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We study the regularization methods for solving equations with arbitrary accretive op-
erators. We establish the strong convergence of these methods and their stability with
respect to perturbations of operators and constraint sets in Banach spaces. Our research
is motivated by the fact that the fixed point problems with nonexpansive mappings are
namely reduced to such equations. Other important examples of applications are evolu-
tion equations and co-variational inequalities in Banach spaces.

1. Introduction

Let E be a real normed linear space with dual E∗. The normalized duality mapping j : E→
2E

∗
is defined by

j(x) :=
{
x∗ ∈ E∗ : 〈x,x∗〉 = ‖x‖2,

∥∥x∗∥∥∗ = ‖x‖}, (1.1)

where 〈x,φ〉 denotes the dual product (pairing) between vectors x ∈ E and φ ∈ E∗. It
is well known that if E∗ is strictly convex, then j is single valued. We denote the single
valued normalized duality mapping by J .

A map A :D(A)⊆ E→ 2E is called accretive if for all x, y ∈D(A) there exists J(x− y)∈
j(x− y) such that 〈

u− v, J(x− y)
〉≥ 0, ∀u∈Ax, ∀v ∈ Ay. (1.2)

If A is single valued, then (1.2) is replaced by〈
Ax−Ay, J(x− y)

〉≥ 0. (1.3)

A is called uniformly accretive if for all x, y ∈ D(A) there exist J(x− y) ∈ j(x− y) and a
strictly increasing function ψ :R+ := [0,∞)→R+, ψ(0)= 0 such that〈

Ax−Ay, J(x− y)
〉≥ ψ(‖x− y‖). (1.4)
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It is called strongly accretive if there exists a constant k > 0 such that in (1.4) ψ(t)= kt2. If
E is a Hilbert space, accretive operators are also called monotone. An accretive operator A
is said to be hemicontinuous at a point x0 ∈D(A) if the sequence {A(x0 + tnx)} converges
weakly to Ax0 for any element x such that x0 + tnx ∈ D(A), 0 ≤ tn ≤ t(x0) and tn → 0,
n→∞. An accretive operator A is said to be maximal accretive if it is accretive and the
inclusion G(A)⊆ G(B), with B accretive, where G(A) and G(B) denote graphs of A and
B, respectively, implies that A= B. It is known (see, e.g., [14]) that an accretive hemicon-
tinuous operator A : E→ E with a domain D(A) = E is maximal accretive. In a smooth
Banach space, a maximal accretive operator is strongly-weakly demiclosed on D(A). An
accretive operator A is said to be m-accretive if R(A+αI)= E for all α > 0, where I is the
identity operator in E.

Interest in accretive maps stems mainly from their firm connection with fixed point
problems, evolution equations and co-variational inequalites in a Banach space (see, e.g.
[6, 7, 8, 9, 10, 11, 12, 26]). Recall that each nonexpansive mapping is a continuous ac-
cretive operator [7, 19]. It is known that many physically significant problems can be
modeled by initial-value problems of the form (see, e.g., [10, 12, 26])

x′(t) +Ax(t)= 0, x(0)= x0, (1.5)

where A is an accretive operator in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave, or Schrödinger equations.
One of the fundamental results in the theory of accretive operators, due to Browder [11],
states that if A is locally Lipschitzian and accretive, then A is m-accretive. This result was
subsequently generalized by Martin [23] to the continuous accretive operators. If x(t) in
(1.5) is independent of t, then (1.5) reduces to the equation

Au= 0, (1.6)

whose solutions correspond to the equilibrium points of the system (1.5). Consequently,
considerable research efforts have been devoted, especially within the past 20 years or so,
to iterative methods for approximating these equilibrium points.

The two well-known iterative schemes for successive approximation of a solution of
the equation Ax = f , where A is either uniformly accretive or strongly accretive, are the
Ishikawa iteration process (see, e.g., [20]) and the Mann iteration process (see, e.g., [22]).
These iteration processes have been studied extensively by various authors and have been
successfully employed to approximate solutions of several nonlinear operator equations
in Banach spaces (see, e.g., [13, 15, 17]). But all efforts to use the Mann and the Ishikawa
schemes to approximate the solution of the equationAx = f , whereA is an accretive-type
mapping (not necessarily uniformly or strongly accretive), have not provided satisfactory
results. The major obstacle is that for this class of operators the solution is not, in general,
unique.

Our purpose in this paper is to construct approximations generated by regularization
algorithms, which converge strongly to solutions of the equations Ax = f with accretive
maps A defined on subsets of Banach spaces. Our theorems are applicable to much larger
classes of operator equations in uniformly smooth Banach spaces than previous results
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(see, e.g., [4]). Furthermore, the stability of our methods with respect to perturbation of
the operators and constraint sets is also studied.

2. Preliminaries

Let E be a real normed linear space of dimension greater than or equal to 2, and x, y ∈ E.
The modulus of smoothness of E is defined by

ρE(τ) := sup

{‖x+ y‖+‖x− y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = τ
}
. (2.1)

A Banach space E is called uniformly smooth if

lim
τ→0

hE(τ) := lim
τ→0

ρE(τ)
τ

= 0. (2.2)

Examples of uniformly smooth spaces are the Lebesgue Lp, the sequence �p, and the
Sobolev Wm

p spaces for 1 < p <∞ and m≥ 1 (see, e.g., [2]).
If E is a real uniformly smooth Banach space, then the inequality

‖x‖2 ≤ ‖y‖2 + 2〈x− y, Jx〉
≤ ‖y‖2 + 2〈x− y, J y〉+ 2〈x− y, Jx− J y〉 (2.3)

holds for every x, y ∈ E. A further estimation of ‖x‖2 needs one of the following two
lemmas.

Lemma 2.1 [5]. Let E be a uniformly smooth Banach space. Then for x, y ∈ E,

〈x− y, Jx− J y〉 ≤ 8‖x− y‖2 +C
(‖x‖,‖y‖)ρE(‖x− y‖), (2.4)

where

C
(‖x‖,‖y‖)≤ 4max

{
2L,‖x‖+‖y‖} (2.5)

and L is the Figiel constant, 1 < L < 1.7 [18, 24].

Lemma 2.2 [2]. In a uniformly smooth Banach space E, for x, y ∈ E,

〈x− y, Jx− J y〉 ≤ R2(‖x‖,‖y‖)ρE( 4‖x− y‖
R
(‖x‖,‖y‖)

)
, (2.6)

where

R
(‖x‖,‖y‖)= √2−1

(‖x‖2 +‖y‖2
)
. (2.7)

If ‖x‖ ≤ R and ‖y‖ ≤ R, then

〈x− y, Jx− J y〉 ≤ 2LR2ρE

(
4‖x− y‖

R

)
, (2.8)

where L is the same as in Lemma 2.1.
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We will need the following lemma on the recursive numerical inequalities.

Lemma 2.3 [1]. Let {λk} and {γk} be sequences of nonnegative numbers and let {αk} be a
sequence of positive numbers satisfying the conditions

∞∑
1

αn =∞,
γn
αn
−→ 0 as n−→∞. (2.9)

Let the recursive inequality

λn+1 ≤ λn−αnφ
(
λn
)

+ γn, n= 1,2, . . . , (2.10)

be given where φ(λ) is a continuous and nondecreasing function from R+ to R+ such that it
is positive on R+ \ {0}, φ(0)= 0, limt→∞φ(t)≥ c > 0. Then λn→ 0 as n→∞.

We will also use the concept of a sunny nonexpansive retraction [19].

Definition 2.4. Let G be a nonempty closed convex subset of E. A mapping QG : E→G is
said to be

(i) a retraction onto G if Q2
G =QG;

(ii) a nonexpansive retraction if it also satisfies the inequality∥∥QGx−QGy
∥∥≤ ‖x− y‖, ∀x, y ∈ E; (2.11)

(iii) a sunny retraction if for all x ∈ E and for all 0≤ t <∞,

QG
(
QGx+ t

(
x−QGx

))=QGx. (2.12)

Definition 2.5. If QG satisfies (i)–(iii) of Definition 2.4, then the element x̃ =QGx is said
to be a sunny nonexpansive retractor of x ∈ E onto G.

Proposition 2.6. Let E be a uniformly smooth Banach space, and let G be a nonempty
closed convex subset of E. A mapping QG : E→ G is a sunny nonexpansive retraction if and
only if for all x ∈ E and for all ξ ∈G,〈

x−QGx, J
(
QGx− ξ

)〉≥ 0. (2.13)

Denote by �E(G1,G2) the Hausdorff distance between sets G1 and G2 in the space E,
that is,

�E
(
G1,G2

)=max

{
sup
z1∈G1

inf
z2∈G2

∥∥z1− z2
∥∥, sup

z1∈G2

inf
z2∈G1

∥∥z1− z2
∥∥}. (2.14)

Lemma 2.7 [7]. Let E be a uniformly smooth Banach space, and let Ω1 and Ω2 be closed
convex subsets of E such that the Hausdorff distance �E(Ω1,Ω2) ≤ σ . If QΩ1 and QΩ2 are
the sunny nonexpansive retractions onto the subsets Ω1 and Ω2, respectively, then∥∥QΩ1x−QΩ2x

∥∥2 ≤ 16R(2r + q)hE
(
16LR−1σ

)
, (2.15)

where hE(τ)= τ−1ρE(τ), L is the Figiel constant, r = ‖x‖, q =max{q1,q2}, and R= 2(2r +
q) + σ . Here qi = dist(θ,Ωi), i= 1,2, and θ is the origin of the space E.
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3. Operator regularization method

We will deal with accretive operators A : E→ E and operator equation

Ax = f (3.1)

given on a closed convex subset G⊂D(A)⊆ E, where D(A) is a domain of A.
In the sequel, we understand a solution of (3.1) in the sense of a solution of the co-

variational inequality (see, e.g., [9])〈
Ax− f , J(y− x)

〉≥ 0, ∀y ∈G, x ∈G. (3.2)

The following statement is a motivation of this approach [25].

Theorem 3.1. Suppose that E is a reflexive Banach space with strictly convex dual space E∗.
Let A : E→ E be a hemicontinuous operator. If for fixed x∗ ∈ E and f ∈ E the co-variational
inequality 〈

Ax− f , J
(
x− x∗)〉≥ 0, ∀x ∈ E, (3.3)

holds, then Ax∗ = f .

In fact, the following more general theorem was proved in [8].

Theorem 3.2. Let E be a smooth Banach space and let A : E→ 2E be an accretive operator.
Then the following statements are equivalent:

(i) x∗ satisfies the covariational inequality〈
z− f , J

(
x− x∗)〉≥ 0, ∀z ∈ Ax, ∀x ∈ E; (3.4)

(ii) 0∈ R(Ax∗ − f ).

We present the following two definitions of a solution of the operator equation (3.1)
on G.

Definition 3.3. An element x∗ ∈ G is said to be a generalized solution of the operator
equation (3.1) on G if there exists z ∈ Ax∗ such that〈

z− f , J
(
y− x∗)〉≥ 0, ∀y ∈G. (3.5)

Definition 3.4. An element x∗ ∈ G is said to be a total solution of the operator equation
(3.1) on G if 〈

z− f , J
(
y− x∗)〉≥ 0, ∀y ∈G, ∀z ∈Ay. (3.6)

Lemma 3.5 [6]. Suppose that E is a reflexive Banach space with strictly convex dual space
E∗. Let A be an accretive operator. If an element x∗ ∈ G is the generalized solution of (3.1)
on G characterized by the inequality (3.5), then it satisfies also the inequality (3.6), that is,
it is a total solution of (3.1).



16 Nonlinear Ill-posed problems with accretive operators

Lemma 3.6 [6]. Suppose that E is a reflexive Banach space with strictly convex dual space
E∗. Let an operator A be either hemicontinuous or maximal accretive. If G⊂ intD(A), then
Definitions 3.3 and 3.4 are equivalent.

Lemma 3.7. Under the conditions of Lemma 3.6, the set of solutions of the operator equation
(3.1) on G is closed.

The proof follows from the fact that J is continuous in smooth reflexive Banach spaces
and any hemicontinuous or maximal accretive operator is demiclosed in such spaces.

For finding a solution x∗ of (3.1), we consider the regularized equation

Azα +αzα = f , (3.7)

where α is a positive parameter.
Let z0

α be a generalized solution of (3.7) on G, that is, there exists ζ0
α ∈Az0

α such that〈
ζ0
α +αz0

α− f , J
(
x− z0

α

)〉≥ 0, ∀x ∈G. (3.8)

Theorem 3.8. Assume that E is a reflexive Banach space with strictly convex dual space
E∗ and with origin θ, A is a hemicontinuous or maximal accretive operator with domain
D(A) ⊆ E, G ⊂ intD(A) is convex and closed, (3.1) has a nonempty generalized solution
set N ⊂ G. Then ‖z0

α‖ ≤ 2‖x̄∗‖, where x̄∗ is an element of N with minimal norm. If the
normalized duality mapping J is sequentially weakly continuous on E, then z0

α→ x̃∗ as α→ 0,
where x̃∗ ∈N is a sunny nonexpansive retractor of θ onto N , that is, a (necessarily unique)
solution of the inequality 〈

x̃∗, J
(
x∗ − x̃∗)〉≥ 0, ∀x∗ ∈N. (3.9)

Proof. First, we show that z0
α is the unique solution of (3.7). Suppose that u0

α is another
solution of this equation. Then along with (3.8), we have for some ξ0

α ∈Au0
α that〈

ξ0
α +αu0

α− f , J
(
x−u0

α

)〉≥ 0, ∀x ∈G. (3.10)

Since z0
α ∈G and u0

α ∈G, we have the inequalities〈
ζ0
α +αz0

α− f , J
(
u0
α− z0

α

)〉≥ 0,〈
ξ0
α +αu0

α− f , J
(
z0
α−u0

α

)〉≥ 0.
(3.11)

Summing these inequalities, we obtain

0≥ 〈ξ0
α − ζ0

α , J
(
z0
α−u0

α

)〉≥ α〈z0
α−u0

α, J
(
z0
α−u0

α

)〉= α∥∥z0
α−u0

α

∥∥2
. (3.12)

From this the claim follows.
Next, we prove that the sequence {z0

α} is bounded. Observe that the covariational in-
equality (3.8) implies that〈

ζ0
α +αz0

α− f , J
(
x∗ − z0

α

)〉≥ 0, ∀x∗ ∈N , (3.13)
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because x∗ ∈ G. At the same time, since x∗ is a generalized solution of (3.1), there exists
ξ∗ ∈ Ax∗ such that 〈

ξ∗ − f , J
(
z0
α− x∗

)〉≥ 0. (3.14)

Then (3.13) and (3.14) together give〈
ζ0
α − ξ∗ +αz0

α, J
(
x∗ − z0

α

)〉= 〈ζ0
α − ξ∗, J

(
x∗ − z0

α

)〉
+α
〈
z0
α, J
(
x∗ − z0

α

)〉≥ 0. (3.15)

By accretiveness of A, one gets 〈
z0
α, J
(
x∗ − z0

α

)〉≥ 0. (3.16)

The obtained inequality yields the estimates∥∥x∗ − z0
α

∥∥2 ≤ 〈x∗, J
(
x∗ − z0

α

)〉≤ ∥∥x∗∥∥∥∥x∗ − z0
α

∥∥. (3.17)

Hence, ‖z0
α‖ ≤ 2‖x∗‖ for all x∗ ∈N , that is, ‖z0

α‖ ≤ 2‖x̄∗‖. Note that x̄∗ exists because N
is closed and E is reflexive.

Show now that ‖z0
α − x̃∗‖ → 0 as α→ 0. Since {z0

α} is bounded, there exist a subse-
quence z0

β ⊂ z0
α and an element x̃ ∈ E such that z0

β ⇀ x̃ as β→ 0. Since z0
β ∈ G and G is

weakly closed (since it is closed and convex), we conclude that x̃ ∈G. Due to Lemma 3.6,
the inequality (3.8) is equivalent to the following one:〈

w+αx− f , J
(
x− z0

α

)〉≥ 0, ∀x ∈G, ∀w ∈Ax. (3.18)

Therefore 〈
w+βx− f , J

(
x− z0

β

)〉≥ 0, ∀x ∈G, ∀w ∈Ax. (3.19)

Passing to the limit in (3.19) as β→ 0 and using the weak continuity of J , one gets〈
w− f , J(x− x̃)

〉≥ 0, ∀x ∈G, ∀w ∈Ax. (3.20)

By Lemma 3.6 again, it follows that x̃ is a total (consequently, generalized) solution of
(3.1) on G.

We now show that x̃ = x̃∗ =QNθ and x̃∗ is unique. This will mean that z0
α⇀ x̃∗ as we

presumed above. Consider (3.17) on {z0
β} with x∗ = x̃. It is clear that ‖x̃− z0

β‖→ 0. Then
we deduce from (3.16) that 〈

x̃, J
(
x∗ − x̃)〉≥ 0, ∀x∗ ∈N. (3.21)

This means that x̃ =QNθ.
We prove that x̃ is a unique solution of the last inequality. Suppose that x̃1 ∈ N is its

another solution. Then 〈
x̃1, J

(
x∗ − x̃1

)〉≥ 0, ∀x∗ ∈N. (3.22)
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We have 〈
x̃, J
(
x̃1− x̃

)〉≥ 0,〈
x̃1, J

(
x̃− x̃1

)〉≥ 0.
(3.23)

Their combination gives 〈
x̃− x̃1, J

(
x̃1− x̃

)〉≥ 0, (3.24)

which contradicts the fact that ‖x̃− x̃1‖ ≥ 0. Thus, the claim is true.
Finally, the first inequality in (3.17) implies the strong convergence of {z0

α} to x̄∗. The
proof is accomplished. In particular, the theorem is valid if N is a singleton. �

Next we will study an operator regularization method for (3.1) with a perturbed right-
hand side, perturbed constraint set, and perturbed operator. Assume that, instead of f ,
G, and A, we have the sequences { f δ} ∈ E, {Gσ} ∈ E, and {Aω}, Aω :Gσ → E, such that∥∥ f δ − f

∥∥≤ δ,

�E
(
Gσ ,G

)≤ σ ,
(3.25)

where �E(G1,G2) is the Hausdorff distance (2.14), and∥∥Aωx−Ax∥∥≤ ωζ(‖x‖), ∀x ∈D, (3.26)

where ζ(t) is a positive and bounded function defined on R+ and D = D(A) = D(Aω).
Thus, in reality, the equations

Aωy = f δ (3.27)

are given on Gσ , σ ≥ 0. Consider the following regularized equation on Gσ :

Aωz+αz = f δ . (3.28)

Let z
γ
α with γ = (δ,σ ,ω) be its (unique) generalized solution. This means that there exists

y
γ
α ∈Aωzγα such that 〈

y
γ
α +αz

γ
α− f δ , J

(
x− zγα)〉≥ 0, ∀x ∈Gσ. (3.29)

Theorem 3.9. Assume that

(i) in real uniformly smooth Banach space E with the modulus of smoothness ρE(τ), all
the conditions of Theorem 3.8 are fulfilled;

(ii) (3.28) has bounded generalized solutions z
γ
α for all δ ≥ 0, σ ≥ 0, ω ≥ 0, and α > 0;

(iii) the operators Aω are accretive and bounded (i.e., they carry bounded sets of E to
bounded sets of E);

(iv) G⊂D and Gσ ⊂D are convex and closed sets;
(v) the estimates (3.25) and (3.26) are satisfied for δ ≥ 0, σ ≥ 0, and ω ≥ 0.
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If

δ +ω+hE(σ)
α

−→ 0 as α−→ 0, (3.30)

then z
γ
α→ x̄∗, where x̄∗ is a sunny nonexpansive retractor of θ onto N .

Proof. Write the obvious inequality

∥∥zγα− x̄∗∥∥≤ ∥∥z0
α− x̄∗

∥∥+
∥∥zγα− z0

α

∥∥, (3.31)

where z0
α is a generalized solution of (3.7). The limit relation ‖z0

α− x̄∗‖ → 0 has been al-
ready established in Theorem 3.8. At the same time, the result ‖zγα− z0

α‖→ 0 immediately
follows from Lemma 4.1 proved in the next section. The condition (3.30) is sufficient for
this conclusion. �

Remark 3.10. We do not suppose that in the operator equation (3.28) every operator
Aω has been defined on every set Gσ . Only possibility for the parameters ω and σ to be
simultaneously rushed to zero is required.

4. Proximity lemma

We further present the proximity lemma between solutions of two regularized equations

T1z1 +α1z1 = f1, α1 > 0, (4.1)

T2z2 +α2z2 = f2, α2 > 0, (4.2)

on G1 and G2, respectively, provided their intersection G1
⋂
G2 is not empty.

Lemma 4.1 (cf. [3]). Suppose that

(i) E is a real uniformly smooth Banach space with the modulus of smoothness ρE(τ);
(ii) the solution sequences {z1} and {z2} of (4.1) and (4.2), respectively, are bounded,

that is, there exists a constant M1 > 0 such that ‖z1‖ ≤M1 and ‖z2‖ ≤M1;
(iii) the operators T1 and T2 are accretive and bounded on the sequences {z1} and {z2},

that is, there exist constantsM2 > 0 andM3 > 0 such that ‖T1z1‖ ≤M2 and ‖T2z2‖ ≤
M3;

(iv) G1 ⊂D and G2 ⊂D are convex and closed subsets of E and D =D(T1)=D(T2);
(v) the estimates ‖ f1− f2‖ ≤ δ, �E(G1,G2)≤ σ , and ‖T1z−T2z‖ ≤ ωζ(‖z‖),∀z ∈D,

are fulfilled. Then

∥∥z1− z2
∥∥≤ ζ(M1

) ω
α1

+
δ

α1
+M1

∣∣α1−α2
∣∣

α1
+

√
c1hE

(
c2σ

)
α1

, (4.3)

where

c1 = 8R
(
2α1M1 +M2 +M3 +

∥∥ f1∥∥+
∥∥ f2∥∥), c2 = 16LR−1, R= 2M1 + σ. (4.4)
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Proof. Solutions z1 ∈G1 and z2 ∈G2 of the operator equations (4.1) and (4.2) are defined
by the following co-variational inequalities, respectively:〈

T1z1 +α1z1− f1, J
(
x− z1

)〉≥ 0, ∀x ∈G1, α1 > 0, (4.5)〈
T2z2 +α2z2− f2, J

(
x− z2

)〉≥ 0, ∀x ∈G2, α2 > 0. (4.6)

Estimate a dual product

B = 〈T1z1 +α1z1− f1−T2z2−α2z2 + f2, J
(
z1− z2

)〉
. (4.7)

Obviously,

B = 〈T1z1−T1z2 +α1
(
z1− z2

)
+T1z2−T2z2 +

(
α1−α2

)
z2 + f2− f1, J

(
z1− z2

)〉
. (4.8)

The operator T1 is accretive, therefore,〈
T1z1−T1z2, J

(
z1− z2

)〉≥ 0. (4.9)

Then

B ≥ α1
∥∥z1− z2

∥∥2− (∥∥T1z2−T2z2
∥∥+

∣∣α1−α2
∣∣∥∥z2

∥∥+
∥∥ f1− f2

∥∥)∥∥z1− z2
∥∥. (4.10)

Since ‖z2‖ ≤M1, we conclude in conformity with (v) that

B ≥−c∥∥z1− z2
∥∥+α1

∥∥z1− z2
∥∥2

, (4.11)

where

c = ωζ(M1
)

+M1
∣∣α1−α2

∣∣+ δ. (4.12)

Next, if �E(G1,G2)≤ σ , then for every z2 ∈G2 there exists z̃ ∈G1 such that ‖z2− z̃‖ ≤ σ
and 〈

T1z1 +α1z1− f1, J
(
z1− z2

)〉
= 〈T1z1 +α1z1− f1, J

(
z1− z2

)
+ J
(
z1− z̃

)− J(z1− z̃
)〉

= 〈T1z1 +α1z1− f1, J
(
z1− z̃

)〉
+
〈
T1z1 +α1z1− f1, J

(
z1− z2

)− J(z1− z̃
)〉
.

(4.13)

By (4.5), 〈
T1z1 +α1z1− f1, J

(
z1− z̃

)〉≤ 0. (4.14)

Estimate the last term in (4.13). For this recall that if ‖x‖ ≤ R and ‖y‖ ≤ R, then (see [2,
page 38]) ∥∥J(x)− J(y)

∥∥∗ ≤ 8RhE
(
16LR−1‖x− y‖). (4.15)
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For ‖z1− z2‖ ≤ 2M1 and ‖z1− z̃‖ ≤ 2M1 + σ = R, this implies that

〈
T1z1 +α1z1− f1, J

(
z1− z2

)− J(z1− z̃
)〉

≤ ∥∥T1z1 +α1z1− f1
∥∥∥∥J(z1− z2

)− J(z1− z̃
)∥∥∗

≤ 8R
(
α1
∥∥z1

∥∥+
∥∥T1z1

∥∥+
∥∥ f1∥∥)hE(16LR−1

∥∥z2− z̃
∥∥)

≤ 8R
(
α1M1 +M2 +

∥∥ f1∥∥)hE(16LR−1σ
)
.

(4.16)

Analogously to the previous chain of inequalities,

〈
T2z2 +α2z2− f2, J

(
z2− z1

)〉≤ 8R
(
α1M1 +M3 +

∥∥ f2∥∥)hE(16LR−1σ
)
. (4.17)

Therefore,

B ≤ c1hE
(
c2σ

)
. (4.18)

Finally, combining (4.11) with (4.18), one gets

c1hE
(
c2σ

)
+ c
∥∥z1− z2

∥∥≥ α1
∥∥z1− z2

∥∥2
. (4.19)

This quadratic inequality gives

∥∥z1− z2
∥∥≤ c+

√
c2 + 4α1c1hE

(
c2σ

)
2α1

≤ c

α1
+

√
c1hE

(
c2σ

)
α1

, (4.20)

because
√
a+ b≤√a+

√
b for all a,b ≥ 0. Thus, (4.3) holds. �

From Theorem (3.10) and Lemma 4.1 we obtain the following corollary.

Corollary 4.2. If, in the conditions of Lemma 4.1,ω = δ = σ = 0, that is, T1 = T2, f1 = f2,
and G1 =G2, then

∥∥z1− z2
∥∥≤ 2

∥∥x∗∥∥∣∣α1−α2
∣∣

α1
. (4.21)

5. Iterative regularization methods

5.1. We begin by considering iterative regularization with exact given data.

Theorem 5.1. Let E be a real uniformly smooth Banach space with the modulus of smooth-
ness ρE(τ), let A : E → E be a bounded accretive operator with D(A) ⊆ E, and let G ⊂
intD(A) be a closed convex set. Suppose that (3.1) has a generalized solution x∗ on G. Let
{εn} and {αn} be real sequences such that εn ≤ 1, αn ≤ 1. Starting from arbitrary x0 ∈ G
define the sequence {xn} as follows:

xn+1 :=QG
(
xn− εn

(
Axn +αnxn− f

))
, n= 0,1,2, . . . , (5.1)
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where QG is a nonexpansive retraction of E onto G. Then there exists 1 > d > 0 such that
whenever

εn ≤ d,
ρE
(
εn
)

εnαn
≤ d2 (5.2)

for all n≥ 0, the sequence {xn} is bounded.

Proof. Denote by Br(x∗) the closed ball of radius r with the center in x∗. Choose r > 0
sufficiently large such that r ≥ 2‖x∗‖ and x0 ∈ Br(x∗). Construct the set S= Br(x∗)∩G
and let

M := 3
2
r +‖ f ‖+ sup

{‖Ax‖ : x ∈ S}. (5.3)

We claim that {xn} is bounded in our circumstances. Show by induction that xn ∈ S for
all positive integers. Actually, x0 ∈ S by the assumption. Hence, for given n > 0, we may
presume the inclusion xn ∈ S and prove that xn+1 ∈ S. Suppose that xn+1 does not belong
to S. Since xn+1 ∈ G, this means that ‖xn+1− x∗‖ > r. By (5.1) and due to the nonexpan-
siveness of QG, we have∥∥xn+1− x∗

∥∥= ∥∥QG
(
xn− εn

(
Axn +αnxn− f

))−QGx
∗∥∥

≤ ∥∥xn− x∗ − εn(Axn +αnxn− f
)∥∥

≤ ∥∥xn− x∗∥∥+ εn
∥∥Axn +αnxn− f

∥∥
≤ ∥∥xn− x∗∥∥+

∥∥Axn∥∥+
∥∥xn− x∗∥∥+

∥∥x∗∥∥+‖ f ‖
≤ r + sup

x∈S
‖Ax‖+ r +

1
2
r +‖ f ‖ = r +M =M.

(5.4)

In the next calculations, we apply Lemma 2.2 with x = xn+1 − x∗ and y = xn − x∗. It is
easy to see that

‖x‖ = ∥∥xn+1− x∗
∥∥≤M, ‖y‖ = ∥∥xn− x∗∥∥≤ r,

‖x− y‖ = ∥∥xn+1− xn
∥∥≤ εn∥∥Axn +αnxn− f

∥∥≤ εnM. (5.5)

Thus, max{‖x‖,‖y‖} ≤M, and we have

〈
xn+1− xn, J

(
xn+1− x∗

)− J(xn− x∗)〉≤ 2LM
2
ρE
(
4MM

−1εn
)
, (5.6)

because the function ρE(τ) is nondecreasing [18, 21]. Besides, the function ρE(τ) is con-

vex, therefore, ρE(cτ)≤ cρE(τ), for all c ≤ 1. Since MM
−1 ≤ 1, (5.6) yields〈

xn+1− xn, J
(
xn+1− x∗

)− J(xn− x∗)〉≤ 2LMMρE
(
4εn
)
. (5.7)

Then using the facts that ρE(τ) is continuous, 0≤ εn ≤ 1, and by [16],

2≤ lim
τ→0

ρE(4τ)
ρE(2τ)

≤ 4, (5.8)
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we conclude that there is a constant C > 1 such that〈
xn+1− xn, J

(
xn+1− x∗

)− J(xn− x∗)〉≤ 8LCMMρE
(
εn
)
. (5.9)

Moreover, by (2.3), (5.1), (5.6) and by the inclusion xn ∈ S, one gets∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗ − εn(Axn +αnxn− f

)∥∥2

≤ ∥∥xn− x∗∥∥2− 2εn
〈
Axn− f , J

(
xn− x∗

)〉
− 2εnαn

〈
xn, J

(
xn− x∗

)〉
+ 16LCMMρE

(
εn
)
.

(5.10)

Since x∗ is a generalized solution of (3.1) on G and xn ∈G for all n≥ 0, we can write〈
Axn− f , J

(
xn− x∗

)〉≥ 0. (5.11)

Then (5.10) implies the inequality∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2− 2εnαn

〈
xn, J

(
xn− x∗

)〉
+ 16LCMρE

(
εn
)
. (5.12)

Choose K > 0 such that

K ≤ r2

4(
√
D+M)2

, (5.13)

where D = 8LCMM. Set d := √K . It is not difficult to verify that 1 > d > 0. By virtue
of our assumption, ‖xn+1 − x∗‖ > ‖xn − x∗‖. This allows us to deduce from (5.12) the
following estimate:

εnαn
〈
xn, J

(
xn− x∗

)〉≤ 8LCMMρE
(
εn
)
. (5.14)

It gives the inequality 〈
xn, J

(
xn− x∗

)〉≤DK (5.15)

because of the assumption that

ρE
(
εn
)

αnεn
≤ K = d2, ∀n≥ 0. (5.16)

Now adding 〈−x∗, J(xn− x∗)〉 to both sides of (5.15), we get∥∥xn− x∗∥∥2 ≤ KD+
〈− x∗, J

(
xn− x∗

)〉
≤ KD+

∥∥x∗∥∥∥∥xn− x∗∥∥≤ KD+
r

2

∥∥xn− x∗∥∥. (5.17)

Solving this quadratic inequality for ‖xn− x∗‖ and using the estimate√
r2

16
+KD ≤ r

4
+
√
KD, (5.18)
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we derive that

∥∥xn− x∗∥∥≤ r

2
+
√
KD. (5.19)

In any case,

∥∥xn+1− x∗
∥∥≤ ∥∥xn− x∗∥∥+ εn

∥∥Axn +αnxn− f
∥∥, (5.20)

so that

∥∥xn+1− x∗
∥∥≤ r

2
+
√
KD+ εnM < r, (5.21)

by the original choices of K and εn, and this contradicts the assumption that xn+1 is not
in S. Therefore xn ∈ S for any integers n≥ 0. Thus {xn} is bounded, say, ‖xn‖ ≤ C̃. �

In what follows, we suppose that the normalized duality mapping J is continuous and
sequentially weakly continuous in the ball Br(θ) with r = C̃. We show that xn→ x̄∗, where
x̄∗ is a unique solution of (3.9).

Theorem 5.2. Assume that all the conditions of Theorems 3.8 and 5.1 are fulfilled. In addi-
tion, let αn→ 0 as n→∞,

εn
αn
−→ 0,

∣∣αn−αn+1
∣∣

εnα2
n

−→ 0,
ρE
(
εn
)

εnαn
−→ 0. (5.22)

Then the sequence {xn} generated by (5.1) converges strongly to x̄∗ as n→∞.

Proof. So, by Theorem 5.1, {xn} is bounded by a constant C̃. Let zn and zn+1 be general-
ized solutions of the equation

Az+αkz = f (5.23)

onG for k = n and k = n+ 1, respectively. It follows from (4.3) and (5.22) that there exists
a constant d > 0 such that ‖zn− zn+1‖ ≤ d. Put

pn = xn− εn
(
Axn +αnxn− f

)
. (5.24)

Then by (5.1) and by convexity of the functional ‖x‖2, we have that

∥∥xn+1− zn+1
∥∥2 = ∥∥QGpn−QGzn+1

∥∥2

≤ ∥∥pn− zn+1
∥∥2

≤ ∥∥pn− zn∥∥2
+ 2
〈
zn+1− zn, J

(
zn+1− pn

)〉
≤ ∥∥pn− zn∥∥2

+ 2
〈
zn+1− zn, J

(
zn− pn

)〉
+ 2
〈
zn+1− zn, J

(
zn+1− pn

)− J(zn− pn
)〉
.

(5.25)
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We continue the estimation of (5.25) using Lemma 2.1. It is easy to see that if H is a
Hilbert space and τ ≤ τ̄, then [18, 21]

ρE(τ)≥ ρH(τ)= (1 + τ2)1/2− 1≥ c̄τ2, (5.26)

where

c̄ =
(√

1 + τ̄2 + 1
)−1

. (5.27)

One gets

∥∥xn+1− zn+1
∥∥2 ≤ ∥∥pn− zn∥∥2

+ 2
∥∥zn− pn

∥∥ ·∥∥zn+1− zn
∥∥

+ 16
∥∥zn+1− zn

∥∥2
+C1(n)ρE

(∥∥zn+1− zn
∥∥), (5.28)

where

C1(n)= 8max
{

2L,
∥∥zn− pn

∥∥+
∥∥zn+1− pn

∥∥}
≤ 8max

{
2L, C̃+M + 2

∥∥x∗∥∥}= C1,
(5.29)

where M is defined by (5.3). Therefore, due to Corollary 4.2,

∥∥xn+1− zn+1
∥∥2 ≤ ∥∥pn− zn∥∥2

+ 4

∣∣αn−αn+1
∣∣

αn
·∥∥x∗∥∥ ·∥∥pn− zn∥∥

+
(
16c̄−1 +C1

)
ρE

(
2
(
αn−αn+1

)
αn

∥∥x∗∥∥),

(5.30)

and in (5.27) τ̄ = d ≥ ‖zn+1− zn‖ = τ.
Now we evaluate ‖pn− zn‖2. The convexity inequality (2.3) yields

∥∥pn− zn∥∥2 = ∥∥xn− εn(Axn +αnxn− f
)− zn∥∥2

≤ ∥∥xn− zn∥∥2− 2εn
〈
Axn +αnxn− f , J

(
pn− zn

)〉
= ∥∥xn− zn∥∥2− 2εn

〈
Axn +αnxn− f , J

(
xn− zn

)〉
+ 2
〈
pn− xn, J

(
pn− zn

)− J(xn− zn)〉.
(5.31)

Since

〈
Azn +αnzn− f , J

(
xn− zn

)〉≥ 0, (5.32)

and by the accretiveness property of A,

〈
Axn−Azn, J

(
xn− zn

)〉≥ 0, (5.33)
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we deduce∥∥pn− zn∥∥2 ≤ ∥∥xn− zn∥∥2− 2εnαn
∥∥xn− zn∥∥2

+ 2
〈
pn− xn, J

(
pn− zn

)− J(xn− zn)〉
≤ ∥∥xn− zn∥∥2− 2εnαn

∥∥xn− zn∥∥2
+ 16ε2

n

∥∥Axn +αnxn− f
∥∥2

+C2(n)ρE
(
εn
∥∥Axn +αnxn− f

∥∥),
(5.34)

where

C2(n)= 4max
{

2L,
∥∥zn− pn

∥∥+
∥∥xn− zn∥∥}

≤ 4max
{

2L,2C̃+M + 2
∥∥x∗∥∥}= C2.

(5.35)

Substituting (5.34) for (5.30) and using the fact that ρE(τ)≤ τ, we obtain∥∥xn+1− zn+1
∥∥2 ≤ ∥∥xn− zn∥∥2− 2εnαn

∥∥xn− zn∥∥2
+ 16ε2

nM
2

+C2ρE
(
εnM

)
+C3

∣∣αn−αn+1
∣∣

αn
,C1

)
ρE

((
αn−αn+1

)
αn

M

)
,

(5.36)

where

C3 =MC1 + 4
∥∥x∗∥∥(C̃+M + 2

∥∥x∗∥∥)+ 32Mc̄−1. (5.37)

Therefore, by Lemma 2.3 and by hypothesis (5.22), we conclude that ‖xn − zn‖ → 0. In
addition, by Theorem 3.8,∥∥xn− x̄∗∥∥≤ ∥∥xn− zn∥∥+

∥∥zn− x̄∗∥∥−→ 0 as n−→∞, (5.38)

which implies that {xn} converges strongly to x̄∗. �

5.2. In this subsection, we study an iterative regularization method for (3.1) with a per-
turbed operator and perturbed right-hand side. Assume that, instead of f and A, we have
the sequences { fn}, fn ∈ E, and {An}, An :D(An)⊆ E→ E, such that∥∥ fn− f

∥∥≤ δn,∥∥Anx−Ax∥∥≤ ωnζ(‖x‖)+µn, ∀x ∈G,
(5.39)

where ζ(t) is a positive and bounded function defined on R+, G⊂D(An) and G⊂D(A).
Thus, in reality, the following equations are given:

Any = fn, (5.40)

which may not have a solution. Consider the regularizing iterative algorithm

yn+1 =QG
(
yn− εn

(
Anyn +αnyn− fn

))
, n= 0,1,2, . . . , (5.41)

where QG is a nonexpansive retraction of E onto G.
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Theorem 5.3. Assume that all the conditions of Theorems 3.8 and 5.1 are fulfilled. Suppose
that there exist sequences of positive numbers ωn, µn, and δn converging to zero as n→∞,
such that (5.39) holds. Suppose that

αn −→ 0,
ωn +µn + δn

αn
−→ 0,

ρE
(
εn
)

εnαn
−→ 0,

∣∣αn−αn+1
∣∣

εnα2
n

−→ 0 (5.42)

as n→∞. Starting from arbitrary y0 ∈ G define the sequence {yn} by (5.41). Then there
exists 1 > d > 0 such that whenever

εn ≤ d,
ρE
(
εn
)

εnαn
≤ d2 (5.43)

for all n≥ 0, the sequence {yn} is bounded and converges in norm to the solution x̄∗, where
x̄∗ is the unique solution of inequality (3.9).

Proof. First of all, as in the proof of Theorem 5.1, we aim at showing that {yn} is bounded.
To this end, introduce again a closed ball Br(x∗) with sufficiently large radius r > 0 such
that r ≥ 2‖x∗‖ and y0 ∈ Br(x∗). And construct again the set S = Br(x∗)∩G. Without
loss of generality, according to (5.42), put ωn ≤ ω̄, µn ≤ µ̄, δn ≤ δ̄, and

M := 3
2
r +‖ f ‖+ sup

{‖Ay‖ : y ∈ S}+ ω̄Mζ + µ̄+ δ̄, (5.44)

where

Mζ = sup
{
ζ
(‖y‖) : y ∈ S}. (5.45)

We claim that {yn} is bounded.
Assume that yn ∈ S and show that yn+1 ∈ S. We denote

pn = yn− εn
(
Anyn +αnyn− fn

)
. (5.46)

The operator QG is nonexpansive, therefore, by (5.41) we have∥∥yn+1− x∗
∥∥≤ ∥∥QGpn−QGx

∗∥∥
≤ ∥∥yn− x∗ − εn(Anyn +αnyn− fn

)∥∥
≤ ∥∥yn− x∗∥∥+ εn

∥∥Anyn +αnyn− fn
∥∥

≤ ∥∥yn− x∗∥∥+
∥∥Ayn∥∥+

∥∥Anyn−Ayn∥∥
+
∥∥yn− x∗∥∥+

∥∥x∗∥∥+‖ f ‖+
∥∥ fn− f

∥∥.
(5.47)

Then ∥∥yn+1− x∗
∥∥≤ r + sup

y∈S
‖Ay‖+ωn sup

y∈S
ζ
(‖y‖)+µn + r +

1
2
r +‖ f ‖+ δn

≤ r +M =M,
(5.48)

∥∥yn+1− yn
∥∥= εn∥∥Anyn +αnyn− fn

∥∥≤ εnM. (5.49)
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Moreover, by (2.3), (2.6), and (5.41) one gets similarly to (5.10) that

∥∥yn+1− x∗
∥∥2 ≤ ∥∥yn− x∗ − εn(Anyn +αnyn− fn

)∥∥2

≤ ∥∥yn− x∗∥∥2− 2εn
〈
Anyn− fn, J

(
yn− x∗

)〉
− 2εnαn

〈
yn, J

(
yn− x∗

)〉
+ 16LCMMρE

(
εn
)

≤ ∥∥yn− x∗∥∥2− 2εn
〈
Ayn− f , J

(
yn− x∗

)〉
− 2εn〈Anyn−Ayn, J

(
yn− x∗)〉− 2εn

〈
fn− f , J

(
yn− x∗

)〉
− 2εnαn

〈
yn, J

(
yn− x∗

)〉
+ 16LCMMρE

(
εn
)
.

(5.50)

Since x∗ is a solution of the equation Ax = f on G and yn ∈G for all n≥ 0, we can write

〈
Ayn− f , J

(
yn− x∗

)〉≥ 0. (5.51)

Then (5.50) implies the inequality

∥∥yn+1− x∗
∥∥2 ≤ ∥∥yn− x∗∥∥2− 2εnαn

〈
yn, J

(
yn− x∗

)〉
+ 2εn

(
ωnMζ +µn + δn

)∥∥yn− x∗∥∥+ 16LMCMρE
(
εn
)
.

(5.52)

Denoting D = 8LCMM + rM+
ζ , where M+

ζ =max{1,Mζ}, we obtain

〈
yn, J

(
yn− x∗

)〉≤ 8LCMM
ρE
(
εn
)

εnαn
+
r
(
ωnMζ +µn + δn

)
αn

≤DK , (5.53)

because of the given inequalities

ρE
(
εn
)

αnεn
≤ K = d2,

ωn +µn + δn
αn

≤ K = d2, ∀n≥ 0. (5.54)

The rest of the boundedness proof of {yn} follows as in the proof of Theorem 5.1. Thus,
there exists C̃ such that ‖yn‖ ≤ C̃.

We present next the convergence analysis of (5.41). By convexity of ‖x‖2, we obtain as
in (5.25) the following:

∥∥yn+1− zn+1
∥∥2 ≤ ∥∥yn+1− zn

∥∥2
+ 2
〈
zn+1− zn, J

(
zn+1− yn+1

)〉
≤ ∥∥yn+1− zn

∥∥2
+ 2
〈
zn+1− zn, J

(
zn− yn+1

)〉
+ 2
〈
zn+1− zn, J

(
zn+1− yn+1

)− J(zn− yn+1
)〉

≤ ∥∥yn+1− zn
∥∥2

+ 2
∥∥zn− yn+1

∥∥ ·∥∥zn+1− zn
∥∥

+
(
16c̄−1 +C1

)
ρE
(∥∥zn+1− zn

∥∥),
(5.55)
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where C1 is defined by (5.29). Moreover,

∥∥yn+1− zn
∥∥2 = ∥∥QGpn−QGzn

∥∥2 ≤ ∥∥pn− zn∥∥2

≤ ∥∥yn− zn∥∥2
+ 2
〈
pn− yn, J

(
pn− zn

)〉
= ∥∥yn− zn∥∥2

+ 2
〈
pn− yn, J

(
yn− zn

)〉
+ 2
〈
pn− yn, J

(
pn− zn

)− J(yn− zn)〉
= ∥∥yn− zn∥∥2− 2εn

〈
Anyn +αnyn− fn, J

(
yn− zn

)〉
+ 2
〈
pn− yn, J

(
pn− zn

)− J(yn− zn)〉
≤ ∥∥yn− zn∥∥2− 2εn

〈
Azn +αnzn− f , J

(
yn− zn

)〉
+ 2εn

(∥∥Anyn−Ayn∥∥+
∥∥ fn− f

∥∥)∥∥yn− zn∥∥− 2εnαn
∥∥yn− zn∥∥2

+ 2
〈
pn− yn, J

(
pn− zn

)− J(yn− zn)〉.

(5.56)

Now (5.39), (5.46), and (5.56) yield

∥∥yn+1− zn
∥∥2 ≤ ∥∥yn− zn∥∥2− 2εnαn

∥∥yn− zn∥∥2
+ 2εn

∥∥yn− zn∥∥(ωnζ(∥∥yn∥∥)+µn + δn
)

+ 2
〈
pn− yn, J

(
pn− zn

)− J(yn− zn)〉
≤ ∥∥yn− zn∥∥2− 2εnαn

∥∥yn− zn∥∥2
+ 2εn

∥∥yn− zn∥∥(ωnζ(∥∥yn∥∥)+µn + δn
)

+ 16
∥∥pn− yn

∥∥2
+C4(n)ρE

(∥∥pn− yn
∥∥),

(5.57)

where

C4(n)= 8max
{

2L,
∥∥zn− yn

∥∥+
∥∥zn− pn

∥∥}. (5.58)

Since {yn} and {zn} are bounded and A is a bounded operator, there exists a constant
d1 > 0 such that

∥∥pn− yn
∥∥= εn∥∥Anyn +αnyn− fn

∥∥≤ εnd1,

C4(n)≤ 8max
{

2L, C̃+M + 2
∥∥x∗∥∥}= C4.

(5.59)

Then

16ε2
nd

2
1 +C4(n)ρE

(
εnd1

)≤ C5ρE
(
εnd1

)
, (5.60)

where

C5 =
(
16d̄−1 +C4

)
, d̄ =

(√
1 +d2

1 + 1
)−1

. (5.61)
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Substituting (5.57) for (5.55), we deduce that∥∥yn+1− zn+1
∥∥2 ≤ (1− 2εnαn

)∥∥yn− zn∥∥2
+ 2εn

∥∥yn− zn∥∥(ωnζ(∥∥yn∥∥)+ δn +µn
)

+C5ρE
(
εnd1

)
+C6ρE

(∥∥zn+1− zn
∥∥)

+ 2
∥∥zn− yn+1

∥∥ ·∥∥zn+1− zn
∥∥,

(5.62)

where C6 = 16c̄−1 +C1. Finally, there exists C > 0 such that ‖yn− zn‖ ≤ C and then∥∥yn+1− zn+1
∥∥2 ≤ ∥∥yn− zn∥∥2− 2εnαn

∥∥yn− zn∥∥2
+ 2εnC

(
ωnζ(C̃) + δn +µn

)
+C5ρE

(
εnd1

)
+ 2
∥∥x∗∥∥(C6 +C

)∣∣αn−αn+1
∣∣

αn
,

(5.63)

because ρE(τ) ≤ τ. Now, the conclusion ‖yn − zn‖ → 0 follows from Lemma 2.3. By
Theorem 3.8, ∥∥yn− x∗∥∥≤ ∥∥yn− zn∥∥+

∥∥zn− x∗∥∥−→ 0 as n−→∞. (5.64)

Thus, {yn} converges strongly to x∗. The proof is accomplished. �

5.3. Next we study the iterative regularization method for (3.1) defined by

wn+1 :=QGn+1

(
wn− εn

(
Awn +αnwn− f

))
, n= 0,1,2, . . . , (5.65)

on approximately given setsGn, where, for each n,QGn is a sunny nonexpansive retraction
of E onto Gn.

Theorem 5.4. Assume that all the conditions of Theorems 3.8 and 5.1 are fulfilled andGn ⊆
intD(A), n = 1,2, . . . , are closed convex sets such that the Hausdorff distance �E(Gn,G) ≤
σn ≤ σ̄ , σn+1 ≤ σn. Denote G= G⋃G̃, where G̃=⋃Gn. Assume that an operator A : G→ E
is accretive and bounded. Assume that conditions (5.22) hold and that√

hE
(
σn
)

εnαn
−→ 0 as n−→∞. (5.66)

If the iterative sequence {wn} generated by (5.65) is bounded, then it converges strongly to
x̄∗, where x̄∗ is the unique solution of inequality (3.9).

Proof. Denote

Zx = x− εn
(
Ax+αnx− f

)
. (5.67)

Since {wn} is bounded and, hence, {Awn} is also bounded, then there exists a constant
d > 0 such that ∥∥Zwn

∥∥= ∥∥wn− εn
(
Awn +αnwn− f

)∥∥≤ d. (5.68)

By analogy, ∥∥Zxn∥∥= ∥∥xn− εn(Axn +αnxn− f
)∥∥≤ d, (5.69)



Ya. I. Alber et al. 31

where {xn} is the bounded sequence generated by (5.1) (see Theorem 5.2). From (5.65)
and (5.1), we have∥∥wn+1− xn+1

∥∥= ∥∥QGn+1Zwn−QGZxn
∥∥

≤ ∥∥QGZwn−QGZxn
∥∥+

∥∥QGn+1Zwn−QGZwn

∥∥. (5.70)

Estimate the first term of the right-hand side of the previous inequality:

∥∥QGZwn−QGZxn
∥∥2 ≤ ∥∥Zwn−Zxn

∥∥2

≤ ∥∥wn− xn
∥∥2− 2εn

〈
Awn−Axn +αn

(
wn− xn

)
, J
(
Zwn−Zxn

)〉
≤ ∥∥wn− xn

∥∥2− 2εnαn
∥∥wn− xn

∥∥2− 2εn
〈
Awn−Axn, J

(
wn− xn

)〉
− 2εn

〈
Awn−Axn +αn

(
wn− xn

)
, J
(
Zwn−Zxn

)− J(wn− xn
)〉

≤ ∥∥wn− xn
∥∥2− 2εnαn

∥∥wn− xn
∥∥2

+ 16ε2
n

∥∥Awn−Axn +αn
(
wn− xn

)∥∥2

+C7(n)ρE
(
εn
∥∥Awn−Axn +αn

(
wn− xn

)∥∥),

(5.71)

where

C7(n)= 8max
{

2L,
∥∥Zwn−Zxn

∥∥+
∥∥wn− xn

∥∥}. (5.72)

Thus, there exists a constant C7 > 0 such that C7(n)≤ C7.
Using Lemma 2.7, we come to the following inequality:

∥∥QGn+1Zwn−QGZwn

∥∥≤ 16(R+ σ̄)(2d+ q)hB
(
8q−1σn+1

)
, (5.73)

where R = 2(2d + q), q =max{q1,q2}, q1 = dist(θ,G1), q2 =max{dist(θ,Gn)}, n = 0,1,
2, . . . , and θ is the origin of the Banach space E. Hence, from (5.70), (5.71), and (5.73) we
get

∥∥wn+1− xn+1
∥∥2 ≤ ∥∥wn− xn

∥∥2− 2εnαn
∥∥wn− xn

∥∥2
+ 16ε2

nC+C7ρE
(
εnC

)
+
(
C̄hB

(
8q−1σn+1

))1/2
,

(5.74)

for C̄ = 16(R+ σ̄)(2d+ q) and some C > 0.
Since (5.66) holds, we conclude that ‖wn− xn‖ → 0 as n→∞. Thus, for all n≥ 0, one

has

∥∥wn+1− x̄∗
∥∥≤ ∥∥wn+1− xn+1

∥∥+
∥∥xn+1− x̄∗

∥∥, (5.75)

and, therefore,

∥∥wn− x̄∗
∥∥−→ 0 as n−→∞. (5.76)

The proof is complete. �
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Remark 5.5. Obviously, if Gn are bounded, then all wn are bounded too.

Now we are able to combine Theorems 5.2, 5.3, and 5.4 in order to investigate the
iterative regularization method for (3.1) with perturbed data A, f , and G defined by the
following algorithm:

un+1 :=QGn+1

(
un− εn

(
Anun +αnun− fn

))
, n= 0,1,2, . . . . (5.77)

Theorem 5.6. Suppose that the conditions of Theorems 5.2, 5.3, and 5.4 are fulfilled. If
the iterative sequence {wn} generated by (5.77) is bounded, then it converges strongly to x̄∗,
where x̄∗ is the unique solution of inequality (3.9).
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