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Using the notion of τ-distance, we prove several fixed point theorems, which are general-
izations of fixed point theorems by Kannan, Meir-Keeler, Edelstein, and Nadler. We also
discuss the properties of τ-distance.

1. Introduction

In 1922, Banach proved the following famous fixed point theorem [1]. Let (X ,d) be a
complete metric space. Let T be a contractive mapping on X , that is, there exists r ∈ [0,1)
satisfying

d(Tx,Ty)≤ rd(x, y) (1.1)

for all x, y ∈ X . Then there exists a unique fixed point x0 ∈ X of T . This theorem, called
the Banach contraction principle, is a forceful tool in nonlinear analysis. This princi-
ple has many applications and is extended by several authors: Caristi [2], Edelstein [5],
Ekeland [6, 7], Meir and Keeler [14], Nadler [15], and others. These theorems are also
extended; see [4, 9, 10, 13, 23, 25, 26, 27] and others. In [20], the author introduced
the notion of τ-distance and extended the Banach contraction principle, Caristi’s fixed
point theorem, and Ekeland’s ε-variational principle. In 1969, Kannan proved the follow-
ing fixed point theorem [12]. Let (X ,d) be a complete metric space. Let T be a Kannan
mapping on X , that is, there exists α∈ [0,1/2) such that

d(Tx,Ty)≤ α
(
d(Tx,x) +d(Ty, y)

)
(1.2)

for all x, y ∈ X . Then there exists a unique fixed point x0 ∈ X of T . We note that Kan-
nan’s fixed point theorem is not an extension of the Banach contraction principle. We
also know that a metric space X is complete if and only if every Kannan mapping has
a fixed point, while there exists a metric space X such that X is not complete and every
contractive mapping on X has a fixed point; see [3, 17].
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In this paper, using the notion of τ-distance, we prove several fixed point theorems,
which are generalizations of fixed point theorems by Kannan, Meir-Keeler, Edelstein, and
Nadler. We also discuss the properties of τ-distance.

2. τ-distance

Throughout this paper, we denote by N the set of all positive integers. In this section, we
discuss some properties of τ-distance. Let (X ,d) be a metric space. Then a function p
from X ×X into [0,∞) is called a τ-distance on X [20] if there exists a function η from
X × [0,∞) into [0,∞) and the following are satisfied:

(τ1) p(x,z)≤ p(x, y) + p(y,z) for all x, y,z ∈ X ;
(τ2) η(x,0)= 0 and η(x, t)≥ t for all x ∈ X and t ∈ [0,∞), and η is concave and con-

tinuous in its second variable;
(τ3) limn xn = x and limn sup{η(zn, p(zn,xm)) : m ≥ n} = 0 imply p(w,x) ≤

liminfn p(w,xn) for all w ∈ X ;
(τ4) limn sup{p(xn, ym) : m≥ n} = 0 and limn η(xn, tn)= 0 imply limn η(yn, tn)= 0;
(τ5) limn η(zn, p(zn,xn))= 0 and limn η(zn, p(zn, yn))= 0 imply limn d(xn, yn)= 0.

We may replace (τ2) by the following (τ2)′ (see [20]):

(τ2)′ inf{η(x, t) : t > 0} = 0 for all x ∈ X , and η is nondecreasing in its second variable.

The metric d is a τ-distance on X . Many useful examples are stated in [11, 16, 18, 19, 20,
21, 22, 24]. It is very meaningful that one τ-distance generates other τ-distances. In the
sequel, we discuss this fact.

Proposition 2.1. Let (X ,d) be a metric space. Let p be a τ-distance on X and let η be a
function satisfying (τ2)′, (τ3), (τ4), and (τ5). Let q be a function from X ×X into [0,∞)
satisfying (τ1)q. Suppose that

(i) there exists c > 0 such that min{p(x, y),c} ≤ q(x, y) for x, y ∈ X ,
(ii) limn xn=x and limn sup{η(zn,q(zn,xm)) : m≥n}=0 imply q(w,x)≤ liminfn q(w,xn)

for w ∈ X .

Then q is also a τ-distance on X .

Proof. We put

θ(x, t)= t+η(x, t) (2.1)

for x ∈ X and t ∈ [0,∞). Note that η(x, t) ≤ θ(x, t) for all x ∈ X and t ∈ [0,∞). Then,
by the assumption, (τ1)q, (τ2)’θ , and (τ3)q,θ hold. We assume that limn sup{q(xn, ym) :
m ≥ n} = 0 and limn θ(xn, tn) = 0. Then limn sup{p(xn, ym) : m ≥ n} = 0 and limn tn =
limn η(xn, tn) = 0 clearly hold. From (τ4), we have limn η(yn, tn) = 0 and hence
limn θ(yn, tn)= 0. Therefore, we have shown (τ4)q,θ . We assume that limn θ(zn,q(zn,xn))=
0 and limn θ(zn,q(zn, yn))= 0. By the definition of θ, we have limn η(zn,q(zn,xn))= 0 and
limn q(zn,xn)= 0. So, by the assumption, limn η(zn, p(zn,xn))= 0 holds. We can similarly
prove limn η(zn, p(zn, yn)) = 0. Therefore, from (τ5), limn d(xn, yn) = 0. Hence, we have
shown (τ5)q,θ . This completes the proof. �

As a direct consequence of Proposition 2.1, we obtain the following proposition.
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Proposition 2.2. Let p be a τ-distance on a metric space X . Let q be a function from X ×X
into [0,∞) satisfying (τ1)q. Suppose that

(i) there exists c > 0 such that min{p(x, y),c} ≤ q(x, y) for x, y ∈ X ,
(ii) for every convergent sequence {xn} with limit x satisfying p(w,x)≤ liminfn p(w,xn)

for all w ∈ X , q(w,x)≤ liminfn q(w,xn) holds for all w ∈ X .

Then q is also a τ-distance on X .

Using the above proposition, we obtain the following one which is used in the proof
of generalized Kannan’s fixed point theorem.

Proposition 2.3. Let p be a τ-distance on a metric space X and let α be a function from X
into [0,∞). Then two functions q1 and q2 from X ×X into [0,∞), defined by

(i) q1(x, y)=max{α(x), p(x, y)} for x, y ∈ X ,
(ii) q2(x, y)= α(x) + p(x, y) for x, y ∈ X ,

are τ-distances on X .

Proof. We have

q1(x,z)=max
{
α(x), p(x,z)

}
≤max

{
α(x) +α(y), p(x, y) + p(y,z)

}
≤ q1(x, y) + q1(y,z),

q2(x,z)= α(x) + p(x,z)

≤ α(x) +α(y) + p(x, y) + p(y,z)

= q2(x, y) + q2(y,z),

(2.2)

for all x, y,z ∈ X . We note that

p(x, y)≤ q1(x, y)≤ q2(x, y) (2.3)

for all x, y ∈ X . We assume that a sequence {xn} satisfies limn xn = x and p(w,x) ≤
liminfn p(w,xn) for all w ∈X . Then it is clear that q1(w,x)≤ liminfn q1(w,xn) and
q2(w,x) ≤ liminfn q2(w,xn) for all w ∈ X . By Proposition 2.2, q1 and q2 are τ-distances
on X . This completes the proof. �

Let (X ,d) be a metric space and let p be a τ-distance on X . Then a sequence {xn} in
X is called p-Cauchy [20] if there exist a function η from X × [0,∞) into [0,∞) satisfying
(τ2)–(τ5) and a sequence {zn} in X such that limn sup{η(zn, p(zn,xm)) : m≥ n} = 0. The
following lemmas are very useful in the proofs of fixed point theorems in Section 3.

Lemma 2.4 [20]. Let (X ,d) be a metric space and let p be a τ-distance on X . If {xn} is
a p-Cauchy sequence, then {xn} is a Cauchy sequence. Moreover, if {yn} is a sequence
satisfying limn sup{p(xn, ym) : m ≥ n} = 0, then {yn} is also a p-Cauchy sequence and
limn d(xn, yn)= 0.

Lemma 2.5 [20]. Let (X ,d) be a metric space and let p be a τ-distance on X . If a sequence
{xn} in X satisfies limn p(z,xn) = 0 for some z ∈ X , then {xn} is a p-Cauchy sequence.
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Moreover, if a sequence {yn} in X also satisfies limn p(z, yn)= 0, then limn d(xn, yn)= 0. In
particular, for x, y,z ∈ X , p(z,x)= 0 and p(z, y)= 0 imply x = y.

Lemma 2.6 [20]. Let (X ,d) be a metric space and let p be a τ-distance on X . If a se-
quence {xn} in X satisfies limn sup{p(xn,xm) : m > n} = 0, then {xn} is a p-Cauchy se-
quence. Moreover, if a sequence {yn} in X satisfies limn p(xn, yn) = 0, then {yn} is also a
p-Cauchy sequence and limn d(xn, yn)= 0.

3. Fixed point theorems

In this section, we prove several fixed point theorems in complete metric spaces. In [20],
the following theorem connected with Hicks-Rhoades theorem [8] was proved and used
in the proofs of generalizations of the Banach contraction principle, Caristi’s fixed point
theorem, and so on. In this paper, this theorem is used in the proof of a generalization of
Kannan’s fixed point theorem.

Theorem 3.1 [20]. Let X be a complete metric space and let T be a mapping on X . Suppose
that there exist a τ-distance p on X and r ∈ [0,1) such that p(Tx,T2x)≤ r p(x,Tx) for all
x ∈ X . Assume that either of the following holds:

(i) if limn sup{p(xn,xm) : m> n} = 0, limn p(xn,Txn)= 0, and limn p(xn, y)= 0, then
Ty = y;

(ii) if {xn} and {Txn} converge to y, then Ty = y;
(iii) T is continuous.

Then there exists x0 ∈ X such that Tx0 = x0. Moreover, if Tz = z, then p(z,z)= 0.

As a direct consequence, we obtain the following theorem.

Theorem 3.2. Let X be a complete metric space and let p be a τ-distance on X . Let T be a
mapping on X . Suppose that there exists r ∈ [0,1) such that either (a) or (b) holds:

(a) max{p(T2x,Tx), p(Tx,T2x)} ≤ rmax{p(Tx,x), p(x,Tx)} for all x ∈ X ;
(b) p(T2x,Tx) + p(Tx,T2x)≤ r p(Tx,x) + r p(x,Tx) for all x ∈ X .

Further, assume that either of the following holds:

(i) if limn sup{p(xn,xm) : m > n} = 0, limn p(Txn,xn) = 0, limn p(xn,Txn) = 0, and
limn p(xn, y)= 0, then Ty = y;

(ii) if {xn} and {Txn} converge to y, then Ty = y;
(iii) T is continuous.

Then there exists x0 ∈ X such that Tx0 = x0. Moreover, if Tz = z, then p(z,z)= 0.

Proof. In the case of (a), we define a function q by q(x, y) =max{p(Tx,x), p(x, y)}. In
the case of (b), we define a function q by q(x, y)= p(Tx,x) + p(x, y). By Proposition 2.3,
q is a τ-distance on X . In both cases, we have

q
(
Tx,T2x

)≤ rq(x,Tx) (3.1)
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for all x ∈ X . Conditions (ii) and (iii) are not connected with τ-distance p. In the case of
(i), since

p(x, y)≤ q(x, y), p(Tx,x)≤ q(x,Tx), (3.2)

for all x, y ∈ X , T has a fixed point in X by Theorem 3.1. If Tz = z, then q(z,z)= 0, and
hence p(z,z)= 0. This completes the proof. �

We now prove a generalization of Kannan’s fixed point theorem [12]. Let X be a metric
space, let p be a τ-distance on X , and let T be a mapping on X . Then T is called a Kannan
mapping with respect to p if there exists α∈ [0,1/2) such that either (a) or (b) holds:

(a) p(Tx,Ty)≤ αp(Tx,x) +αp(Ty, y) for all x, y ∈ X ;
(b) p(Tx,Ty)≤ αp(Tx,x) +αp(y,Ty) for all x, y ∈ X .

Theorem 3.3. Let (X ,d) be a complete metric space, let p be a τ-distance on X , and let T be
a Kannan mapping on X with respect to p. Then T has a unique fixed point x0 ∈ X . Further,
such x0 satisfies p(x0,x0)= 0.

Proof. In the case of (a), there exists α ∈ [0,1/2) such that p(Tx,Ty) ≤ αp(Tx,x) +
αp(Ty, y) for x, y ∈ X . Since

p
(
T2x,Tx

)≤ αp
(
T2x,Tx

)
+αp(Tx,x), (3.3)

we have

p
(
T2x,Tx

)≤ α

1−α
p(Tx,x)≤ p(Tx,x) (3.4)

for x ∈ X . Putting r = 2α∈ [0,1), we have

max
{
p
(
T2x,Tx

)
, p
(
Tx,T2x

)}≤ αp
(
T2x,Tx

)
+αp(Tx,x)

≤ r p(Tx,x)

≤ rmax
{
p(Tx,x), p(x,Tx)

} (3.5)

for all x ∈ X . We assume limn sup{p(xn,xm) : m > n} = 0, limn p(Txn,xn) = 0,
limn p(xn,Txn) = 0, and limn p(xn, y) = 0. Then, by Lemma 2.6, {xn} and {Txn} are p-
Cauchy and

lim
n→∞d

(
xn, y

)= lim
n→∞d

(
Txn, y

)= 0. (3.6)

Now we have

p(Ty, y)≤ liminf
n→∞ p

(
Ty,Txn

)
≤ liminf

n→∞
{
αp(Ty, y) +αp

(
Txn,xn

)}
= αp(Ty, y),

(3.7)
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and hence p(Ty, y)= 0. Since p(T2y,Ty)≤ p(Ty, y)= 0 and p(T2y, y)≤ p(T2y,Ty) +
p(Ty, y) = 0, we have Ty = y by Lemma 2.5. Therefore, by Theorem 3.2, there exists
x0 ∈ X such that Tx0 = x0 and p(x0,x0)= 0. Further, a fixed point of T is unique. In fact,
if Tz = z, then p(z,z)= 0 by Theorem 3.2. So we have

p
(
x0,z

)= p
(
Tx0,Tz

)≤ αp
(
Tx0,x0

)
+αp(Tz,z)

= αp
(
x0,x0

)
+αp(z,z)= 0.

(3.8)

By Lemma 2.5 again, we have x0 = z. In the case of (b), there exists α∈ [0,1/2) such that
p(Tx,Ty)≤ αp(Tx,x) +αp(y,Ty) for x, y ∈ X . Then, putting r = α/(1−α)∈ [0,1), we
have p(Tx,T2x)≤ r p(Tx,x) and p(T2x,Tx)≤ r p(x,Tx) for all x ∈ X . So,

p
(
T2x,Tx

)
+ p
(
Tx,T2x

)≤ r p(Tx,x) + r p(x,Tx) (3.9)

for all x ∈ X . We assume limn sup{p(xn,xm) : m > n} = 0, limn p(Txn,xn)= 0, limn p(xn,
Txn)= 0, and limn p(xn, y)= 0. Then {xn} and {Txn} are p-Cauchy and limn d(xn, y)=
limn d(Txn, y)= 0. So we have

p(Ty, y)≤ liminf
n→∞ p

(
Ty,Txn

)
≤ liminf

n→∞
{
αp(Ty, y) +αp

(
xn,Txn

)}
= αp(Ty, y),

(3.10)

and hence p(Ty, y)= 0. Since p(Ty,T2y)≤ r p(Ty, y)= 0, we have y = T2y by Lemma
2.5. So, p(y,Ty)= p(T2y,Ty)≤r p(y,Ty), and hence p(y,Ty)=0. We also have p(y, y)≤
p(y,Ty) + p(Ty, y) = 0. So we have Ty = y by Lemma 2.5. Therefore, by Theorem 3.2,
there exists x0 ∈ X such that Tx0 = x0 and p(x0,x0)= 0. As in the case of (a), we obtain
that a fixed point of T is unique. �

In general, τ-distance p does not satisfy p(x, y) = p(y,x). So conditions (a) and (b)
in the definition of Kannan mappings differ from conditions (c) and (d) in the following
theorem. Indeed, there exists a mapping T on a complete metric space X such that (c)
and (d) hold, and T has no fixed points; see [19]. However, under the assumption that T
is continuous, T has a fixed point.

Theorem 3.4. Let X be a complete metric space and let T be a continuous mapping on X .
Suppose that there exist a τ-distance p on X and α ∈ [0,1/2) such that either (c) or (d)
holds:

(c) p(Tx,Ty)≤ αp(x,Tx) +αp(Ty, y) for all x, y ∈ X ;
(d) p(Tx,Ty)≤ αp(x,Tx) +αp(y,Ty) for all x, y ∈ X .

Then there exists a unique fixed point x0 ∈ X of T . Moreover, such x0 satisfies p(x0,x0)= 0.

Proof. In the case of (c), putting r = α/(1− α) ∈ [0,1), from p(Tx,T2x) ≤ αp(x,Tx) +
αp(T2x,Tx) and p(T2x,Tx)≤ αp(Tx,T2x) +αp(Tx,x), we have

p
(
T2x,Tx

)
+ p
(
Tx,T2x

)≤ r p(Tx,x) + r p(x,Tx) (3.11)
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for all x ∈ X . So, by Theorem 3.2, we prove the desired result. In the case of (d), we have
p(Tx,T2x) ≤ r p(x,Tx) for all x ∈ X . Therefore, by Theorem 3.1, we prove the desired
result. This completes the proof. �

We next prove a generalization of Meir and Keeler’s fixed point theorem [14].

Theorem 3.5. Let X be a complete metric space, let p be a τ-distance on X , and let T be
a mapping on X . Suppose that for any ε > 0, there exists δ > 0 such that for every x, y ∈ X ,
p(x, y) < ε+ δ implies p(Tx,Ty) < ε. Then T has a unique fixed point x0 in X . Further, such
x0 satisfies p(x0,x0)= 0.

Proof. We first show p(Tx,Ty) ≤ p(x, y) for all x, y ∈ X . For an arbitrary λ > 0, there
exists δ > 0 such that for every z,w ∈ X , p(z,w) < p(x, y) + λ + δ implies p(Tz,Tw) <
p(x, y) + λ. Since p(x, y) < p(x, y) + λ+ δ, we have p(Tx,Ty) < p(x, y) + λ. Since λ > 0 is
arbitrary, we obtain p(Tx,Ty)≤ p(x, y). We next show

lim
n→∞ p

(
Tnx,Tny

)= 0 ∀x, y ∈ X. (3.12)

In fact, {p(Tnx,Tny)} is nonincreasing and hence converges to some real number r. We
assume r > 0. Then there exists δ > 0 such that for every z,w ∈ X , p(z,w) < r + δ implies
p(Tz,Tw) < r. For such δ, we can choose m ∈ N such that p(Tmx,Tmy) < r + δ. So we
have p(Tm+1x,Tm+1y) < r. This is a contradiction, and hence (3.12) holds. Let u∈ X and
put un = Tnu for every n ∈ N. From (3.12), we have limn p(un,un+1) = 0. We will show
that

lim
n→∞

sup
m>n

p
(
un,um

)= 0. (3.13)

Let ε > 0 be arbitrary. Then, without loss of generality, there exists δ ∈ (0,ε) such that
for every z,w ∈ X , p(z,w) < ε+ δ implies p(Tz,Tw) < ε. For such δ, there exists n0 ∈ N

such that p(un,un+1) < δ for every n≥ n0. Assume that there exists m > � ≥ n0 such that
p(u� ,um) > 2ε. Since

p
(
u� ,u�+1

)
< ε+ δ < p

(
u� ,um

)
, (3.14)

there exists k ∈N with � < k < m such that

p
(
u� ,uk

)
< ε+ δ ≤ p

(
u� ,uk+1

)
. (3.15)

Then, since p(u� ,uk) < ε+ δ, we have p(u�+1,uk+1) < ε. On the other hand, we have

p
(
u� ,uk+1

)≤ p
(
u� ,u�+1

)
+ p
(
u�+1,uk+1

)
< δ + ε. (3.16)

This is a contradiction. Therefore, m > n ≥ n0 implies p(un,um) ≤ 2ε, and hence (3.13)
holds. By Lemma 2.6, {un} is p-Cauchy. So, {un} is also a Cauchy sequence by Lemma 2.4.
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Hence there exists x0 ∈ X such that {un} converges to x0. From (τ3), we have

limsup
n→∞

p
(
un,Tx0

)≤ limsup
n→∞

p
(
un−1,x0

)
= limsup

n→∞
p
(
un,x0

)
≤ limsup

n→∞
liminf
m→∞

p
(
un,um

)
≤ lim

n→∞
sup
m>n

p
(
un,um

)= 0.

(3.17)

By Lemma 2.6 again, {un} converges to Tx0, and hence Tx0 = x0. From (3.12), we obtain

p
(
x0,x0

)= lim
n→∞ p

(
Tnx0,Tnx0

)= 0. (3.18)

If z = Tz, then

p
(
x0,z

)= lim
n→∞ p

(
Tnx0,Tnz

)= 0. (3.19)

So, from Lemma 2.5, x0 = z. Therefore, a fixed point of T is unique. This completes the
proof. �

Let X be a metric space and let p be a τ-distance on X . For ε ∈ (0,∞], X is called
ε-chainable with respect to p if, for each (x, y) ∈ X ×X , there exists a finite sequence
{u0,u1,u2, . . . ,u�} in X such that u0 = x, u� = y, and p(ui−1,ui) < ε for i = 1,2, . . . ,�. We
will prove a generalization of Edelstein’s fixed point theorem [5].

Theorem 3.6. Let X be a complete metric space. Suppose that X is ε-chainable with respect
to p for some ε ∈ (0,∞] and for some τ-distance p on X . Let T be a mapping on X . Suppose
that there exists r ∈ [0,1) such that p(Tx,Ty) ≤ r p(x, y) for all x, y ∈ X with p(x, y) < ε.
Then there exists a unique fixed point x0 ∈ X of T . Further, such x0 satisfies p(x0,x0)= 0.

Proof. We first show

lim
n→∞ p

(
Tnx,Tny

)= 0 (3.20)

for all x, y ∈ X . Let x, y ∈ X be fixed. Then there exist u0,u1,u2, . . . ,u� ∈ X such that u0 =
x, u� = y, and p(ui−1,ui)<ε for i= 1,2, . . . ,�. Since p(ui−1,ui) < ε, we have p(Tui−1,Tui)≤
r p(ui−1,ui) < ε. Thus

p
(
Tnui−1,Tnui

)≤ r p
(
Tn−1ui−1,Tn−1ui

)≤ ··· ≤ rnp
(
ui−1,ui

)
. (3.21)

Therefore

limsup
n→∞

p
(
Tnx,Tny

)≤ limsup
n→∞

�∑
i=1

p
(
Tnui−1,Tnui

)

≤ lim
n→∞

�∑
i=1

rnp
(
ui−1,ui

)= 0.

(3.22)
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We have shown (3.20). Let x ∈ X be fixed. From (3.20), there exists n0 ∈N such that

p
(
Tnx,Tn+1x

)
< ε (3.23)

for n≥ n0. Then, for m> n≥ n0, we have

p
(
Tnx,Tmx

)≤ m−1∑
k=n

p
(
Tkx,Tk+1x

)

≤
m−1∑
k=n

rk−n0 p
(
Tn0x,Tn0+1x

)

≤ rn−n0

1− r
p
(
Tn0x,Tn0+1x

)
.

(3.24)

Hence, limn sup{p(Tnx,Tmx) : m> n} = 0. By Lemma 2.6, {Tnx} is p-Cauchy. By Lemma
2.4, {Tnx} is a Cauchy sequence. So, {Tnx} converges to some x0 ∈ X . Since

limsup
n→∞

p
(
Tnx,x0

)≤ limsup
n→∞

liminf
m→∞

p
(
Tnx,Tmx

)

≤ lim
n→∞

sup
m>n

p
(
Tnx,Tmx

)= 0,
(3.25)

we have

limsup
n→∞

p
(
Tnx,Tx0

)≤ lim
n→∞r p

(
Tn−1x,x0

)= 0. (3.26)

By Lemma 2.6, we obtain Tx0 = x0. If z is a fixed point of T , then we have

p
(
x0,z

)= lim
n→∞ p

(
Tnx0,Tnz

)= 0 (3.27)

from (3.20). We also have p(x0,x0)= 0. Therefore, z = x0 by Lemma 2.5. This completes
the proof. �

Let X be a metric space and let p be a τ-distance on X . Then, a set-valued mapping T
from X into itself is called p-contractive if Tx is nonempty for each x ∈ X and there exists
r ∈ [0,1) such that

Q(Tx,Ty)≤ r p(x, y) (3.28)

for all x, y ∈ X , where

Q(A,B)= sup
a∈A

inf
b∈B

p(a,b). (3.29)

The following theorem is a generalization of Nadler’s fixed point theorem [15].

Theorem 3.7. Let (X ,d) be a complete metric space and let p be a τ-distance on X . Let T
be a set-valued p-contractive mapping from X into itself such that for any x ∈ X , Tx is a
nonempty closed subset of X . Then there exists x0 ∈ X such that x0 ∈ Tx0 and p(x0,x0)= 0.
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Remark 3.8. z ∈ Tz does not necessarily imply p(z,z)= 0; see Example 3.9.

Proof. By the assumption, there exists r′ ∈ [0,1) such that Q(Tx,Ty) ≤ r′p(x, y) for all
x, y ∈ X . Put r = (1 + r′)/2 ∈ [0,1) and fix x, y ∈ X and u ∈ Tx. Then, in the case of
p(x, y) > 0, there is v ∈ Ty satisfying p(u,v) ≤ r p(x, y). In the case of p(x, y) = 0, we
have Q(Tx,Ty)= 0. Then there exists a sequence {vn} in Ty satisfying limn p(u,vn)= 0.
By Lemma 2.5, {vn} is p-Cauchy, and hence {vn} is Cauchy. Since X is complete and Ty
is closed, {vn} converges to some point v ∈ Ty. Then we have

p(u,v)≤ lim
n→∞ p

(
u,vn

)= 0= r p(x, y). (3.30)

Hence, we have shown that for any x, y ∈ X and u ∈ Tx, there is v ∈ Ty with p(u,v) ≤
r p(x, y). Fix u0 ∈ X and u1 ∈ Tu0. Then there exists u2 ∈ Tu1 such that p(u1,u2) ≤
r p(u0,u1). Thus, we have a sequence {un} in X such that un+1 ∈ Tun and p(un,un+1) ≤
r p(un−1,un) for all n∈N. For any n∈N, we have

p
(
un,un+1

)≤ r p
(
un−1,un

)≤ r2p
(
un−2,un−1

)≤ ··· ≤ rnp
(
u0,u1

)
, (3.31)

and hence, for any m,n∈N with m> n,

p
(
un,um

)≤ p
(
un,un+1

)
+ p
(
un+1,un+2

)
+ ···+ p

(
um−1,um

)
≤ rnp

(
u0,u1

)
+ rn+1p

(
u0,u1

)
+ ···+ rm−1p

(
u0,u1

)
≤ rn

1− r
p
(
u0,u1

)
.

(3.32)

By Lemma 2.6, {un} is a p-Cauchy sequence. Hence, by Lemma 2.4, {un} is a Cauchy
sequence. So, {un} converges to some point v0 ∈ X . For n∈N, from (τ3), we have

p
(
un,v0

)≤ liminf
m→∞ p

(
un,um

)≤ rn

1− r
p
(
u0,u1

)
. (3.33)

By hypothesis, we also have wn ∈ Tv0 such that p(un,wn)≤ r p(un−1,v0) for n∈N. So we
have

limsup
n→∞

p
(
un,wn

)≤ limsup
n→∞

r p
(
un−1,v0

)

≤ lim
n→∞

rn

1− r
p
(
u0,u1

)= 0.
(3.34)

By Lemma 2.6, {wn} converges to v0. Since Tv0 is closed, we have v0 ∈ Tv0. For such v0,
there exists v1 ∈ Tv0 such that p(v0,v1)≤ r p(v0,v0). Thus, we also have a sequence {vn}
in X such that vn+1 ∈ Tvn and p(v0,vn+1)≤ r p(v0,vn) for all n∈N. So we have

p
(
v0,vn

)≤ r p
(
v0,vn−1

)≤ ··· ≤ rnp
(
v0,v0

)
. (3.35)

Hence

limsup
n→∞

p
(
un,vn

)≤ lim
n→∞

(
p
(
un,v0

)
+ p
(
v0,vn

))= 0. (3.36)
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By Lemma 2.6 again, {vn} is a p-Cauchy sequence and converges to v0. So we have

p
(
v0,v0

)≤ lim
n→∞ p

(
v0,vn

)= 0. (3.37)

This completes the proof. �

Example 3.9. Put X = {0,1} and define a τ-distance p on X by p(x, y)= y for all x, y ∈ X ,
and a set-valued p-contractive mapping T from X into itself by T(x) = X for all x ∈ X .
Then 1∈ X is a fixed point of T and p(1,1) �= 0.

4. Other examples of τ-distances

In this section, we give other examples of τ-distances generated by either some τ-distance
p or a family of τ-distances.

Proposition 4.1. Let p be a τ-distance on a metric space X . Fix c > 0. Define a function q
from X ×X into [0,∞) by

q(x, y)=min
{
p(x, y),c

}
(4.1)

for x, y ∈ X . Then q is also a τ-distance on X .

Proof. Fix x, y,z ∈ X . In the case of p(x, y) < c and p(y,z) < c, we have

q(x,z)≤ p(x,z)≤ p(x, y) + p(y,z)= q(x, y) + q(y,z). (4.2)

In the case of p(x, y)≥ c or p(y,z)≥ c, we have

q(x,z)≤ c ≤ q(x, y) + q(y,z). (4.3)

Therefore, we have shown (τ1)q. So, by Proposition 2.2, we obtain the desired result.
�

Proposition 4.2. Let (X ,d) be a metric space. Let {pn} be a sequence of τ-distances on X .
Then the following hold.

(i) A function q1, defined by

q1(x, y)=max
{
p1(x, y), p2(x, y)

}
(4.4)

for x, y ∈ X , is a τ-distance on X .
(ii) A function q2, defined by

q2(x, y)= p1(x, y) + p2(x, y) (4.5)

for x, y ∈ X , is a τ-distance on X .
(iii) For each c > 0, a function q3, defined by

q3(x, y)=min
{

sup
n∈N

pn(x, y),c
}

(4.6)

for x, y ∈ X , is a τ-distance on X .
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(iv) For each c > 0, a function q4, defined by

q4(x, y)=min

{ ∞∑
n=1

pn(x, y),c

}
(4.7)

for x, y ∈ X , is a τ-distance on X .
(v) If a function q5, defined by

q5(x, y)= sup
n∈N

pn(x, y) (4.8)

for x, y ∈ X , is a real-valued function, then q5 is a τ-distance on X .
(vi) If a function q6, defined by

q6(x, y)=
∞∑
n=1

pn(x, y) (4.9)

for x, y ∈ X , is a real-valued function, then q6 is a τ-distance on X .

Proof. Let {ηn} be a sequence of functions satisfying (τ2)pn,ηn , (τ3)pn,ηn , (τ4)pn,ηn , and
(τ5)pn,ηn for n∈N. We first prove that q5 is a τ-distance on X . Since

sup
n∈N

pn(x,z)≤ sup
n∈N

(
pn(x, y) + pn(y,z)

)≤ sup
n∈N

pn(x, y) + sup
n∈N

pn(y,z), (4.10)

we have q5(x,z) ≤ q5(x, y) + q5(y,z) for x, y,z ∈ X . Define a function θ from X × [0,∞)
into [0,∞) by

θ(x, t)= t+
∞∑
n=1

21−n min
{
ηn(x, t),1

}
(4.11)

for x ∈ X and t ∈ [0,∞). Fix x∈X . For any ε > 0, we choose k1∈N with 1/k1 + 21−k1 < ε/2.
Then there exists t1 ∈ (0,ε/2) satisfying

k1∑
n=1

21−nηn
(
x, t1

)
<

1
k1
. (4.12)

Hence

θ
(
x, t1

)
< t1 +

1
k1

+
∞∑

n=k1+1

21−n min
{
ηn
(
x, t1

)
,1
}≤ ε

2
+

1
k1

+ 21−k1 < ε. (4.13)

Therefore, θ(x,·) is continuous at 0. Hence, (τ2)θ is shown. We suppose limn xn = x and
limn sup{θ(zn,q5(zn,xm)) : m≥ n} = 0. Then, for any k ∈N, we have

limsup
n→∞

sup
m≥n

min
{
ηk
(
zn, pk

(
zn,xm

))
,1
}

≤ limsup
n→∞

sup
m≥n

min
{
ηk
(
zn,q5

(
zn,xm

))
,1
}

≤ lim
n→∞

sup
m≥n

2k−1θ
(
zn,q5

(
zn,xm

))= 0,

(4.14)
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and hence

lim
n→∞

sup
m≥n

ηk
(
zn, pk

(
zn,xm

))= 0. (4.15)

From (τ3)pk ,ηk ,

pk(w,x)≤ liminf
n→∞ pk

(
w,xn

)
(4.16)

for all w ∈ X . Therefore, we have

sup
k∈N

pk(w,x)≤ sup
k∈N

liminf
n→∞

pk
(
w,xn

)

≤ liminf
n→∞

sup
k∈N

pk
(
w,xn

)
,

(4.17)

and hence q5(w,x) ≤ liminfn q5(w,xn) for all w ∈ X . We have shown (τ3)q5,θ . We prove
(τ4)q5,θ . We assume that limn sup{q5(xn, ym) : m≥ n} = 0 and limn θ(xn, tn)= 0. Then we
have limn sup{pk(xn, ym) : m≥ n} = 0 and limn ηk(xn, tn)= 0 for all k ∈N. From (τ4)pk ,ηk ,
we have limn ηk(yn, tn) = 0 for all k ∈ N. For any ε > 0, we choose k2 ∈ N with 1/k2 +
21−k2 < ε/2. Then there exists n2 ∈N satisfying

k2∑
k=1

21−kηk
(
yn, tn

)
<

1
k2

(4.18)

and tn < ε/2 for n≥ n2. We now have

θ
(
yn, tn

)≤ tn +
1
k2

+ 21−k2 < ε (4.19)

for n ≥ n2. This implies limn θ(yn, tn) = 0. We prove (τ5)q5,θ . We assume limn θ(zn,
q5(zn,xn))= 0 and limn θ(zn,q5(zn, yn))= 0. Then we have

limsup
n→∞

min
{
η1
(
zn, p1

(
zn,xn

))
,1
}≤ limsup

n→∞
θ
(
zn, p1

(
zn,xn

))
≤ lim

n→∞θ
(
zn,q5

(
zn,xn

))= 0,
(4.20)

and hence limn η1(zn, p1(zn,xn)) = 0. We can similarly prove limn η1(zn, p1(zn, yn)) = 0.
Therefore, we obtain limn d(xn, yn)= 0. We have shown that q5 is a τ-distance on X . We
next prove that q6 is a τ-distance on X . Since

∞∑
n=1

pn(x,z)≤
∞∑
n=1

(
pn(x, y) + pn(y,z)

)= ∞∑
n=1

pn(x, y) +
∞∑
n=1

pn(y,z), (4.21)

we have q6(x,z) ≤ q6(x, y) + q6(y,z) for x, y,z ∈ X . We note that q5(x, y) ≤ q6(x, y) for
x, y ∈ X . We suppose limn xn = x and limn sup{θ(zn,q6(zn,xm)) : m ≥ n} = 0. Then we
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have limn sup{θ(zn,q5(zn,xm)) : m ≥ n} = 0. In such case, we have already shown that
pk(w,x)≤ liminfn pk(w,xn) for w ∈ X and k ∈N. Fix λ with

λ <
∞∑
k=1

liminf
n→∞ pk

(
w,xn

)
. (4.22)

Then there exist k3,n3 ∈N such that λ <
∑k3

k=1 pk(w,xn) for n≥ n3. Hence

λ≤ liminf
n→∞

k3∑
k=1

pk
(
w,xn

)≤ liminf
n→∞

∞∑
k=1

pk
(
w,xn

)
. (4.23)

Therefore, we have

∞∑
k=1

pk(w,x)≤
∞∑
k=1

liminf
n→∞ pk

(
w,xn

)≤ liminf
n→∞

∞∑
k=1

pk
(
w,xn

)
, (4.24)

and hence q6(w,x) ≤ liminfn q6(w,xn) for w ∈ X . By Proposition 2.1, q6 is a τ-distance
on X . Since

q1(x, y)= sup
{
p1(x, y), p2(x, y), p2(x, y), p2(x, y), . . .

}
,

q2(x, y)= p1(x, y) +
1
2
p2(x, y) +

1
4
p2(x, y) +

1
8
p2(x, y) + ··· ,

(4.25)

q1 and q2 are τ-distances on X . Since

q3(x, y)= sup
n∈N

min
{
pn(x, y),c

}
,

q4(x, y)= sup
n∈N

min

{ n∑
k=1

pk(x, y),c

}
,

(4.26)

q3 and q4 are τ-distances on X . This completes the proof. �
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