INVARIANT APPROXIMATIONS, GENERALIZED *I*-CONTRACTIONS, AND *R*-SUBWEAKLY COMMUTING MAPS

NASEER SHAHZAD

Received 11 May 2004 and in revised form 23 August 2004

We present common fixed point theory for generalized contractive *R*-subweakly commuting maps and obtain some results on invariant approximation.

1. Introduction and preliminaries

Let S be a subset of a normed space $X = (X, \|\cdot\|)$ and T and I self-mappings of X. Then T is called (1) nonexpansive on S if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in S$; (2) Inonexpansive on S if $||Tx - Ty|| \le ||Ix - Iy||$ for all $x, y \in S$; (3) I-contraction on S if there exists $k \in [0,1)$ such that $||Tx - Ty|| \le k ||Ix - Iy||$ for all $x, y \in S$. The set of fixed points of T (resp., I) is denoted by F(T) (resp., F(I)). The set S is called (4) pstarshaped with $p \in S$ if for all $x \in S$, the segment [x, p] joining x to p is contained in S (i.e., $kx + (1 - k)p \in S$ for all $x \in S$ and all real k with $0 \le k \le 1$); (5) convex if S is pstarshaped for all $p \in S$. The convex hull co(S) of S is the smallest convex set in X that contains S, and the closed convex hull clco(S) of S is the closure of its convex hull. The mapping T is called (6) compact if cl T(D) is compact for every bounded subset D of S. The mappings T and I are said to be (7) commuting on S if ITx = TIx for all $x \in S$; (8) *R*-weakly commuting on *S* [7] if there exists $R \in (0, \infty)$ such that $||TIx - ITx|| \le 1$ R||Tx - Ix|| for all $x \in S$. Suppose $S \subset X$ is *p*-starshaped with $p \in F(I)$ and is both T- and I-invariant. Then T and I are called (8) R-subweakly commuting on S [11] if there exists $R \in (0, \infty)$ such that $||TIx - ITx|| \le R \operatorname{dist}(Ix, [Tx, p])$ for all $x \in S$, where $dist(Ix, [Tx, p]) = inf\{||Ix - z|| : z \in [Tx, p]\}$. Clearly commutativity implies *R*-subweak commutativity, but the converse may not be true (see [11]).

The set $P_S(\hat{x}) = \{y \in S : \|y - \hat{x}\| = \operatorname{dist}(\hat{x}, S)\}$ is called the set of best approximants to $\hat{x} \in X$ out of *S*, where $\operatorname{dist}(\hat{x}, S) = \inf\{\|y - \hat{x}\| : y \in S\}$. We define $C_S^I(\hat{x}) = \{x \in S : Ix \in P_S(\hat{x})\}$ and denote by \mathfrak{I}_0 the class of closed convex subsets of *X* containing 0. For $S \in \mathfrak{I}_0$, we define $S_{\hat{x}} = \{x \in S : \|x\| \le 2\|\hat{x}\|\}$. It is clear that $P_S(\hat{x}) \subset S_{\hat{x}} \in \mathfrak{I}_0$.

In 1963, Meinardus [6] employed the Schauder fixed point theorem to establish the existence of invariant approximations. Afterwards, Brosowski [2] obtained the following extension of the Meinardus result.

Copyright © 2005 Hindawi Publishing Corporation Fixed Point Theory and Applications 2005:1 (2005) 79–86 DOI: 10.1155/FPTA.2005.79 THEOREM 1.1. Let T be a linear and nonexpansive self-mapping of a normed space X, $S \subset X$ such that $T(S) \subset S$, and $\hat{x} \in F(T)$. If $P_S(\hat{x})$ is nonempty, compact, and convex, then $P_S(\hat{x}) \cap F(T) \neq \emptyset$.

Singh [15] observed that Theorem 1.1 is still true if the linearity of *T* is dropped and $P_S(\hat{x})$ is only starshaped. He further remarked, in [16], that Brosowski's theorem remains valid if *T* is nonexpansive only on $P_S(\hat{x}) \cup \{\hat{x}\}$. Then Hicks and Humphries [5] improved Singh's result by weakening the assumption $T(S) \subset S$ to $T(\partial S) \subset S$; here ∂S denotes the boundary of *S*.

On the other hand, Subrahmanyam [18] generalized the Meinardus result as follows.

THEOREM 1.2. Let T be a nonexpansive self-mapping of X, S a finite-dimensional T-invariant subspace of X, and $\hat{x} \in F(T)$. Then $P_S(\hat{x}) \cap F(T) \neq \emptyset$.

In 1981, Smoluk [17] noted that the finite dimensionality of *S* in Theorem 1.2 can be replaced by the linearity and compactness of *T*. Subsequently, Habiniak [4] observed that the linearity of *T* in Smoluk's result is superfluous.

In 1988, Sahab et al. [8] established the following result which contains Singh's result as a special case.

THEOREM 1.3. Let T and I be self-mappings of a normed space $X, S \subset X$ such that $T(\partial S) \subset S$, and $\hat{x} \in F(T) \cap F(I)$. Suppose T is I-nonexpansive on $P_S(\hat{x}) \cup \{\hat{x}\}$, I is linear and continuous on $P_S(\hat{x})$, and T and I are commuting on $P_S(\hat{x})$. If $P_S(\hat{x})$ is nonempty, compact, and p-starshaped with $p \in F(I)$, and if $I(P_S(\hat{x})) = P_S(\hat{x})$, then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Recently, Al-Thagafi [1] generalized Theorem 1.3 and proved some results on invariant approximations for commuting mappings. More recently, with the introduction of noncommuting maps to this area, Shahzad [9, 10, 11, 12, 13, 14] further extended Al-Thagafi's results and obtained a number of results regarding best approximations. The purpose of this paper is to present common fixed point theory for generalized *I*-contraction and *R*-subweakly commuting maps. As applications, some invariant approximation results are also obtained. Our results extend, generalize, and complement those of Al-Thagafi [1], Brosowski [2], Dotson Jr. [3], Habiniak [4], Hicks and Humphries [5], Meinardus [6], Sahab et al. [8], Shahzad [9, 10, 11, 12], Singh [15, 16], Smoluk [17], and Subrahmanyam [18].

2. Main results

THEOREM 2.1. Let S be a closed subset of a metric space (X,d), and T and I R-weakly commuting self-mappings of S such that $T(S) \subset I(S)$. Suppose there exists $k \in [0,1)$ such that

$$d(Tx, Ty) \le k \max\left\{ d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), \frac{1}{2} [d(Ix, Ty) + d(Iy, Tx)] \right\}$$
(2.1)

for all $x, y \in S$. If cl(T(S)) is complete and T is continuous, then $S \cap F(T) \cap F(I)$ is singleton.

Proof. Let $x_0 \in S$ and let $x_1 \in S$ be such that $Ix_1 = Tx_0$. Inductively, choose x_n so that $Ix_n = Tx_{n-1}$. This is possible since $T(S) \subset I(S)$. Notice

$$d(Ix_{n+1}, Ix_n) = d(Tx_n, Tx_{n-1})$$

$$\leq k \max \left\{ d(Ix_n, Ix_{n-1}), d(Ix_n, Tx_n), d(Ix_{n-1}, Tx_{n-1}), \frac{1}{2} [d(Ix_n, Tx_{n-1}) + d(Ix_{n-1}, Tx_n)] \right\}$$

$$= k \max \left\{ d(Ix_n, Ix_{n-1}), d(Ix_n, Tx_n), \frac{1}{2} d(Ix_{n-1}, Tx_n) \right\}$$

$$\leq k \max \left\{ d(Ix_n, Ix_{n-1}), d(Ix_n, Tx_n), \frac{1}{2} [d(Ix_n, Ix_{n-1}), d(Ix_n, Tx_n)] \right\}$$

$$\leq k d(Ix_n, Ix_{n-1})$$
(2.2)

for all *n*. This shows that $\{Ix_n\}$ is a Cauchy sequence in *S*. Consequently, $\{Tx_n\}$ is a Cauchy sequence. The completeness of cl(T(S)) further implies that $Tx_n \rightarrow y \in S$ and so $Ix_n \rightarrow y$ as $n \rightarrow \infty$. Since *T* and *I* are *R*-weakly commuting, we have

$$d(TIx_n, ITx_n) \le Rd(Tx_n, Ix_n). \tag{2.3}$$

This implies that $ITx_n \to Ty$ as $n \to \infty$. Now

$$d(Tx_n, TTx_n) \le k \max\left\{d(Ix_n, ITx_n), d(Ix_n, Tx_n), d(ITx_n, TTx_n), \frac{1}{2}[d(Ix_n, TTx_n) + d(ITx_n, Tx_n)]\right\}.$$
(2.4)

Taking the limit as $n \to \infty$, we obtain

$$d(y, Ty) \le k \max \left\{ d(y, Ty), d(y, y), d(Ty, Ty), \\ \frac{1}{2} [d(y, Ty) + d(Ty, y)] \right\}$$
(2.5)
= $kd(y, Ty),$

which implies y = Ty. Since $T(S) \subset I(S)$, we can choose $z \in S$ such that y = Ty = Iz. Since

$$d(TTx_n, Tz) \le k \max\left\{d(ITx_n, Iz), d(ITx_n, TTx_n), d(Iz, Tz), \\ \frac{1}{2}[d(ITx_n, Tz) + d(Iz, TTx_n)]\right\},$$

$$(2.6)$$

82 Invariant approximations

taking the limit as $n \to \infty$ yields

$$d(Ty, Tz) \le kd(Ty, Tz). \tag{2.7}$$

This implies that Ty = Tz. Therefore, y = Ty = Tz = Iz. Using the *R*-weak commutativity of *T* and *I*, we obtain

$$d(Ty, Iy) = d(TIz, ITz) \le Rd(Tz, Iz) = 0.$$
(2.8)

Thus y = Ty = Iy. Clearly *y* is a unique common fixed point of *T* and *I*. Hence $S \cap F(T) \cap F(I)$ is singleton.

THEOREM 2.2. Let S be a closed subset of a normed space X, and T and I continuous selfmappings of S such that $T(S) \subset I(S)$. Suppose I is linear, $p \in F(I)$, S is p-starshaped, and cl(T(S)) is compact. If T and I are R-subweakly commuting and satisfy

$$||Tx - Ty|| \le \max \left\{ ||Ix - Iy||, \operatorname{dist}(Ix, [Tx, p]), \operatorname{dist}(Iy, [Ty, p]), \\ \frac{1}{2} [\operatorname{dist}(Ix, [Ty, p]) + \operatorname{dist}(Iy, [Tx, p])] \right\}$$
(2.9)

for all $x, y \in S$, then $S \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Choose a sequence $\{k_n\} \subset [0,1)$ such that $k_n \to 1$ as $n \to \infty$. Define, for each n, a map T_n by $T_n(x) = k_n T x + (1 - k_n) p$ for each $x \in S$. Then each T_n is a self-mapping of S. Furthermore, $T_n(S) \subset I(S)$ for each n since I is linear and $T(S) \subset I(S)$. Now the linearity of I and the R-subweak commutativity of T and I imply that

$$\begin{aligned} \left| \left| T_n I x - I T_n x \right| \right| &= k_n \|T I x - I T x\| \le k_n R \operatorname{dist} \left(I x, [T x, p] \right) \\ &\le k_n R ||T_n x - I x|| \end{aligned}$$
(2.10)

for all $x \in S$. This shows that T_n and I are $k_n R$ -weakly commuting for each n. Also

$$||T_{n}x - T_{n}y|| = k_{n}||Tx - Ty||$$

$$\leq k_{n} \max \left\{ ||Ix - Iy||, \operatorname{dist}(Ix, [Tx, p]), \operatorname{dist}(Iy, [Ty, p]), \\ \frac{1}{2}[\operatorname{dist}(Ix, [Ty, p]) + \operatorname{dist}(Iy, [Tx, p])] \right\}$$

$$\leq k_{n} \max \left\{ ||Ix - Iy||, ||Ix - T_{n}x||, ||Iy - T_{n}y||, \\ \frac{1}{2}[||Ix - T_{n}y|| + ||Iy - T_{n}x||] \right\}$$
(2.11)

for all $x, y \in S$. Now Theorem 2.1 guarantees that $F(T_n) \cap F(I) = \{x_n\}$ for some $x_n \in S$. The compactness of cl(T(S)) implies that there exists a subsequence $\{x_m\}$ of $\{x_n\}$ such that $x_m \to y \in S$ as $m \to \infty$. By the continuity of *T* and *I*, we have $y \in F(T) \cap F(I)$. Hence $S \cap F(T) \cap F(I) \neq \emptyset$.

The following corollaries extend and generalize [3, Theorem 1] and [4, Theorem 4].

COROLLARY 2.3. Let *S* be a closed subset of a normed space *X*, and *T* and *I* continuous selfmappings of *S* such that $T(S) \subset I(S)$. Suppose *I* is linear, $p \in F(I)$, *S* is *p*-starshaped, and cl(T(S)) is compact. If *T* and *I* are *R*-subweakly commuting and *T* is *I*-nonexpansive on *S*, then $S \cap F(T) \cap F(I) \neq \emptyset$.

COROLLARY 2.4. Let S be a closed subset of a normed space X, and T and I continuous self-mappings of S such that $T(S) \subset I(S)$. Suppose I is linear, $p \in F(I)$, S is p-starshaped, and cl(T(S)) is compact. If T and I are commuting and satisfy (2.9) for all $x, y \in S$, then $S \cap F(T) \cap F(I) \neq \emptyset$.

Let $D_S^{R,I}(\hat{x}) = P_S(\hat{x}) \cap G_S^{R,I}(\hat{x})$, where

$$G_{S}^{R,I}(\hat{x}) = \{ x \in S : \|Ix - \hat{x}\| \le (2R+1)\operatorname{dist}(\hat{x}, S) \}.$$
(2.12)

THEOREM 2.5. Let T and I be self-mappings of a normed space X with $\hat{x} \in F(T) \cap F(I)$ and $S \subset X$ such that $T(\partial S \cap S) \subset S$. Suppose I is linear on $D_S^{R,I}(\hat{x})$, $p \in F(I)$, $D_S^{R,I}(\hat{x})$ is closed and p-starshaped, $cl T(D_S^{R,I}(\hat{x}))$ is compact, and $I(D_S^{R,I}(\hat{x})) = D_S^{R,I}(\hat{x})$. If T and I are R-subweakly commuting and continuous on $D_S^{R,I}(\hat{x})$ and satisfy, for all $x \in D_S^{R,I}(\hat{x}) \cup \{\hat{x}\}$,

$$\|Tx - Ty\| \leq \begin{cases} \|Ix - I\hat{x}\| & \text{if } y = \hat{x}, \\ \max\left\{\|Ix - Iy\|, \operatorname{dist}(Ix, [Tx, p]), \operatorname{dist}(Iy, [Ty, p]), \\ \frac{1}{2}[\operatorname{dist}(Ix, [Ty, p]) + \operatorname{dist}(Iy, [Tx, p])] \right\} & \text{if } y \in D_{S}^{R, I}(\hat{x}), \end{cases}$$

$$(2.13)$$

then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Let $x \in D_S^{R,I}(\hat{x})$. Then $x \in \partial S \cap S$ (see [1]) and so $Tx \in S$ since $T(\partial S \cap S) \subset S$. Now

$$||Tx - \hat{x}|| = ||Tx - T\hat{x}|| \le ||Ix - I\hat{x}|| = ||Ix - \hat{x}|| = \text{dist}(\hat{x}, S).$$
(2.14)

This shows that $Tx \in P_S(\hat{x})$. From the *R*-subweak commutativity of *T* and *I*, it follows that

$$\|ITx - \hat{x}\| = \|ITx - T\hat{x}\| \le R\|Tx - Ix\| + \left\|I^2x - I\hat{x}\right\| \le (2R+1)\operatorname{dist}(\hat{x}, S).$$
(2.15)

This implies that $Tx \in G_S^{R,I}(\hat{x})$. Consequently, $Tx \in D_S^{R,I}(\hat{x})$ and so $T(D_S^{R,I}(\hat{x})) \subset D_S^{R,I}(\hat{x}) = I(D_S^{R,I}(\hat{x}))$. Now Theorem 2.2 guarantees that $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

THEOREM 2.6. Let T and I be self-mappings of a normed space X with $\hat{x} \in F(T) \cap F(I)$ and $S \subset X$ such that $T(\partial S \cap S) \subset I(S) \subset S$. Suppose I is linear on $D_S^{R,I}(\hat{x})$, $p \in F(I)$, $D_S^{R,I}(\hat{x})$ is closed and p-starshaped, $cl T(D_S^{R,I}(\hat{x}))$ is compact, and $I(G_S^{R,I}(\hat{x})) \cap D_S^{R,I}(\hat{x}) \subset I(D_S^{R,I}(\hat{x})) \subset D_S^{R,I}(\hat{x})$. If T and I are R-subweakly commuting and continuous on $D_S^{R,I}(\hat{x})$ and satisfy, for all $x \in D_S^{R,I}(\hat{x}) \cup \{\hat{x}\}$, (2.13), then $P_S(\hat{x}) \cap F(I) \neq \emptyset$.

Proof. Let $x \in D_S^{R,I}(\hat{x})$. Then, as in Theorem 2.5, $Tx \in D_S^{R,I}(\hat{x})$, that is, $T(D_S^{R,I}(\hat{x})) \subset D_S^{R,I}(\hat{x})$. Also $||(1-k)x+k\hat{x}-\hat{x}|| < \operatorname{dist}(\hat{x},S)$ for all $k \in (0,1)$. This implies that $x \in \partial S \cap S$ (see [1]) and so $T(D_S^{R,I}(\hat{x})) \subset T(\partial S \cap S) \subset I(S)$. Thus we can choose $y \in S$ such that Tx = Iy. Since $Iy = Tx \in P_S(\hat{x})$, it follows that $y \in G_S^{R,I}(\hat{x})$. Consequently, $T(D_S^{R,I}(\hat{x})) \subset I(G_S^{R,I}(\hat{x})) \cap D_S^{R,I}(\hat{x}) \subset I(D_S^{R,I}(\hat{x})) \subset D_S^{R,I}(\hat{x})$. Now Theorem 2.2 guarantees that $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$. □

Remark 2.7. Theorems 2.5 and 2.6 remain valid when $D_S^{R,I}(\hat{x}) = P_S(\hat{x})$. If $I(P_S(\hat{x})) \subset P_S(\hat{x})$, then $P_S(\hat{x}) \subset C_S^I(\hat{x}) \subset G_S^{R,I}(\hat{x})$ (see [1]) and so $D_S^{R,I}(\hat{x}) = P_S(\hat{x})$. Consequently, Theorem 2.5 contains Theorem 1.3 as a special case.

The following result includes [1, Theorem 4.1] and [4, Theorem 8]. It also contains the well-known results due to Smoluk [17] and Subrahmanyam [18].

THEOREM 2.8. Let T be a self-mapping of a normed space X with $\hat{x} \in F(T)$ and $S \in \mathfrak{I}_0$ such that $T(S_{\hat{x}}) \subset S$. If $\operatorname{cl} T(S_{\hat{x}})$ is compact and T is continuous on $S_{\hat{x}}$ and satisfies for all $x \in S_{\hat{x}} \cup \{\hat{x}\}$

$$||Tx - Ty|| \leq \begin{cases} ||x - \hat{x}|| & \text{if } y = \hat{x}, \\ \max\left\{ ||x - y||, \operatorname{dist}(x, [Tx, 0]), \operatorname{dist}(y, [Ty, 0]), \\ \frac{1}{2}[\operatorname{dist}(x, [Ty, 0]) + \operatorname{dist}(y, [Tx, 0])] \right\} & \text{if } y \in S_{\hat{x}}, \end{cases}$$
(2.16)

then

(i) $P_S(\hat{x})$ is nonempty, closed, and convex,

- (ii) $T(P_S(\hat{x})) \subset P_S(\hat{x})$,
- (iii) $P_S(\hat{x}) \cap F(T) \neq \emptyset$.

Proof. (i) We may assume that $\hat{x} \notin S$. If $x \in S \setminus S_{\hat{x}}$, then $||x|| > 2||\hat{x}||$. Notice that

$$\|x - \hat{x}\| \ge \|x\| - \|\hat{x}\| > \|\hat{x}\| \ge \operatorname{dist}(\hat{x}, S_{\hat{x}}).$$
(2.17)

Consequently, $\operatorname{dist}(\hat{x}, S_{\hat{x}}) = \operatorname{dist}(\hat{x}, S) \le ||\hat{x}||$. Also $||z - \hat{x}|| = \operatorname{dist}(\hat{x}, \operatorname{cl} T(S_{\hat{x}}))$ for some $z \in \operatorname{cl} T(S_{\hat{x}})$. Thus

$$dist\left(\hat{x}, S_{\hat{x}}\right) \leq dist\left(\hat{x}, cl T(S_{\hat{x}})\right) \leq dist\left(\hat{x}, T(S_{\hat{x}})\right)$$
$$\leq \|Tx - \hat{x}\| = \|Tx - T\hat{x}\|$$
$$\leq \|x - \hat{x}\|$$
(2.18)

for all $x \in S_{\hat{x}}$. This implies that $||z - \hat{x}|| = \text{dist}(\hat{x}, S)$ and so $P_S(\hat{x})$ is nonempty. Furthermore, it is closed and convex.

(ii) Let $y \in P_S(\hat{x})$. Then

$$||Ty - \hat{x}|| = ||Ty - T\hat{x}|| \le ||y - \hat{x}|| = \operatorname{dist}(\hat{x}, S).$$
(2.19)

This implies that $T y \in P_S(\hat{x})$ and so $T(P_S(\hat{x})) \subset P_S(\hat{x})$.

(iii) Theorem 2.2 guarantees that $P_S(\hat{x}) \cap F(T) \neq \emptyset$ since $\operatorname{cl} T(P_S(\hat{x})) \subset \operatorname{cl} T(S_{\hat{x}})$ and $\operatorname{cl} T(S_{\hat{x}})$ is compact.

THEOREM 2.9. Let I and T be self-mappings of a normed space X with $\hat{x} \in F(I) \cap F(T)$ and $S \in \mathfrak{I}_0$ such that $T(S_{\hat{x}}) \subset I(S) \subset S$. Suppose that I is linear, $||Ix - \hat{x}|| = ||x - \hat{x}||$ for all $x \in S$, $clI(S_{\hat{x}})$ is compact and I satisfies, for all $x, y \in S_{\hat{x}}$,

$$||Ix - Iy|| \le \max\left\{ ||x - y||, \operatorname{dist}(x, [Ix, 0]), \operatorname{dist}(y, [Iy, 0]), \\ \frac{1}{2} [\operatorname{dist}(x, [Iy, 0]) + \operatorname{dist}(y, [Ix, 0])] \right\}.$$
(2.20)

If I and T are R-subweakly commuting and continuous on $S_{\hat{x}}$ and satisfy, for all $x \in S_{\hat{x}} \cup {\hat{x}}$, and $p \in F(I)$,

$$||Tx - Ty|| \le \begin{cases} ||Ix - I\hat{x}|| & \text{if } y = \hat{x}, \\ \max\left\{||Ix - Iy||, \operatorname{dist}(Ix, [Tx, p]), \operatorname{dist}(Iy, [Ty, p]), \\ \frac{1}{2}[\operatorname{dist}(Ix, [Ty, p]) + \operatorname{dist}(Iy, [Tx, p])]\right\} & \text{if } y \in S_{\hat{x}}, \end{cases}$$
(2.21)

then

(i) $P_S(\hat{x})$ is nonempty, closed, and convex,

- (ii) $T(P_S(\hat{x})) \subset I(P_S(\hat{x})) \subset P_S(\hat{x}),$
- (iii) $P_{\mathcal{S}}(\hat{x}) \cap F(I) \cap F(T) \neq \emptyset$.

Proof. From Theorem 2.8, (i) follows immediately. Also, we have $I(P_S(\hat{x})) \subset P_S(\hat{x})$. Let $y \in T(P_S(\hat{x}))$. Since $T(S_{\hat{x}}) \subset I(S)$ and $P_S(\hat{x}) \subset S_{\hat{x}}$, there exist $z \in P_S(\hat{x})$ and $x_1 \in S$ such that $y = Tz = Ix_1$. Furthermore, we have

$$\left| \left| Ix_1 - \hat{x} \right| \right| = \|Tz - T\hat{x}\| \le \|Iz - I\hat{x}\| \le \|z - \hat{x}\| = d(\hat{x}, S).$$
(2.22)

Thus $x_1 \in C_S^I(\hat{x}) = P_S(\hat{x})$ and so (ii) holds.

Since, by Theorem 2.8, $P_S(\hat{x}) \cap F(I) \neq \emptyset$, it follows that there exists $p \in P_S(\hat{x})$ such that $p \in F(I)$. Hence (iii) follows from Theorem 2.2.

The following corollary extends [1, Theorem 4.2(a)] to a class of noncommuting maps.

COROLLARY 2.10. Let I and T be self-mappings of a normed space X with $\hat{x} \in F(I) \cap F(T)$ and $S \in \mathfrak{I}_0$ such that $T(S_{\hat{x}}) \subset I(S) \subset S$. Suppose that I is linear, $||Ix - \hat{x}|| = ||x - \hat{x}||$ for all $x \in S$, $clI(S_{\hat{x}})$ is compact, and I is nonexpansive on $S_{\hat{x}}$. If I and T are R-subweakly commuting on $S_{\hat{x}}$ and T is I-nonexpansive on $S_{\hat{x}} \cup {\hat{x}}$, then

- (i) $P_S(\hat{x})$ is nonempty, closed and convex,
- (ii) $T(P_S(\hat{x})) \subset I(P_S(\hat{x})) \subset P_S(\hat{x})$, and
- (iii) $P_S(\hat{x}) \cap F(I) \cap F(T) \neq \emptyset$.

86 Invariant approximations

Acknowledgment

The author would like to thank the referee for his suggestions.

References

- [1] M. A. Al-Thagafi, *Common fixed points and best approximation*, J. Approx. Theory **85** (1996), no. 3, 318–323.
- [2] B. Brosowski, *Fixpunktsätze in der Approximationstheorie*, Mathematica (Cluj) **11 (34)** (1969), 195–220 (German).
- [3] W. G. Dotson Jr., Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. (2) 4 (1972), 408–410.
- [4] L. Habiniak, *Fixed point theorems and invariant approximations*, J. Approx. Theory **56** (1989), no. 3, 241–244.
- [5] T. L. Hicks and M. D. Humphries, A note on fixed-point theorems, J. Approx. Theory 34 (1982), no. 3, 221–225.
- [6] G. Meinardus, *Invarianz bei linearen Approximationen*, Arch. Rational Mech. Anal. 14 (1963), 301–303 (German).
- [7] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), no. 2, 436–440.
- [8] S. A. Sahab, M. S. Khan, and S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988), no. 3, 349–351.
- [9] N. Shahzad, A result on best approximation, Tamkang J. Math. 29 (1998), no. 3, 223–226.
- [10] _____, Correction to: "A result on best approximation", Tamkang J. Math. 30 (1999), no. 2, 165.
- [11] _____, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), no. 1, 39–45.
- [12] _____, Noncommuting maps and best approximations, Rad. Mat. 10 (2001), no. 1, 77–83.
- [13] _____, On R-subcommuting maps and best approximations in Banach spaces, Tamkang J. Math. 32 (2001), no. 1, 51–53.
- [14] _____, Remarks on invariant approximations, Int. J. Math. Game Theory Algebra 13 (2003), no. 2, 157–159.
- [15] S. P. Singh, An application of a fixed-point theorem to approximation theory, J. Approx. Theory 25 (1979), no. 1, 89–90.
- [16] _____, Application of fixed point theorems in approximation theory, Applied Nonlinear Analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex, 1978) (V. Lakshmikantham, ed.), Academic Press, New York, 1979, pp. 389–394.
- [17] A. Smoluk, Invariant approximations, Mat. Stos. (3) 17 (1981), 17–22 (Polish).
- [18] P. V. Subrahmanyam, An application of a fixed point theorem to best approximation, J. Approximation Theory 20 (1977), no. 2, 165–172.

Naseer Shahzad: Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: nshahzad@kaau.edu.sa