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Suppose X , Y are manifolds, f ,g : X → Y are maps. The well-known coincidence prob-
lem studies the coincidence set C = {x : f (x)= g(x)}. The number m= dimX −dimY is
called the codimension of the problem. More general is the preimage problem. For a map
f : X → Z and a submanifold Y of Z, it studies the preimage set C = {x : f (x)∈ Y}, and
the codimension is m = dimX + dimY − dimZ. In case of codimension 0, the classical
Nielsen number N( f ,Y) is a lower estimate of the number of points in C changing under
homotopies of f , and for an arbitrary codimension, of the number of components of C.
We extend this theory to take into account other topological characteristics of C. The goal
is to find a “lower estimate” of the bordism group Ωp(C) of C. The answer is the Nielsen
group Sp( f ,Y) defined as follows. In the classical definition, the Nielsen equivalence of
points of C based on paths is replaced with an equivalence of singular submanifolds of C
based on bordisms. We let S′p( f ,Y)=Ωp(C)/ ∼N , then the Nielsen group of order p is the
part of S′p( f ,Y) preserved under homotopies of f . The Nielsen number Np(F,Y) of order
p is the rank of this group (then N( f ,Y)= N0( f ,Y)). These numbers are new obstruc-
tions to removability of coincidences and preimages. Some examples and computations
are provided.

1. Introduction

Suppose X , Y are smooth orientable compact manifolds, dimX = n+m, dimY = n, m≥
0 the codimension, f ,g : X → Y are maps, the coincidence set

C = Coin( f ,g)= {x ∈ X : f (x)= g(x)
}

(1.1)

is a compact subset of X\∂X .
Consider the coincidence problem: “what can be said about the coincidence set C

of ( f ,g)?” One of the main tools is the Lefschetz number L( f ,g) defined as the alter-
nating sum of traces of a certain endomorphism on the homology group of Y . The
famous Lefschetz coincidence theorem provides a sufficient condition for the existence of
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coincidences (codimension m = 0): L( f ,g) �= 0⇒ C = Coin( f ,g) �= ∅, see [1, Section
VI.14], and [31, Chapter 7].

Now, what else can be said about the coincidence set? As C changes under homotopies
of f and g, a reasonable approach is to try to minimize the “size” of C. In case of zero
codimension, C is discrete and we simply minimize the number of points in C. The result
is the Nielsen number. It is defined as follows. Two points p,q ∈ C belong to the same
Nielsen class if (1) there is a path s in X between p and q; (2) f s and gs are homotopic
relative to the endpoints. A Nielsen class is called essential if it cannot be removed by a
homotopy of f , g (alternatively, a Nielsen class is algebraically essential if its coincidence
index is nonzero [2]). Then the Nielsen numberN( f ,g) is the number of essential Nielsen
classes. It is a lower estimate of the number of points in C. In case of positive codimension
N( f ,g) still makes sense as a lower estimate of the number of components of C [32].
However, only for m = 0, the Nielsen number is known to be a sharp estimate, that is,
there are maps f ′, g′ compactly homotopic to f , g such that C′ = Coin( f ′,g′) consists of
exactly N( f ,g) path components (Wecken property). This minimization is achieved by
removing inessential classes through homotopies of f , g.

The Nielsen theory for codimension m = 0 is well developed, for the fixed point and
the root problems [3, 21, 22], and for the coincidence problem [4]. However, for m > 0,
the vanishing of the coincidence index does not guarantee that the Nielsen class can be re-
moved. Some progress has been made for codimension m= 1. In this case, the secondary
obstruction to the removability of a coincidence set was considered by Fuller [13] for
Y simply connected. Hatcher and Quinn [18] showed that the obstruction to a higher-
dimensional Whitney lemma lies in a certain framed bordism group. Based on this result,
necessary and sufficient conditions of the removability of a Nielsen class were studied by
Dimovski and Geoghegan [9] and Dimovski [8] for parametrized fixed point theory, that
is, when f : Y × I → Y is the projection. The results of [9] were generalized by Jezierski
[20] for the coincidence problem f ,g : X → Y , where X , Y are open subsets of Euclidean
spaces or Y is parallelizable. Geoghegan and Nicas [14] developed a parametrized Nielsen
theory based on Hochschild homology. For some m > 1, sufficient conditions of the lo-
cal removability are provided in [28]. Necessary conditions of the global removability for
arbitrary codimension are considered by Gonçalves, Jezierski, and Wong [33, Section 5]
with N a torus and M a nilmanifold.

In these papers, higher-order Nielsen numbers are not explicitly defined (except for
[8], see the comment in the end of the paper). However, they all contribute to the problem
of finding the lower estimate of the number of components of C. We extend these results
to take into account other topological characteristics of C. In the spirit of the classical
Nielsen theory, our goal is to find “lower estimates” of the bordism groups Ω∗(C).

The crucial motivation for our approach is the removability results for codimension 1
due to Dimovski and Geoghegan [9] and Jezierski [20]. Consider [20, Theorem 5.3]. As-
sume that codimension m= 1, n≥ 4, X , Y are open subsets of Euclidean spaces. Suppose
A is a Nielsen class. Then if f , g are transversal, A is the union of disjoint circles. Define
the Pontriagin-Thom (PT) map as the composition

Sn+1 
 Rn+1∪{∗} −→ Rn+1/
(

Rn+1\ν)
 ν/∂ν
f−g−−−→ Rn/

(
Rn\D)
 Sn, (1.2)
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where ν is a normal bundle of A, D ⊂ Rn is a ball centered at 0 satisfying ( f − g)(∂ν) ⊂
Rn\D. It is an element of πn(Sn−1)= Z2. Then A can be removed if and only if the follow-
ing conditions are satisfied:

(W1) A= ∂S, where S is an orientable connected surface, f |S ∼ g|S relA (the surface con-
dition);

(W2) the PT map is trivial (the Z2-condition).

Earlier, Dimovski and Geoghegan [9] considered a similar pair of conditions (not in-
dependent though) in their Theorem 1.1 and compared them to the codimension 0 case.
They write: “. . . the role of ‘being in the same fixed point class’ is played by the surface
condition (i), while that of the fixed point index is played by the natural orientation. The
Z2-obstruction is a new feature . . ..” One can use the first observation to define the Nielsen
equivalence on the set of 1-submanifolds of C (here A is Nielsen equivalent to the empty
set). However, we will see that the PT map has to serve as the index of the Nielsen class.
The index will be defined in the traditional way but with respect to an arbitrary homology
theory h∗. Indeed, in the above situation, it is an element of the stable homotopy group
πS
n+1(Sn)= Z2.

More generally, we define the Nielsen equivalence on the set Mm(C) of all closed sin-
gular m-manifolds in C = Coin( f ,g). Two singular m-manifolds p : P→ C and q : Q→ C
belong to the same Nielsen class, p ∼N q, if

(1) ip and iq are bordant, where i : C → N is the inclusion, that is, there is a map
F : W →N extending ip
 iq such that W is a bordism between P and Q;

(2) f F and gF are homotopic relative to f p, f q.

Then S′m( f ,g) =Mm(C)/ ∼N is the group of Nielsen classes. Let Sam( f ,g) be the group
of algebraically essential Nielsen classes, that is, the ones with nontrivial index. Then the
(algebraic) Nielsen number of order m is the rank of Sam( f ,g) (these numbers are new ob-
structions to removability of coincidences). In light of this definition, Jezierski’s theorem
can be thought of as a Wecken type theorem for m= 1.

The most immediate applications of the coincidence theory for positive codimension
lie in control theory. A dynamical system on a manifold M is determined by a map f :
M →M. Then the next state f (x) depends only on the current one, x ∈M. In case of
a control system, the next state f (x,u) depends not only on the current one, x ∈M, but
also on the input, u∈U . Suppose we have a fiber bundle given by the bundle projection

U → N
g−→M and a map f : N →M. Here N is the state-input space, U is the space of

inputs, and M is the space of states of the system. Then the equilibrium set of the system
C = {x ∈M : f (x,u) = x} is the coincidence set of the pair ( f ,g). A continuous control
system [25, page 16] is defined as a commutative diagram:

N
h

π

TM

πM

M

(1.3)

where N is a fiber bundle over M. Then the equilibrium set C = {(x,u)∈N : h(x,u)= x}
of the system is the preimage of M under h.
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Instead of the coincidence problem, throughout the rest of the paper we apply the
approach outlined above to the Nielsen theory for the so-called preimage problem consid-
ered by Dobreńko and Kucharski [10]. Suppose X , Y , Z are connected CW-complexes,
Y ⊂ Z, f : X → Z is a map. The problem studies the set C = f −1(Y) and can be easily spe-
cialized to the fixed point problem if we put Z = X ×X , Y = d(X), f = (Id,g), to the root
problem if Y is a point, and to the coincidence problem if Z = Y ×Y , Y is the diagonal
of Z, f = (F,G) (see [23]).

Suppose X , Y , Z are smooth manifolds and f is transversal to Y . Then under the
restriction dimX + dimY = dimZ, the preimage C = f −1(Y) of Y under f is discrete.
The Nielsen number N( f ,Y) is the sharp lower estimate of the least number of points in
g−1(Y) for all maps g homotopic to f [10, Theorem 3.4], that is, N( f ,Y)≤ #g−1(Y) for
all g ∼ f . If we omit the above restriction, C is an r-manifold [1, Theorem II.15.2, page
114], where

r = dimX + dimY −dimZ. (1.4)

The setup. X , Y , Z are connected CW-complexes, Y ⊂ Z,

dimX = n+m, dimY = n, dimZ = n+ k, (1.5)

f : X → Z is a map, the preimage set C = f −1(Y), the codimension of the problem is

r = n+m− k, (1.6)

and j : C→ X is the inclusion.
The paper is organized as follows. Just as for the coincidence problem, we define the

Nielsen equivalence of singular q-manifolds in C and the group of Nielsen classes S′q( f )=
Mq(C)/ ∼N= Ωq(C)/ ∼N , where Ω∗ is the orientable bordism group (Section 2). Next,
we identify the part of S′q( f ) preserved under homotopies of f . The result is the Nielsen
group Sq( f ), the group of topologically essential classes (Section 3). As we have described
above, the Nielsen group is a subgroup of a quotient group of Ωq(C) and, in this sense, its
“lower estimate.”

Proposition 1.1. S∗( f ) is homotopy invariant.

The Nielsen number of order p, p = 0,1,2, . . . , is defined as Np( f ,Y)= rankSp( f ,Y).
Clearly, the classical Nielsen number is equal to N0( f ).

Proposition 1.2. Np( f )≤ rankΩp(g−1(Y)) if f ∼ g.

In Section 4, we discuss the naturality of the Nielsen group. In particular, we obtain
the following.

Proposition 1.3. Given Z,Y ⊂ Z. Then S∗ is a functor from the category of preimage
problems as pairs (X , f ), f : X → Z, with morphisms as maps k : X →U satisfying gk = f ,
to the category of graded abelian groups.

For the manifold case, there is an alternative approach to essentiality. In Section 5, the
“preimage index” is defined simply as I f = f∗ : Ω∗(C)→Ω∗(Y). It is a homomorphism
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on S′∗( f ) and the group of algebraically essential Nielsen classes is defined as Sa∗( f ,Y)=
S′∗( f ,Y)/kerI f . We show that every algebraically essential class is topologically essential.
In Section 6, we consider the traditional index Ind f (P) of an isolated subset P of C in
terms of a generalized homology h∗. It is defined in the usual way as the composition

h∗(X ,X\U)

←−− h∗(V ,V\U)

f∗−−→ h∗(Z,Z\Y), (1.7)

where V ⊂ V ⊂ U are neighborhoods of P. Then we show how it is related to I f . In
Section 7, we consider some examples of computations of these groups, especially in the
setting of the PT construction.

In Sections 8 and 9, based on Jezierski’s theorem, we prove the following Wecken type
theorem for codimension 1.

Proposition 1.4. Under conditions of Jezierski’s theorem, f ,g are homotopic to f ′,g′ such
that

Sp( f ,g)
Ωp
(

Coin( f ′,g′)
)
, p = 0,1. (1.8)

To motivate our definitions, in the beginning of each section, we will review the rele-
vant part of Nielsen theory for the preimage problem following Dobreńko and Kucharski
[10] and McCord [23].

All manifolds are assumed to be orientable and compact.

2. Nielsen classes

In Nielsen theory, two points x0,x1 ∈ C = f −1(Y) belong to the same Nielsen class, x0 ∼
x1, if

(1) there is a path α : I → X such that α(i)= xi;
(2) there is a path β : I → Y such that β(i)= f (xi);
(3) f α and β are homotopic relative to {0,1}.

This is an equivalence relation partitioning C into a finite number of Nielsen classes.
However, since we want Nielsen classes to form a group, we should think of x0, x1 as
singular 0-manifolds in C (a singular p-manifold in M is a map s : N →M, where N is a
p-manifold). Then conditions (1) and (2) express the fact that x0, x1 are bordant in X ,
and f (x0), f (x1) are bordant in Y .

Recall [6, 29] that two orientable compact closed p-manifolds N0, N1 are called bor-
dant if there is a bordism between them, that is, an orientable compact (p+ 1)-manifold
W such that ∂W =N0
−N1. Two singular orientable compact closed manifolds si : Ni→
M, i= 0,1, are bordant, s0 ∼b s1, if there is a map h : W →M extending s0
 s1, where W
is a bordism between N0 and N1.

Let Mp(A,B) denote the set of all singular orientable compact closed p-manifolds s :
(N ,∂N)→ (A,B).



52 Higher-order Nielsen numbers

Definition 2.1. Two singular p-manifolds s0,s1 ∈Mp(C) in C, that is, maps si : Si → C,
i= 0,1, are Nielsen equivalent, s0 ∼N s1, if

(1) js0, js1 are bordant in X via a map H : W → X extending s0
 s1 such that W is a
bordism between S0 and S1;

(2) f s0, f s1 are bordant in Y via a map G : W → Y extending f s0
 f s1;
(3) f H and G are homotopic relative to S0
 S1.

We denote the Nielsen class of s∈Mp(C) by [s]N or simply [s].

Proposition 2.2. ∼N is an equivalence relation on Mp(C).

Definition 2.3. The group of Nielsen classes of order p, S′p( f ,Y), or simply S′p( f ), is defined
as

S′p( f ,Y)=Mp(C)/ ∼N . (2.1)

The group of Nielsen classes for the coincidence problem will be denoted by S′p( f ,g).

In contrast to the classical Nielsen theory, the elements of Nielsen classes are not points
but sets of points. Even in the case of p = 0, one has more to deal with. For example, sup-
pose C = {x, y} and x ∼N y. The elements of S′0( f ) are [{x, y}] = [{x}], [{−x,−y}] =
[{−x}] = −[{x}], [{x} ∪ {−y}] = [∅], [{x} ∪ {y}] = [{x} ∪ {x}] = [2{x}] = 2[{x}],
and so forth.

Another example. Suppose X = Z = S2, Y is the equator of Z, f a map of degree 2 such
that C = f −1(Y) is the union of two circles C1 and C2 around the poles. Then S′1( f )= Z
generated by C1
C2. A similar construction applies to X = Z = Sn, Y = Sn−1, n≥ 2, then
S′n−1( f )= Z is generated by the union of two copies of Sn−1.

Let Mh
p(A,B) denote the semigroup of all homotopy classes, relative to boundary, of

maps s∈Mp(A,B). Consider the commutative diagram

Mh
p+1(X ,C)

δ

f∗

Mh
p(C)

j∗

f∗

Mh
p(X)

f∗

Mh
p+1(Z,Y)

δ
Mh

p(Y)
k∗

Mh
p(Z)

Mh
p+1(Y ,Y)

I∗
δ

(2.2)

where δ is the boundary map, I is the inclusion. Then we have an alternative way to define
the group of Nielsen classes:

S′p( f ,Y)=Mh
p(C)/δ

(
f −1
∗
(

ImI∗
))
. (2.3)

Let Ωp(A,B) denote the group of bordism classes in Mp(A,B) with
 as addition. Then
Ω∗ is a generalized homology [6, 29].
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Proposition 2.4. If s0 ∼N s1 ∼b s2, then s0 ∼N s2. Therefore, ∼N is an equivalence relation
on Ω∗(C).

Proposition 2.5. If s0 ∼N s1, t0 ∼N t1, then s0
 t0 ∼N s1 
 t1. Therefore, ∼N is preserved
under the operation of Ω∗(C). Thus S′∗( f ,Y)=Ω∗(C)/ ∼N is a group.

Next we discuss the naturality of this group.

Definition 2.6. Suppose another preimage problem f ′ : X ′ → Z′ ⊃ Y ′ is connected to
the first by maps k : X → X ′ and h : Z → Z′ such that f ′k = h f and h(Y) ⊂ Y ′ (see the
diagram in Proposition 2.8). Then we define the map induced by k and h,

k′∗ : S′∗( f ,Y)−→ S′∗( f ′,Y ′), (2.4)

by k′∗([s]N )= [ks]N .

Proposition 2.7. k′∗ is well defined.

Proof. Let C′ = f ′−1(Y ′). If x ∈ C, then f (x) = y ∈ Y . Let x′ = k(x) and y′ = h(y) ∈
h(Y)⊂ Y ′. Then by assumption g(x′)= y′, so x′ ∈ C′. Therefore, the following diagram
commutes:

(X ,C)
k

f

(X ′,C′)

f ′

(Z,Y)
h

(Z′,Y ′)

(2.5)

The second preimage problem has a diagram analogous to (2.2). Together they provide
two opposite faces of a 3-dimensional diagram with other faces supplied by the diagram
above. The diagram commutes. Therefore, for each s∈Mp(C), s∼N ∅⇒ ks∼N ∅. �

Proposition 2.8. Suppose the following diagram for three preimage problems commutes:

Y
h

Y ′
l

Y ′′

Z
h

Z′
l

Z′′

X
k

f

X ′
j

f ′

X ′′

f ′′

(2.6)

Then j′∗k′∗ = ( jk)′∗ : S′∗( f ,Y)→ S′∗( f ′′,Y ′′).

Proof. From the definition, ( jk)′∗([s]N ) = [ jks]N and j′∗k′∗([s]N ) = j′∗([ks]N ) = [ jks]N .
�
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Proposition 2.9. (IdX)′∗ = IdS′∗( f ,Y).

Corollary 2.10. If � is the category of preimage problems as quadruples (X ,Z,Y , f ), Y ⊂
Z, f : X → Z, with morphisms as pairs of maps (k,h) satisfying Definition 2.6, then S′∗ is a
functor from � to Ab∗, the graded abelian groups.

3. Topologically essential Nielsen classes

In the classical theory, a Nielsen class is called essential if it cannot be removed by a ho-
motopy. More precisely, suppose F : I ×X → Z is a homotopy of f , then the t-section
Nt = {x ∈ X : (t,x) ∈ N}, 0 ≤ t ≤ 1, of the Nielsen class N of F is a Nielsen class of
ft = F(t,·) or is empty [10, Corollary 1.5]. Next, we say that the Nielsen classes N0, N1 of
f0, f1, respectively, are in the F-Nielsen relation if there is a Nielsen class N of F such that
N0, N1 are the 0- and 1-sections of N . This establishes an “equivalence” relation between
some Nielsen classes of f0 and some Nielsen classes of f1. Given a Nielsen class N0 of f0, if
for any homotopy there is a Nielsen class of f1 corresponding to N0, then N0 is called es-
sential. In our theory, the F-Nielsen relation takes a simple form of two homomorphisms
from S′∗( f0), S′∗( f1) to S′∗(F).

Suppose F : I ×X → Z is a homotopy, ft(·)= F(t,·) : X → Z, and let it : X → {t}×X →
I ×X be the inclusions. Since ft = Fit, the homomorphism i′t∗ : S′∗( ft)→ S′∗(F) is well
defined for each t ∈ [0,1] (Proposition 2.7). The following result is crucial.

Theorem 3.1. Suppose F : I ×X → Z is a homotopy of f , F|{0}×X = f . Suppose i : X →
{0}×X → I ×X is the inclusion. Then i′∗ : S′∗( f )→ S′∗(F) is injective.

Proof (cf. [10, Lemma 1.4]). Suppose v ∈Mp( f −1(Y)), v : M→ f −1(Y), where M is a p-
manifold. Then u= iv = {0}× v ∈Mp(F−1(Y)), so that u : M→ F−1(Y)⊃ {0}× f −1(Y).
Suppose [u]N = 0 in S′p(F), then there is a U ∈Mp+1(I × X ,F−1(Y)), U : (W ,∂W)→
(I ×X ,F−1(Y)), such that M = ∂W , U|M = u, and FU : (W ,∂W)→ (Z,Y) is homotopic
relative to M = ∂W to a G∈Mp+1(Y ,Y). Then U = (P,V), where P : W → I , P|M = {0},
and V : W → X , V |M = v. Define a homotopy H : I ×W → Z by

H(s,x)= F
(
(1− s)P(x),V(x)

)
. (3.1)

Then H(0,x) = F(P(x),V(x)) = FU(x), H(1,x) = F(0,V(x)) = f V(x). Suppose x ∈M.
Then first, H(s,x)= F((1− s) · 0,v(x))= F(0,v(x))= f (v(x)); second, FU(x)= Fu(x)=
Fiv(x) = f v(x); third, f V(x) = f v(x). Thus FU and f V are homotopic relative to M.
Therefore, f V is homotopic to G relative to M. We have proven that if [u]N = i′∗[v]N = 0
in S′p(F), then [v]N = 0 in S′p( f ). Therefore, ker i′∗ = {0}. �

Thus the Nielsen classes of a map are included in the Nielsen classes of its homotopy.
This theorem generalizes both the fact that the intersection of a Nielsen class of F with

{0}×X is a Nielsen class of f0 [10, Corollary 1.5], for codimension 0, and the fact that
(W1) is homotopy invariant [20, Lemma 4.2], for codimension 1 (see Section 8).

Now the following are monomorphisms:

S′∗
(
f0
) i′0∗−−→ S′∗(F)

i′1∗←−− S′∗
(
f1
)
. (3.2)
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Let

MF
∗ = Im i′0∗ ∩ Im i′1∗. (3.3)

Then MF∗ is isomorphic to some subgroups of S′∗(F), S′∗( f0), S′∗( f1) (as a subgroup of
S′∗( f0), MF∗ should be understood as the set of Nielsen classes of f0 preserved by F). Now
we say that a class s0 ∈ S′∗( f0) of f0 is F-related to a class s1 ∈ S′∗( f1) of f1 if there is
s ∈ S′∗(F) such that i′0∗(s0) = s = i′1∗(s1). Then s1 = i′−1

1∗ i′0∗(s0) if defined, otherwise we
can set s1 = 0. Thus some classes cannot be reduced to zero by a homotopy and we call
them (topologically) essential Nielsen classes. Together (plus zero) they form a group as
follows.

Definition 3.2. The group of (topologically) essential Nielsen classes is defined as

S∗( f ,Y)=
⋂{

MF
∗ : F is a homotopy of f

}⊂ S′∗( f ,Y). (3.4)

(Sp( f ,Y) can also be called the Nielsen group of order p, while S′p( f ,Y) the pre-Nielsen
group.)

If f ∼ g, then S∗( f )
 S∗(g). Therefore, we have the following.

Theorem 3.3. S∗( f ) is homotopy invariant. Moreover, for any g homotopic to f , there is a
monomorphism S∗( f )→ S′∗(g).

Now S∗( f ) is a subgroup of S′p( f ), which is a quotient of Ω∗( f −1(Y)). In this sense,
S∗( f ) is a “lower estimate” of Ω∗(g−1(Y)) for any g homotopic to f .

Definition 3.4. The Nielsen number of order p, p = 0,1,2, . . . , is defined as

Np( f ,Y)= rankSp( f ,Y). (3.5)

The Nielsen number for the coincidence problem is denoted by Np( f ,g).

Corollary 3.5. Suppose f ∼ g. Then

N∗( f )≤ rankΩ∗
(
g−1(Y)

)
. (3.6)

Clearly, N0( f ) is equal to the classical Nielsen number and provides a lower estimate
of the number of path components of f −1(Y).

It is easy to verify that this theory is still valid if the oriented bordism Ω∗ is replaced
with the unoriented bordism, or the framed bordism (see examples in Section 7), or bor-
dism with coefficients. In fact, a similar theory for an arbitrary homology theory is valid
because every homology theory can be constructed as a bordism theory with respect to
manifolds with singularities [5].

4. Naturality of S∗( f )

Under the conditions of Definition 2.6, the homomorphism k∗ : S∗( f )→ S∗(g) can be
defined as a restriction of k′∗ and the analogues of Propositions 2.7, 2.8, and 2.9 hold. We
simplify the situation in comparison to Section 2 by assuming that Z and Y ⊂ Z are fixed.
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Definition 4.1. Suppose another preimage problem g : U → Z is connected to the first by
a map k : X →U such that gk = f . Then the homomorphism induced by k,

k∗ : S∗( f )−→ S∗(g), (4.1)

is defined as the restriction of k′∗ : S′∗( f )→ S′∗(g) on S∗( f )⊂ S′∗( f ).

Proposition 4.2. k∗ is well defined.

Proof. For convenience let f = f0, g = g0, k = k0. Suppose G is a homotopy between g0

and g1, K between k0 and k1. Let F = GK , then F is a homotopy between f0 and f1. Let
L(t,x)= (t,K(t,x)). Then we have a commutative diagram:

U
j1

I ×U U
j0

X
i1

k1

I ×X

L

X
i0

k0
(4.2)

where is : X → {s}×X → I ×X and js : U → {s}×U → I ×U , s= 0,1, are the inclusions.
Further, if we add a vertex Z to this diagram, we have a commutative pyramid with the
other edges provided by f0, f1, g0, g1, G, F. Then by naturality of the map induced on S′∗
(Proposition 2.8), we have another commutative diagram:

S′∗
(
g1
) j′1∗

S′∗(G) S′∗
(
g0
)j′0∗

S′∗
(
f1
) i′1∗

k′1∗

S′∗(F)

L′∗

S′∗
(
f0
)i′0∗

k′0∗ (4.3)

Here the horizontal arrows are injective (Theorem 3.1). Therefore, the restriction k′0∗=
k′1∗ = L′∗ : MF∗ →MG∗ is well defined. This conclusion is true for all G, K , so that the
restriction k′0∗ :∩F=GKMF∗ →∩GMG∗ is well defined. Since S∗( f ) is a subset of the former
and the latter is S∗(g), the statement follows. �

Proposition 4.3. Suppose the following diagram for three preimage problems commutes:

Z

X
k

f

X ′
j

f ′

X ′′

f ′′

(4.4)

Then j∗k∗ = ( jk)∗ : S∗( f )→ S∗( f ′′).

Proposition 4.4. (IdX)∗ = IdS∗( f ).

Corollary 4.5. Given Z,Y ⊂ Z. If �(Z,Y) is the category of preimage problems as pairs
(X , f ), f : X → Z, with morphisms as maps k : X →U satisfying gk = f , then S∗ is a functor
from �(Z,Y) to Ab∗ (cf. [21, Chapter 3]).
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Corollary 4.6. If k is a homotopy invariance, gk = f , then S∗( f ) = S∗(g), that is, the
preimage theory f : X → Z ⊃ Y is “homotopy invariant” (cf. [16]) with respect to X .

5. The bordism index as a homomorphism on S′∗( f )

In the classical Nielsen theory, the coincidence index provides an algebraic count of co-
incidence points. It satisfies the usual properties: (1) homotopy invariance: the index is
invariant under homotopies of f , g; (2) additivity: the index over a union of disjoint sets
is equal to the sum of the indices over these sets; (3) existence of coincidences: if the in-
dex is nonzero, then there is a coincidence; (4) normalization: the index is equal to the
Lefschetz number; (5) removability: if the index is zero, then a coincidence can be (lo-
cally or globally) removed by a homotopy. From the point of view of our approach, the
additivity property means that we associate an integer to every 0-class, that is, we have a
homomorphism S′0( f )→ Z=Ω0(Y).

Definition 5.1. The index of [s]N ∈ S′q( f ), where s∈Ωq(C), is defined as

I f (s)= f∗(s), (5.1)

where f∗ : Ωq(C)→Ωq(Y).

Proposition 5.2. The index is well defined as a homomorphism

I f : S′∗( f )−→Ω∗(Y). (5.2)

Proof. Suppose s∼N ∅, then by definition, s∼b∅ in X via some H and f s∼b∅ in Z via
some G homotopic to f H . Therefore, f∗(s)= 0 in Ωq(Y), so I f ([s]N )= 0. �

Of course, I f (z) �= 0⇒ z �= 0.
Suppose F : I ×X → Z is a homotopy. As before, let ft(·) = F(t,·) : X → Z, and let

it : X → {t}×X → I ×X be the inclusions.

Theorem 5.3. Suppose z0 ∈ S′q( f0) and i′0∗(z0)= z ∈ S′q(F). Then I f0 (z0)= IF(z).

Proof. Let C = F−1(Y), C0 = f −1
0 (Y). Now if z = [s]N , s ∈ Ωq(C) and z0 = [s0]N , s0 ∈

Ωq(C0), then i0∗(s0)∼N s. Therefore, IF(z)= F∗(s)= F∗i0∗(s0)= f0∗(s0)= I f0 (z0). �

Corollary 5.4. If z0 ∈ S′q( f0), z1 ∈ S′q( f1) are F-related, then I f0 (z0) = I f1 (z1). Thus the
index I f is preserved under homotopies.

In the classical theory Nielsen classes are sets and the algebraically essential classes are
the ones with nonzero index. Similarly, we call z ∈ S′q( f ) algebraically essential if I f (z) �= 0.

Corollary 5.5. Every algebraically essential class is topologically essential, that is, z cannot
be reduced by a homotopy to the zero p-class, and, therefore, z cannot be “removed” by a
homotopy.

We define the group of algebraically essential Nielsen classes as

Sa∗( f ,Y)= S′∗( f ,Y)/kerI f . (5.3)
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Suppose another preimage problem g : U → Z is connected to the first by a map k :
X →U such that gk = f . Then just like in the previous section, we define the homomor-
phism induced by k,

ka∗ : Sa∗( f )−→ Sa∗(g), (5.4)

as a restriction of k′∗. Moreover, similar properties are satisfied. Thus we have the follow-
ing.

Corollary 5.6. Given Z,Y ⊂ Z. If �(Z,Y) is the category of preimage problems as pairs
(X , f ), f : X → Z, with morphisms as maps k : X →U satisfying gk = f , then Sa∗ is a functor
from �(Z,Y) to Ab∗.

6. The index of an isolated set of preimages

From now on, we assume that X , Y , Z are smooth orientable compact manifolds, Y is a
submanifold of Z.

Suppose P ⊂ C is an isolated set of preimages. Let U ⊂V be neighborhoods of P in X
such that U ⊂ IntV and V ∩C = P. In the classical Nielsen theory, the index Ind( f ,P) of
P is defined as the image of the generator z of Hn+m(X)
 Z under the composition

Hn+m(X)−→Hn+m(X ,X\U)

←−−Hn+m(V ,V\U)

f∗−−→Hn+m(Z,Z\Y). (6.1)

Under the restriction dimX + dimY = dimZ, we are in the classical situation: each class
a is an isolated set of preimages A and the index a is defined as the index of A.

In case of a nonzero codimension, we can have Hn+m(X) �= Z, therefore it makes sense
to replace in the above definition the generator z with an arbitrary element ofH∗(X). This
turns the index into a graded homomorphism H∗(X)→H∗(Z,Z\Y) (which is equal to
the Lefschetz homomorphism [27] for the coincidence problem). This generality is justi-
fied by a number of examples in [15, 27] that show that in order to detect coincidences in
case of a nonzero codimension one may need to take into account the whole domain of
this homomorphism.

A fixed point index with respect to generalized cohomology was considered by Dold
[11]. Another example is [24] where the coincidence index is computed in term of cobor-
dism. In addition, we will see in Section 9 that for a nonzero codimension the index
expressed in terms of singular homology may be inadequate for removability (some al-
gebraically inessential classes are essential). Therefore, under the above restrictions, the
singular homology H∗ should be replaced with a generalized homology h∗.

Definition 6.1. Suppose W is a neighborhood of Y in Z. The index Ind f (P;h∗), or simply
Ind f (P), of the set P with respect to h∗ is the following homomorphism

h∗(X ,X\U)

←−− h∗(V ,V\U)

f∗−−→ h∗(W ,W\Y). (6.2)

The index does not depend on the choice of U , see [31, page 189]. The next theorem
is proven similarly to [31, Lemmas 7.1, 7.2, 7.4, pages 190–191], respectively.
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Theorem 6.2. (I) (additivity) If P = P1∪···∪Ps is a disjoint union of subsets of P such
that Pi = P ∩ f −1(Y) is compact and fi = f |Pi for each i = 1, . . . ,s, then Ind f (P) =∑s

i=1 Ind fi(Pi).
(II) Existence of preimages. If Ind f (P) �= 0, then P �= ∅.
(III) Homotopy invariance. Suppose ft : X→Z, 0≤ t≤1, is a homotopy andD=∪t f

−1
t (Y)

is a compact subset of X . Then

Ind f0 (P)= Ind f1 (P). (6.3)

Now we show how the indices I f and Ind f are related to each other.

Definition 6.3. Let Rp( f ) be the set of all elements of Mp(C) represented as sums of finite
collections of connected singular manifolds such that the sum of any subcollection is not
Nielsen equivalent to the empty set. Then the image of z ∈ S′p( f ) is defined as

Imz =∪{Ims : s∈ Rp( f ), s∈ z
}
. (6.4)

In particular, if P ∈Ω0(M) is a subset of C and z = [P]N , then Imz = P.
Suppose f is transversal to Y . Then C is an r-submanifold of X .

Proposition 6.4. Imz is an isolated subset of C and therefore an r-submanifold of X .

Proposition 6.5. If z = 0∈ S′∗( f ), then Imz =∅.

Clearly if Ind f (Imz) �= 0, then Imz �= ∅. However, this does not imply that z is essen-
tial. The case of p = 0 is an exception. For convenience we restate the following familiar
result.

Proposition 6.6. If P ∈ S′0( f ) and Ind f (P;h∗) �= 0, where h∗ is an arbitrary homology
theory, then P is essential.

The relation between the essentiality of the class and its index is more subtle when
p > 0.

If T is a tubular neighborhood of a submanifoldM, then ϕM : Ωq+k(T ,T\M)→Ωq(M)
is the Thom isomorphism [30, page 309], [12, page 321].

Suppose z ∈ S′p( f ), z = [s], where s∈Ωp(M). Let P = Imz, then it is an r-submanifold
of C. Let T and T′ be tubular neighborhoods of C and P, respectively, such that T′ is an
isolated subset of T . Then the inclusion i : T′ → T is a bundle map. Suppose s= i∗(s′) for
some s′ ∈Ωp(P). From the naturality of the Thom isomorphism, we have the commuta-
tivity of the following diagram:

Ωp(P)
i∗

Ωp(C)
f∗

Ωp(Y)

Ωp+k(T′,T′\P)
i∗

ϕP

Ωp+k(T ,T\C)
f∗

ϕC

Ωp+k(W ,W\Y)

ϕY (6.5)
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where W is a tubular neighborhood of Y . Then I f (z)= f∗(s)= f∗i∗(s′). Therefore,

ϕ−1
Y I f (z)= ϕ−1

Y f∗i∗(s′)= f∗i∗ϕ−1
P (s′)= Ind f (P;Ω∗)

(
ϕ−1
P (s′)

)
. (6.6)

Thus we have proven the following.

Theorem 6.7. For each z ∈ S′p( f ), I f (z)= ϕY Ind f (P;Ω∗)ϕ−1
P (s′), where z = [s], P = Imz,

s= i∗(s′).

The right-hand side can be used for an alternative definition of an algebraically essen-
tial class.

Corollary 6.8. If P ∈ Ωr(M), z = [P], then Ind f (P;Ω∗)(OP) = ϕ−1
Y I f (z), where OP ∈

Ωn+m(T′,T′\P) is the fundamental class of P.

Moreover, if Ind f (P;H∗) �= 0, then P ∈ S′0( f ) is essential. Thus for r = 0, we recover
the traditional definition of an algebraically essential class.

7. Some examples

Nielsen numbers are hard to compute. Nielsen groups and higher-order Nielsen numbers
are no different. Below we consider some special cases when the computation is feasible.

Just as before suppose X = Z = S2, Y is the equator of Z, f a map of degree 2 such that
C = f −1(Y) is the union of two circles C1 and C2 around the poles. But there is only one
generator of S′1( f ), C = C1 ∪C2. Also Ind f (C) �= 0. Hence, N0( f ) = 1. This is in fact a
“sharp” estimate of the number of components of C (Wecken property for codimension
r = 1) because f is homotopic to the suspension g, of the degree 2 map of the equator, so
that g−1(Y) is a circle. The same conclusion applies toX = Z = Sn,Y = Sn−1, codimension
r = n− 1, n≥ 2.

For more examples of this nature, see [26] and [9, Theorem 1.2 and Section 12].
In [28], we showed that the cohomology coincidence index IAf g is the only obstruction

to removability of an isolated subset A of the coincidence set if any of the three following
conditions is satisfied: (1) M is a surface; (2) the fiber of g is acyclic; or (3) the fiber of g is
an m-sphere for m= 4,5,12, and n large. Of course if the homology index Ind( f ,g)(A;H∗)
is trivial, then so is IAf g . Therefore, under these restrictions, an algebraically inessential
class can be removed.

Proposition 7.1. Suppose that if two singular q-manifolds in C are bordant in X , then they
are Nielsen equivalent. Then S′q( f )
 j∗Ωq(C), where j : C→ X is the inclusion.

Corollary 7.2. If under the conditions of the proposition Ωq(X)= 0, then Sq( f )= 0.

The condition of this proposition is satisfied if we simply assume that f is homotopic
to f ′ with f ′(X)⊂ Y . For the coincidence problem, this result takes the following form.

Theorem 7.3. If f ,g : X → Z are homotopic, then S′q( f ,g)
 j∗Ωq(Coin( f ,g)). Moreover,
Nq( f ,g)≤ rankΩq(X).

Theorem 7.4. Suppose Y is (q− 1)-connected, f ∗ : Hq(Y ;πq(Y))→Hq(X ;πq(Y)) is triv-
ial, and Z is (q+ 1)-connected. Then S′q( f )
 j∗Ωq(C). Moreover, Nq( f )≤ rankΩq(X).



Peter Saveliev 61

Proof. Suppose s0,s1 ∈ j∗Ωq(C) are bordant in X via H : W → X , that is, si : Si → X ,
∂W = S0
 S1, H|Si = si. Since Y is (q− 1)-connected and

δ∗ f ∗
(
s0
 s1

)∗
: Hq

(
Y ;πq(Y)

)−→Hq+1(W ,S0
 S1;πq(Y)
)

(7.1)

is trivial, the classical obstruction theory [1, page 497] is applied to prove that the map
f (s0 
 s1) : S0 
 S1 → Y can be extended to G : W → Y . Further, since Z is (q + 1)-
connected, [W ,Z]relS0
S1 = 0. Therefore, G and f H are homotopic relative to S0 
 S1.
Thus, if two singular q-manifolds in C are bordant in X , then they are Nielsen equivalent.
Now the theorem follows from the above proposition. �

The relation between the homotopy class of a map and the preimage of a point is direct
in the setting of the PT construction [7, page 196]. For the rest of the section we assume
that the Nielsen groups S′q( f ), Sq( f ) are computed with respect to the framed bordism,

that is, S′q( f ) is a quotient group of Ωfr
q (C).

Let Y = {p}, p ∈ Z = Sk, and r ≤ k − 2. Then the conditions of the theorem above
are satisfied. Therefore, S′r( f ) 
 j∗Ωfr

r (C). Now, f is homotopic to a map g if and only
if C = f −1(p) is framed bordant to Kg = g−1(p) in X . Let jg : Kg → X be the inclusion.
Then

Sr( f )

⋂

g∼ f

j
g
∗Ωfr

r

(
Kg
)=

⋂

Kg∼bC

j
g
∗Ωfr

r

(
Kg
)
. (7.2)

Thus we have proven the following.

Theorem 7.5. Suppose Z = Sk and r =m− k ≤ k− 2. Then

Sr
(
f ,{p})=

⋂

K∼bC

jK∗Ω
fr
r (K), (7.3)

where jK : K → X is the inclusion.

In particular, for codimension 1, N1( f ,{p}) is equal to the number of circles in f −1(p)
not framed bordant to the empty set.

Corollary 7.6. Suppose Z = Sk and r =m− k ≤ k− 2. Then Sr( f ,{p})= 0 if and only if
f −1(p)∼b ∅.

Proof. The right-hand side in the above theorem contains C. �

Nielsen groups can be easily computed for the generators of [Sk,Sm], see [7, page 208].

8. Wecken property of order 1, codimension 1

We say that the preimage problem f : X → Z ⊃ Y satisfies the Wecken property of or-
der p if Sp( f ) is “realizable”, that is, there is some h homotopic to f such that Sp( f ) 

Ωp(h−1(Y)).
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Recall that a preimage problem is reduced to the coincidence problem f ,g : X → Y by
putting Z = Y ×Y , Y the diagonal of Z, f = (F,G), C = ( f ,g)−1(Y) = Coin( f ,g). Also
dimZ = 2dimY = 2n, so k = n.

Then the definition of Wecken property is in the obvious extension of the one above:
the pair ( f ,g) satisfies the Wecken property of order p if Sp( f ,g) 
Ωp(Coin( f ′,g′)) for
some f ′, g′ homotopic to f , g.

Assume that f , g are transversal. Then C = Coin( f ,g) is a 1-submanifold of X . Sup-
pose A is 1-submanifold of C. Recall condition (W1) A = ∂S, where S is an orientable
connected surface, f |S ∼ g|S relA.

Proposition 8.1. A = ∂S, where S is an orientable (not necessarily connected) surface,
f |S ∼ g|S relA⇔ A∼N ∅, that is, A belongs to the zero 1-class.

Proof. Since A is the boundary of S, we have A∼b ∅ via S. Secondly, f |S ∼ g|S relA, hence
( f ,g)|S ∼ hrelA such that Imh lies in the diagonal of Z = Y ×Y . Thus A∼N ∅. �

Consider the following result due to Jezierski [20, Theorem 3.1]. Its proof is based on
his 1-parameter Whitney lemma.

Proposition 8.2 (Jezierski). Suppose n ≥ 4 and f is smooth. Then g is homotopic to g′

such that the pair ( f ,g′) is transversal and each Nielsen class (or even an isolated subset of a
Nielsen class [19]) of ( f ,g) is a circle.

We use this result to prove the following Wecken-type result for codimension 1.

Theorem 8.3. Suppose n≥ 4 and f is smooth. Then the coincidence problem f ,g : X → Y
satisfies the Wecken property of order 1; specifically, g is homotopic to g′ such that

S1( f ,g)
Ω1
(

Coin( f ,g′)
)
. (8.1)

Moreover, N1( f ,g)= rankΩ1(Coin( f ,g′)) is equal to the number of circles in Coin( f ,g′)
not satisfying (W1).

Proof. Suppose, according to the above proposition, that all 0-classes are circles, A1, . . . ,
As. Suppose also that A1, . . . ,At satisfy condition (W1) and the rest do not. We view
A1, . . . ,At as singular 1-manifolds. Then, first, Ai ∼N ∅ for i = 1, . . . , t according to
Proposition 8.1. Hence, for these i, Ai ∈ 0∈ S′1( f ,g′), so they don’t concern us. Now, sup-
pose Ai ∼N Aj for some i > j > t via some surface H . If Ai and Aj were subsets of different
components of H then each would satisfy condition (W1). Therefore H can be assumed
connected. But, then Ai∪Aj satisfies condition (W1), and moreover every pair of points
x ∈ Ai, y ∈Aj is Nielsen equivalent. Therefore, by Proposition 8.2 Ai∪Aj can be further
reduced to a single circle. Hence, we can assume that each Ai, i= t + 1, . . . ,s, belongs to a
different nonzero 1-class. Thus the generators of S′1( f ,g′) are [Ai]N , i = t + 1, . . . ,s. Now
the fact that each of these classes is essential follows from the homotopy invariance of
(W1) [20, Lemma 4.2]. �

A similar result for the root problem is easy to prove.



Peter Saveliev 63

Theorem 8.4. Suppose Z = Sk and 1=m− k ≤ k− 2. Then the root problem f : X → Z �
p satisfies the Wecken property of order 1 (with respect to framed bordism).

Proof. Just as above assume that C = f −1(p) is the disjoint union of circles such that
A1, . . . ,At are framed bordant to the empty set and At+1, . . . ,As are not. Then C is framed
bordant to K = At+1∪···∪As. Finally, S1( f ,{p})=Ωfr

1 (K) by Theorem 7.5. �

9. Wecken property of order 0, codimension 1

Suppose A is a 1-submanifold of C. Recall condition (W2) the PT map is trivial. The
proposition below explains why the PT map should be understood as the coincidence
index.

Proposition 9.1. (W2) ⇔ Ind( f ,g)(A;πS∗) = 0 (i.e., A is algebraically inessential with re-
spect to πS∗).

Proof. Let U ⊂ T be tubular neighborhoods A. We state (W2) as follows:

PT : Sn+1 −→ T/∂T
f−g−−−→ Rn/

(
Rn\0)
 Sn is trivial. (9.1)

Since n≥ 4, this is equivalent to the following:

PT∗ : πS
∗
(

Sn+1)−→ πS
∗
(

Sn
)

is trivial. (9.2)

Consider the commutative diagram

T/∂T
f−g




(
Rn,Rn\0)

Sn+1 −→ Sn+1/
(

Sn+1\U)

(T ,T\U)
f ,g (

Rn×Rn,Rn×Rn\∆)


 d (9.3)

where ∆ is the diagonal and d(x, y)= x− y. Now if we apply the stable homotopy functor
πS∗ to the diagram, we have PT∗ in the upper path and the index of A with respect to
h∗ = πS∗ in the lower. But d is a homotopy equivalence [12, Lemma VII.4.13, page 200],
and the statement follows. �

Observe that the stable homotopy index Ind( f ,g)(A;πS∗) is better at detecting essen-
tial classes than the traditional index with respect to singular homology. In fact, the lat-
ter would not work in the above argument as πS

n+1(Sn) = Z2 cannot be replaced with
Hn+1(Sn) = 0. Secondly, all the Nielsen numbers of higher-order in Section 7 would be
zero if computed with respect to singular homology.

Recall Jezierski’s Wecken type theorem [20, Theorem 5.3].
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Proposition 9.2 (Jezierski). Let f ,g : X → Y be an admissible map between open subsets of
Rn+1, Rn, respectively, n≥ 4. Then there are maps f ′, g′ compactly homotopic to f , g, respec-
tively, such that the Nielsen classes satisfying (W1) and (W2) disappear and the remaining
ones become circles.

Suppose we are left with the circles A1,A2, . . . ,At each satisfying condition (W1) but
not (W2), and At+1,At+2, . . . ,As satisfying (W2) but not (W1). Then each A1,A2, . . . ,At

is an (algebraically) essential 0-class (Proposition 6.6). Also each At+1,At+2, . . . ,As is an
essential 1-class (Theorem 8.3), therefore an essential 0-class as well. Thus we have proven
the following.

Theorem 9.3. Suppose X , Y are open subsets of Rn+1, Rn, respectively, n ≥ 4. Then there
are maps f ′, g′ compactly homotopic to f , g, respectively, such that Coin( f ′,g′) has exactly
N0( f ,g) path components, that is, the coincidence problem f ,g : X → Y satisfies the Wecken
property of order 0.

A result of this type is proven by Gonçalves and Wong [17, Theorem 4(iii)] for the root
problem in case of an arbitrary codimension. In the terminology of the present paper
their theorem reads as follows: if X , Z are nilmanifolds, p ∈ Z, then there is g homotopic
to f such that g−1(p) has exactly N0( f ,{p}) components.

Another codimension 1 Wecken type theorem is given by Dimovski [8] for the para-
metrized fixed point problem: F : I ×Y → Y . Here F is a PL-map, Y a compact connected
n-dimensional PL-manifold contained in Rn, n≥ 4. He defines two independent indices
of a Nielsen class V , ind1(F,V) and ind2(F,V), corresponding to conditions (W1), (W2),
and then defines a Nielsen number N(F) as the number of Nielsen classes with either
ind1(F,V) �= 0 or ind2(F,V) �= 0. His [8, Theorem 4.4(4)] reads: if F is homotopic to H
such that H has only isolated circles of fixed points and isolated fixed points, then the
number of fixed points classes of H is bigger than or equal to N(F). However, N(F) is not
a lower bound of the number of components of the fixed point set. An examination of the
proof of this theorem [8, Theorems 4.1, 4.2] reveals that only local homotopies, that is,
ones constant outside a neighborhood of the given class, are allowed. (This is the reason
why there is an obvious correspondence between Nielsen classes of two homotopic maps
and there is no need for such a construction as the one in Section 3 of the present paper.)
In fact, N(F) can be larger than the estimate provided in the above theorem—Jezierski
[20, Example 6.4] gives an example of a Nielsen class that can be removed by a global
homotopy but not by a local one.
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