not have a fixed point. Then φ =∏i∈I φi does not have a fixed
point either. Hence, we have X = Kφ = Kψ ⊂ {x ∈ K | x /∈∏i∈I φi(x)} ⊂ X so that each
φi satisfies condition (NK∗) in Corollary 3.9 even when we take Kφ = {x ∈ X | x /∈ φ(x)}
instead of Kψ = {x ∈ X | x /∈ ψ(x)}. Since φ is nonempty-valued, by Corollary 3.9, φ has
a fixed point, a contradiction. �

Remark 3.12. In case X is compact and each U(x) is open, Corollary 3.11 reduces to Urai
[12, Corollary 2.1 for the case (NK∗)].
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4. Nash equilibrium existence theorems

In this section, we indicate that theorems in Section 3 can be applied to some economic
equilibrium problems as in Urai [12, Sections 3 and 4]. We give generalized forms of only
two theorems of Urai [12, Theorems 2 and 4].

Let I be a nonempty set of players and, for each i∈ I , Xi the strategy set of the player i,
where Xi is merely assumed to be a convex space. The payoff structure for games is given
as preference maps Pi : X =∏ j∈I Xj � Xi, i ∈ I , satisfying for each x = (xj) j∈I ∈ X , xi /∈
Pi(x) (the irreflexivity) for all i ∈ I . The set Pi(x) may be empty and interpreted as the
set of all strategies for player i which is better than xi if the strategies of other players
(xj) j∈I , j �=i are fixed.

A strategic form game is denoted by (Xi,Pi)i∈I in which a sequence of strategies
(xi)i∈I ∈ X is called a Nash equilibrium if Pi((xi)i∈I)=∅ for all i∈ I .

When I is a singleton, the Nash equilibrium is just a maximal element for the relation
Pi on Xi.

Theorem 4.1 (maximal element existence). Let X be a convex space and P : X � X a map
such that for all x ∈ X , x /∈ P(x). Suppose that a map φ : X � X satisfies condition (I) for
KP := {x ∈ X | P(x) �= ∅} in Theorem 3.1 and that for any x ∈ X ,

P(x) �= ∅=⇒ φ(x) �= ∅, x /∈ φ(x). (4.1)

IfKP is covered by finitely manyU(x)’s, then there is a maximal element x∗ ∈ X with respect
to P, that is, P(x∗)=∅.

Proof. Assume the contrary, that is, for all x ∈ X , P(x) �= ∅. Then {x ∈ X | x /∈ P(x)} =
X = Kp := {x ∈ X | P(x) �= ∅}. Therefore, P satisfies all the requirements for ψ men-
tioned in Theorem 3.1 so that P has a fixed point, a contradiction. �

Remark 4.2. In case when X is a compact convex subset of a Hausdorff topological vector
space, Theorem 4.1 extends Urai [12, Theorem 3 for the case (K∗)]. Moreover, the special
case of Theorem 4.1 in which P = φ satisfies condition (I), gives us a generalization of
Yannelis and Prabhakar [13, Corollary 5.1] on the maximal element existence.

As Theorem 3.1 gives the maximal element existence, Theorem 3.8 gives the following
Nash equilibrium existence.

Theorem 4.3 (Nash equilibrium existence). For a strategic form game (Xi,Pi)i∈I , the Nash
equilibrium exists whenever the following conditions are satisfied:

(A1) for each i∈ I , X is a nonempty convex space;

(A2) for each i∈ I , Pi : X =∏ j∈I Xj � Xi, satisfying for all x = (x
j
j ) j∈I ∈ X , xi ∈ Pi(x);

(A3) for each Pi, a nonempty-valued map φi : X � Xi is defined such that for all x =
(xj) j∈I ∈ X ,

Pi(x) �= ∅ =⇒ xi /∈ φi(x); (4.2)
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(A4) for each i ∈ I , φi fulfills condition (II) in Theorem 3.8 for K = {x ∈ X | Pi(x) �=
∅ for some i};

(∗) X is covered by finitely many U(x)’s.

Proof. Suppose the contrary, that is, for each x ∈ X , there is at least one i ∈ I such that
Pi(x) �= ∅. Then we have {x ∈ X | x /∈∏i∈I Pi(x)} = X={x ∈ X | Pi(x) �=∅ for some i}=
K ⊂ X . Hence, Pi, i∈ I , satisfies all the requirements for ψi, i∈ I , in Corollary 3.11 with
respect to condition (II) (instead of (NK∗)), so that P =∏i∈I Pi has a fixed point, which
violates condition (A2). �

Remark 4.4. Urai [12, Theorem 4] is a particular form of Theorem 4.3 under the restric-
tion that

(1) each Xi is a compact convex subset of a Hausdorff topological vector space,
(2) U(x) is open,
(3) assume (NK∗) instead of condition (II).

Similarly, some of other results in Urai [12, Sections 3 and 4] might be improved by
following our method, and we will not repeat.

5. Comments on some other results in Urai [12]

Urai [12, page 109] stated that the Fan-Browder fixed point theorem follows from the case
(K∗) of [12, Theorem 1] (hence from Corollary 3.2). Similarly, we obtain the following
form of Theorem 2.2 (or Corollary 2.3) from Corollary 3.2.

Theorem 5.1. Let X be a convex space and φ : X � X a map with nonempty convex values.
If there exists {y1, y2, . . . , yn} ⊂ X such that φ−(yi) is open (resp., closed) for each i, 1≤ i≤ n,
and X =⋃n

i=1φ
−(yi), then φ has a fixed point.

Proof. We will use Corollary 3.2 with Φ= φ. For each x ∈ X , there exist a subset U(x) :=
φ−(yi) containing x and a point yx for some i. Then

z ∈U(x)∩Kφ =⇒ z /∈ φ(z), z ∈U(x)= φ−(yx) [or yx ∈ φ(z)
]
. (5.1)

Hence condition (K∗) holds. Hence, by Corollary 3.2, φ has a fixed point.
Urai [12, Theorem 19] obtained an extension of the KKM theorem, which can be

shown to be a simple consequence of Theorem 2.1. �

Theorem 5.2. Let (X ,D) be a convex space and {Cz}z∈D a family of subsets of X . Suppose
that coN ⊂⋃z∈N Cz for each N ∈ 〈D〉 (i.e., z �→ Cz is a KKM map D� X) and that

(KKM1) for each x ∈ X , if x /∈ Cz for some z ∈D, then there are an open neighborhood
U(x) of x in X and z′ ∈D such that U(x)∩Cz′ = ∅.

If
⋂
z∈MCz is compact for some M ∈ 〈D〉, then there exists x∗ ∈ X such that x∗ ∈ X such

that x∗ ∈⋂z∈DCz.

Proof. Since coN ⊂ ⋃z∈N Cz ⊂
⋃
z∈N Cz for each N ∈ 〈D〉, by Theorem 2.1, the family

{Cz}z∈D has the finite intersection property. Since K := ⋂z∈MCz is compact, the fam-
ily {K ∩Cz}z∈D has nonempty intersection. Therefore, there exists an x∗ ∈ X such that
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x∗ ∈
⋂
z∈DCz. Suppose that x∗ /∈ Cz for some z ∈ D. Then u(x∗)∩ Cz′ = ∅ for some

open neighborhood u(x∗) of x∗ and some z′ ∈ D, by (KKM1). However, x∗ ∈ Cz′ im-
plies U(x∗)∩Cz′ = ∅, a contradiction. Therefore, x∗ ∈ Cz for all z ∈D. This completes
our proof. �

Remark 5.3. Urai [12, Theorem 19] obtained the preceding result under the assumption
that X is a nonempty compact convex subset of a Hausdorff topological vector space E.
Actually, condition (KKM1) is equivalent to

⋂
z∈DCz =

⋂
z∈DCz. In this case, the map

z �→ Cz is said to be transfer closed-valued by some authors.

Final Remarks. (1) In most of our results, we showed that compact convex subsets of
Hausdorff topological vector spaces in some of Urai’s results can be replaced by con-
vex spaces with finite covers consisting of open (closed) neighborhoods of points of
those spaces. Urai’s main tools are the partition of unity argument on such covers and
the Brouwer fixed point theorem. This is why he needs Hausdorffness and compact-
ness. However, our method is based on a new Fan-Browder type theorem (Theorem 2.2),
which is actually equivalent to the KKM theorem and to the Brouwer theorem.

(2) Moreover, some of Urai’s requirements, for examples (K∗) and (NK∗), are re-
placed by a little general ones, for examples (I) and (II), respectively, in our results. Note
that other results in Urai’s paper which are not amended in the present paper might be
improved by following our method.

(3) Urai [12, page 90] noted that (in some of his results) “the structure of vector space
is superfluous, however, and a certain definition for a continuous combination among
finite points on E under the real coefficient field will be sufficient,” and so that “ the con-
cept of abstract convexity (like Llinares [6]) would be sufficient for all of the argument” in
certain case. In fact, Llinares’ MC spaces and many other spaces with certain abstract con-
vexities are unified to generalized convex spaces (simply, G-convex spaces) by the present
author since 1993. There have appeared a large numbers of papers on G-convex spaces.
Actually, the materials in Section 2 were already extended to G-convex spaces; see Park
[8, 9].

(4) For further information on the topics in this paper, the readers may consult the
references [14, 15, 16]. Our method would be useful to improve a number of other known
results.
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