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In reply to a problem of Jean Leray (application of the Nielsen theory to differential equa-
tions), two main approaches are presented. The first is via Poincaré’s translation operator,
while the second one is based on the Hammerstein-type solution operator. The applica-
bility of various Nielsen theories is discussed with respect to several sorts of differential
equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of
periodic solutions imply infinitely many subharmonics) are indicated, jointly with some
further consequences like the nontrivial Rδ-structure of solutions of initial value prob-
lems. Some illustrating examples are supplied and open problems are formulated.

1. Introduction: motivation for differential equations

Our main aim here is to show some applications of the Nielsen number to (multivalued)
differential equations (whence the title). For this, applicable forms of various Nielsen
theories will be formulated, and then applied—via Poincaré and Hammerstein opera-
tors—to associated initial and boundary value problems for differential equations and
inclusions. Before, we, however, recall some Sharkovskii-like theorems in terms of differ-
ential equations which justify and partly stimulate our investigation.

Consider the system of ordinary differential equations

x′ = f (t,x), f (t,x)≡ f (t+ω,x), (1.1)

where f : [0,ω]×Rn→Rn is a Carathéodory mapping, that is,
(i) f (·,x) : [0,ω]→Rn is measurable, for every x ∈Rn,

(ii) f (t,·) :Rn→Rn is continuous, for a.a. t ∈ [0,ω],
(iii) | f (t,x)| ≤ α|x|+ β, for all (t,x) ∈ [0,ω]×Rn, where α, β are suitable nonnega-

tive constants.
By a solution to (1.1) on J ⊂ R, we understand x ∈ ACloc(J ,Rn) which satisfies (1.1), for
a.a. t ∈ J .

1.1. n= 1. For scalar equation (1.1), a version of the Sharkovskii cycle coexistence theo-
rem (see [8, 14, 15, 17]) applies as follows.
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Figure 1.1. braid σ .

Theorem 1.1. If (1.1) has an m-periodic solution, then it also admits a k-periodic solution,
for every k�m, with at most two exceptions, where k�m means that k is less than m in
the celebrated Sharkovskii ordering of positive integers, namely 3� 5� 7� ···� 2 · 3�
2 · 5� 2 · 7� ···� 22 · 3� 22 · 5� 22 · 7� ···� 2m · 3� 2m · 5� 2m · 7� ···� 2m�
···� 22� 2� 1. In particular, ifm �= 2k, for all k ∈N, then infinitely many (subharmonic)
periodic solutions of (1.1) coexist.

Remark 1.2. Theorem 1.1 holds only in the lack of uniqueness; otherwise, it is empty.
On the other hand, f on the right-hand side of (1.1) can be a (multivalued) upper-
Carathéodory mapping with nonempty, convex, and compact values.

Remark 1.3. Although, for example, a 3ω-periodic solution of (1.1) implies, for every k ∈
N with a possible exception for k = 2 or k = 4,6, the existence of a kω-periodic solution
of (1.1), it is very difficult to prove such a solution. Observe that a 3ω-periodic solution
x(·,x0) of (1.1) with x(0,x0)= x0 implies the existence of at least two more 3ω-periodic
solutions of (1.1), namely x(·,x1) with x(0,x1)= x(ω,x0)= x1 and x(·,x2) with x(0,x2)=
x(2ω,x0)= x(ω,x1)= x2.

1.2. n = 2. It follows from Boju Jiang’s interpretation [43] of T. Matsuoka’s results [47,
48, 49] that three (harmonic) ω-periodic solutions of the planar (i.e., in R2) system (1.1)
imply “generically” the coexistence of infinitely many (subharmonic) kω-periodic solu-
tions of (1.1), k ∈N. “Genericity” is understood here in terms of the Artin braid group
theory, that is, with the exception of certain simplest braids, representing the three given
harmonics.

Theorem 1.4 (see [4, 43, 49]). Assume a uniqueness condition is satisfied for (1.1). Let three
(harmonic) ω-periodic solutions of (1.1) exist whose graphs are not conjugated to the braid
σm in B3/Z, for any integer m∈N, where σ is shown in Figure 1.1, B3/Z denotes the factor
group of the Artin braid group B3, and Z is its center (for definitions, see, e.g., [9, 43, 51]).
Then there exist infinitely many (subharmonic) kω-periodic solutions of (1.1), k ∈N.

Remark 1.5. In the absence of uniqueness, there occur serious obstructions, but Theorem
1.4 still seems to hold in many situations; for more details, see [4].

Remark 1.6. The application of the Nielsen theory can determine the desired three har-
monic solutions of (1.1). More precisely, it is more realistic to detect two harmonics by
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means of the related Nielsen number, and the third one by means of the related fixed-
point index (see, e.g., [9]).

1.3. n ≥ 2. For n > 2, statements like Theorem 1.1 or Theorem 1.4 appear only rarely.
Nevertheless, if f = ( f1, f2, . . . , fn) has a special triangular structure, that is,

fi(x)= fi
(
x1, . . . ,xn

)= fi
(
x1, . . . ,xi

)
, i= 1, . . . ,n, (1.2)

then Theorem 1.1 can be extended to hold in Rn (see [16, 18]).

Theorem 1.7. Under assumption (1.2), the conclusion of Theorem 1.1 remains valid in Rn.

Remark 1.8. Similarly to Theorem 1.1, Theorem 1.7 holds only in the lack of uniqueness.
In other words, P. Kloeden’s single-valued extension (cf. (1.2)) of the standard Sharkovskii
theorem does not apply to differential equations (see [16]). On the other hand, the second
parts of Remarks 1.2 and 1.3 are true here as well.

Remark 1.9. Without the special triangular structure (1.2), there is practically no chance
to obtain an analogy to Theorem 1.1, for n≥ 2 (see the arguments in [6]).

Despite the mentioned difficulties, to satisfy the assumptions of Theorems 1.1, 1.4,
and 1.7, it is often enough to show at least one subharmonic or several harmonic solu-
tions, respectively. The multiplicity problem is sufficiently interesting in itself. Jean Leray
posed at the first International Congress of Mathematicians, held after the World War II
in Cambridge, Massachusetts, in 1950, the problem of adapting the Nielsen theory to the
needs of nonlinear analysis and, in particular, of its application to differential systems for
obtaining multiplicity results (cf. [9, 24, 25, 27]). Since then, only few papers have been
devoted to this problem (see [2, 3, 4, 9, 10, 11, 12, 13, 22, 23, 24, 25, 26, 27, 28, 32, 33, 34,
35, 36, 37, 43, 44, 47, 48, 49, 50, 51, 52, 56]).

2. Nielsen theorems at our disposal

The following Nielsen numbers (defined in our papers [2, 7, 10, 11, 12, 13, 20]) are at our
disposal for application to differential equations and inclusions:

(a) Nielsen number for compact maps ϕ∈K (see [2, 11]),
(b) Nielsen number for compact absorbing contractions ϕ∈ CAC (see [10]),
(c) Nielsen number for condensing maps ϕ∈ C (see [20]),
(d) relative Nielsen numbers (on the total space or on the complement) (see [12]),
(e) Nielsen number for periodic points (see [13]),
(f) Nielsen number for invariant and periodic sets (see [7]).

For the classical (single-valued) Nielsen theory, we recommend the monograph [42].

2.1. ad (a). Consider a multivalued map ϕ : X � X , where
(i) X is a connected retract of an open subset of a convex set in a Fréchet space,

(ii) X has finitely generated abelian fundamental group,
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(iii) ϕ is a compact (i.e., ϕ(X) is compact) composition of an Rδ−map p−1 : X � Γ
and a continuous (single-valued) map q : Γ→ X , namely ϕ= q ◦ p−1, where Γ is
a metric space.

Then a nonnegative integer N(ϕ) = N(p,q) (we should write more correctly NH(ϕ) =
NH(p,q), because it is in fact a (modH)-Nielsen number; for the sake of simplicity, we
omit the index H in the sequel), called the Nielsen number for ϕ∈K, exists (for its defi-
nition, see [11]; cf. [9] or [7]) such that

N(ϕ)≤ #C(ϕ), (2.1)

where

#C(ϕ)= #C(p,q) := card
{
z ∈ Γ | p(z)= q(z)

}
, (2.2)

N
(
ϕ0
)=N(ϕ1

)
, (2.3)

for compactly homotopic maps ϕ0 ∼ ϕ1.
Some remarks are in order. Condition (i) says that X is a particular case of a connected

ANR-space and, in fact, X can be an arbitrary connected (metric) ANR-space (for the
definition, see Part (f)). Condition (ii) can be avoided, provided X is the torus Tn (cf.
[11]) or X is compact and q = id is the identity (cf. [2]).

By an Rδ-map p−1 : X � Γ, we mean an upper semicontinuous (u.s.c.) one (i.e., for
every open U ⊂ Γ, the set {x ∈ X | p−1(x) ⊂ U} is open in X) with Rδ-values (i.e., Y is
an Rδ-set if Y = ⋂{Yn | n = 1,2, . . .}, where {Yn} is a decreasing sequence of compact
AR-spaces; for the definition of AR-spaces, see Part (f)).

LetX
p0⇐ Γ0

q0→ X andX
p1⇐ Γ1

q1→ X be two maps, namely ϕ0 = q0 ◦ p−1
0 and ϕ1 = q1 ◦ p−1

1 .
We say that ϕ0 is homotopic to ϕ1 (written ϕ0 ∼ ϕ1 or (p0,q0)∼ (p1,q1)) if there exists a

multivalued map X × [0,1]
p← Γ

q→ X such that the following diagram is commutative:

X

ki

pi
Γi

fi

qi
X

X × [0,1]
p

Γ

q
(2.4)

for ki(x) = (x, i), i = 0,1, and fi : Γi → Γ is a homeomorphism onto p−1(X × i), i = 0,1,
that is, k0p0 = p f0, q0 = q f0, k1p1 = p f1, and q1 = q f1.

Remark 2.1 (important). We have a counterexample in [11] that, under the above as-
sumptions (i)–(iii), the Nielsen number N(ϕ) is rather the topological invariant (see
(2.3)) for the number of essential classes of coincidences (see (2.1)) than of fixed points.
On the other hand, for a compact X and q = id, N(ϕ) gives even without (ii) a lower
estimate of the number of fixed points of ϕ (see [2]), that is, N(ϕ) ≤ #Fix(ϕ), where
#Fix(ϕ) := card{x ∈ X | x ∈ ϕ(x)}. We have conjectured in [20] that if ϕ = q ◦ p−1 as-
sumes only simply connected values, then also N(ϕ)≤ #Fix(ϕ).
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2.2. ad (b). Consider a multivalued map ϕ : X � X , where X again satisfies the above
conditions (i) and (ii), but this time

(iii′) ϕ is a CAC-composition of an Rδ-map p−1 : X � Γ and a continuous (single-
valued) map q : Γ→ X , namely ϕ= q ◦ p−1, where Γ is a metric space.

Let us recall (see, e.g., [9]) that the above composition ϕ : X � X is a compact absorb-
ing contraction (written ϕ∈ CAC) if there exists an open set U ⊂ X such that

(i) ϕ|U :U �U , where ϕ|U(x)= ϕ(x), for every x ∈U , is compact,
(ii) for every x ∈ X , there exists n= nx such that ϕn(x)⊂U .

Then (i.e., under (i), (ii), (iii′)) a nonnegative integer N(ϕ) = N(p,q), called the
Nielsen number for ϕ ∈ CAC, exists such that (2.1) and (2.3) hold. The homotopy in-
variance (2.3) is understood exactly in the same way as above.

Any compact map satisfying (iii) is obviously a compact absorbing contraction. In
the class of locally compact maps ϕ (i.e., every x ∈ X has an open neighborhood Ux of x
in X such that ϕ|Ux : Ux � X is a compact map), any eventually compact (written ϕ ∈
EC), any asymptotically compact (written ϕ∈ASC), or any map with a compact attractor
(written ϕ ∈ CA) becomes CAC (i.e., ϕ ∈ CAC). More precisely, the following scheme
takes place for the classes of locally compact compositions of Rδ-maps and continuous
(single-valued) maps (cf. (iii′)):

K⊂ EC⊂ASC⊂ CA⊂ CAC, (2.5)

where all the inclusions, but the last one, are proper (see [9]).
We also recall that an eventually compact map ϕ ∈ EC is such that some of its iter-

ates become compact; of course, so do all subsequent iterates, provided ϕ is u.s.c. with
compact values as above.

Assuming, for the sake of simplicity, that ϕ is again a composition of an Rδ-map p−1

and a continuous map q, namely ϕ = q ◦ p−1, we can finally recall the definition of the
classes ASC and CA.

Definition 2.2. A map ϕ : X � X is called asymptotically compact (written ϕ∈ASC) if
(i) for every x ∈ X , the orbit

⋃∞
n=1ϕ

n(x) is contained in a compact subset of X ,
(ii) the center (sometimes also called the core)

⋂∞
n=1ϕ

n(X) of ϕ is nonempty, con-
tained in a compact subset of X .

Definition 2.3. A map ϕ : X � X is said to have a compact attractor (written ϕ ∈ CA) if
there exists a compact K ⊂ X such that, for every open neighborhood U of K in X and
for every x ∈ X , there exists n= nx such that ϕm(x)⊂U , for every m≥ n. K is then called
the attractor of ϕ.

Remark 2.4. Obviously, if X is locally compact, then so is ϕ. If ϕ is not locally compact,
then the following scheme takes place for the composition of anRδ-map and a continuous
map:

EC ⊂ ASC ⊂ CA
∪ ∪
K ⊂ CAC,

(2.6)

where all the inclusions are again proper (see [9]).
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Remark 2.5. Although the CA-class is very important for applications, it is (even in the
single-valued case) an open problem whether local compactness of ϕ can be avoided or,
at least, replaced by some weaker assumption.

2.3. ad (c). For single-valued continuous self-maps in metric (e.g., Fréchet) spaces, in-
cluding condensing maps, the Nielsen theory was developed in [55], provided only that
(i) the set of fixed points is compact, (ii) the space is a (metric) ANR, and (iii) the related
generalized Lefschetz number is well defined. However, to define the Lefschetz num-
ber for condensing maps on non-simply connected sets is a difficult task (see [9, 19]).
Roughly speaking, once we have defined the generalized Lefschetz number, the Nielsen
number can be defined as well.

In the multivalued case, the situation becomes still more delicate, but the main diffi-
culty related to the definition of the generalized Lefschetz number remains actual. Before
going into more detail, let us recall the notion of a condensing map which is based on the
concept of the measure of noncompactness (MNC).

Let (X ,d) be a metric (e.g., Fréchet) space and let �(X) be the set of nonempty
bounded subsets of X . The function α : �→ [0,∞), where α(B) := inf {δ > 0 | B ∈� ad-
mits a finite covering by sets of diameter less than or equal to δ}, is called the Kuratowski
MNC and the function γ : �→ [0,∞), where γ(B) := inf {ε>0 | B∈� has a finite ε-net},
is called the Hausdorff MNC. These MNC are related by the inequality γ(B) ≤ α(B) ≤
2γ(B). Moreover, they satisfy the following properties, where µ denotes either α or γ:

(i) µ(B)= 0⇔ B is compact,
(ii) B1 ⊂ B2⇒ µ(B1)≤ µ(B2),

(iii) µ(B)= µ(B),
(iv) if {Bn} is a decreasing sequence of nonempty, closed sets Bn ∈ � with

limn→∞µ(Bn)= 0, then
⋂{Bn | n= 1,2, . . .} �=∅,

(v) µ(B1∪B2)=max{µ(B1),µ(B2)},
(vi) µ(B1∩B2)=min{µ(B1),µ(B2)}.

In Fréchet spaces, MNC µ can be shown to have further properties like the essential
requirement that

(vii) µ(convB)= µ(B)
and the seminorm property, that is,

(viii) µ(λB)= |λ|µ(B) and µ(B1∪B2)≤ µ(B1) + µ(B2), for every λ∈R and B,B1,B2 ∈
�.

It is, however, more convenient to take µ= {µs}s∈S as a countable family of MNC µs, s∈ S
(S is the index set), related to the generating seminorms of the locally convex topology in
this case.

Letting µ := α or µ := γ, a bounded mapping ϕ : X � X (i.e., ϕ(B)∈�, for any B ∈�)
is said to be µ-condensing (shortly, condensing) if µ(ϕ(B)) < µ(B), whenever B ∈� and
µ(B) > 0, or, equivalently, if µ(ϕ(B))≥ µ(B) implies µ(B)= 0, whenever B ∈�.

Because of the mentioned difficulties with defining the generalized Lefschetz number
for condensing maps on non-simply connected sets, we have actually two possibilities:
either to define the Lefschetz number on special neighborhood retracts (see, e.g., [7, 9])
or to define the essential Nielsen classes recursively without explicit usage of the Lefschetz
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number (see [7, 20]). Of course, once the generalized Lefschetz number is well defined,
the essentiality of classes can immediately be distinguished.

For the first possibility, by a special neighborhood retract (written SNR), we mean a
closed bounded subset X of a Fréchet space with the following property: there exists an
open subset U of (a convex set in) a Fréchet space such that X ⊂ U and a continuous
retraction r :U → X with µ(r(A))≤ µ(A), for every A⊂U , where µ is an MNC.

Hence, if X ∈ SNR and ϕ : X � X is a condensing composition of an Rδ-map and
continuous map, then the generalized Lefschetz number Λ(ϕ) of ϕ is well defined (cf.
[9]) as required, and subsequently if X ∈ SNR is additionally connected with a finitely
generated abelian fundamental group (cf. (i), (ii)), then we can define the Nielsen number
N(ϕ), for ϕ∈ C, as in the previous cases (a) and (b). The best candidate for a non-simply
connected X to be an SNR seems to be that it is a suitable subset of a Hilbert manifold.
Nevertheless, so far it is an open problem.

For the second possibility of a recursive definition of essential Nielsen classes, let us
only mention that every Nielsen class C �= ∅ is called 0-essential and, for n = 1,2, . . .,
class C is further called n-essential, if for each (p1,q1) ∼ (p,q) and each corresponding
lifting (q̃, q̃1), there is a natural transformation α of the covering pXH : X̃H ⇒ X with C =
Cα(p,q, q̃) := pΓH (C( p̃H ,αq̃H)) (the symbol H refers to the case modulo a subgroup H ⊂
π1(X) with a finite index) such that the Nielsen class Cα(p1,q1, q̃1) is (n− 1)-essential
(for the definitions and more details, see [20]). Class C is finally called essential if it is
n-essential, for each n ∈N. For the lower estimate of the number of coincidence points
of ϕ= (p,q), it is sufficient to use the number of 1-essential Nielsen classes. The related
Nielsen number is therefore a lower bound for the cardinality of C(p1,q1). For more
details, see [20] (cf. [7]).

2.4. ad (d). Consider a multivalued map ϕ : X � X and assume that conditions (i), (ii),
and (iii′) are satisfied. Let A⊂ X be a closed and connected subset. Using the above nota-

tion ϕ= (p,q), namely X
p⇐ Γ

q→ X , denote still ΓA = p−1(A) and consider the restriction

A
p|⇐ ΓA

q|→ A, where p| and q| denote the natural restrictions. It can be checked (see [12])

that the map A
p|⇐ ΓA

q|→ A also satisfies sufficient conditions for the definition of essential
Nielsen classes.

Hence, let S(ϕ;A)= S(p,q;A) denote the set of essential Nielsen classes for X
p⇐ Γ

q→ X

which contain no essential Nielsen classes for A
p|⇐ ΓA

q|→ A.
The following theorem considers the relative Nielsen number for CAC-maps on the

total space.

Theorem 2.6 (see [12]). Let X be a set satisfying conditions (i), (ii), and let A ⊂ X be its
closed connected subset. A CAC-composition ϕ satisfying (iii′) has at least N(ϕ) + #S(ϕ;A)
coincidences, that is,

N(ϕ) + #S(ϕ;A)≤ #C(ϕ), (2.7)

N
(
ϕ0
)

+ #S
(
ϕ0;A

)=N(ϕ1
)

+ #S
(
ϕ1;A

)
, (2.8)

for homotopic maps ϕ0 ∼ ϕ1.
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Similarly, the following theorem relates to a relative Nielsen number for CAC-maps
on the complement.

Theorem 2.7 [12]. Let X be a set satisfying conditions (i), (ii), and let A⊂ X be its closed
connected subset. A CAC-composition ϕ satisfying (iii′) has at least SN(ϕ;A) coincidences
on Γ\ΓA, that is,

SN(ϕ;A)≤ #C(ϕ), (2.9)

SN
(
ϕ0;A

)= SN(ϕ1;A
)
, (2.10)

for homotopic maps ϕ0 ∼ ϕ1.

Remark 2.8. The relative Nielsen number SN(ϕ;A) is defined by means of essential Rei-
demeister classes. More precisely, it is the number of essential classes in �H(ϕ)\Im�(i),
where the meaning of �(i) can be seen from the commutative diagram

�H0 (p|,q|)
η

�(i)
�H(p,q)

η

�H0 (p|,q|) �(i)
�H(p,q)

(2.11)

concerning the Nielsen classes �H(p,q), �H0 (p|,q|) and the Reidemeister classes
�H(p,q), �H0 (p|,q|); η is a natural injection, H ⊂ π1(X) and H0 ⊂ π1(A) are fixed nor-
mal subgroups of finite order. For more details, see [12].

Remark 2.9. Theorem 2.6 generalizes in an obvious way the results presented in parts
(a) and (b) (cf. (2.7), (2.8) with (2.1), (2.3)); Theorem 2.7 can be regarded as their im-
provement as the localization of the coincidences concerns (cf. (2.9), (2.10) with (2.1),
(2.3)).

2.5. ad (e). Consider a map X
p⇐ Γ

q→ X , that is, ϕ = q ◦ p−1. A sequence of points
(z1, . . . ,zk) satisfying zi∈Γ, i=1, . . . ,k, such that q(zi)= p(zi+1), i=1, . . . ,k− 1, and q(zk)=
p(z1) will be called a k-periodic orbit of coincidences, for ϕ = (p,q). Observe that, for
(p,q) = (idX , f ), a k-periodic orbit of coincidences equals the orbit of periodic points
for f .

We will consider periodic orbits of coincidences with the fixed first element (z1, . . . ,zk).
Thus, (z2,z3, . . . ,zk,z1) is another periodic orbit. Orbits (z1, . . . ,zk) and (z′1, . . . ,z′k) are said
to be cyclically equal if (z′1, . . . ,z′k) = (zl, . . . ,zk;z1, . . . ,zl−1), for some l ∈ {1, . . . ,k}. Other-
wise, they are said to be cyclically different. Let us note that, unlike in the single-valued
case, there can exist distinct orbits starting from a given point z1 (the second element z2

satisfying only z2 ∈ q−1(p(z1)) need not be uniquely determined).
Denoting Γk := {(z1, . . . ,zk) | zi ∈ Γ, q(zi) = p(zi+1), i = 1, . . . ,k − 1}, we define maps

pk,qk : Γk → X by pk(z1, . . . ,zk) = p(z1) and qk(z1, . . . ,zk) = q(zk). Since a sequence of
points (z1, . . . ,zk) ∈ Γk is an orbit of coincidences if and only if (z1, . . . ,zk) ∈ C(pk,qk),
the study of k-periodic orbits of coincidences reduces to the one for the coincidences of

the pair X
pk← Γk

qk→ X .
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Hence, in order to make an estimation of the number of k-orbits of coincidences of
the pair (p,q), we will need the following assumptions:

(i′) X is a compact, connected retract of an open subset of (a convex set in) a Fréchet
space,

(ii) X has a finitely generated abelian fundamental group,
(iii) ϕ is a (compact) composition of an Rδ-map p−1 : X � Γ and a continuous

(single-valued) map q : Γ→ X , namely ϕ= q ◦ p−1, where Γ is a metric space.
We can again define, under (i′), (ii), and (iii), Nielsen and Reidemeister classes �(pk,qk)
and �(pk,qk) and speak about orbits of Nielsen and Reidemeister classes.

Definition 2.10. A k-orbit of coincidences (z1, . . . ,zk) is called reducible if (z1, . . . ,zk) =
jkl(z1, . . . ,zl), for some l < k dividing k, where jkl : C(pl,ql)→ C(pk,qk) sends the Nielsen
class corresponding to [α] ∈�( p̃l, q̃l) to the Nielsen class corresponding to [ikl(α)] ∈
�( p̃k, q̃k), that is, for which the following diagram commutes:

�
(
pl,ql

) jkl
�
(
pk,qk

)

�
(
pl,ql

) ikl
�
(
pk,qk

) (2.12)

(for more details, see [13]). Otherwise, (z1, . . . ,zk) is called irreducible.

Denoting by Sk( p̃, q̃) the number of irreducible and essential orbits in �(pl,ql), we
can state the following theorem.

Theorem 2.11 (see [13]). Let X be a set satisfying conditions (i′), (ii). A (compact) com-
position ϕ= (p,q) satisfying (iii) has at least Sk( p̃, q̃) irreducible cyclically different k-orbits
of coincidences.

Remark 2.12. Since the essentiality is a homotopy invariant and irreducibility is defined
in terms of Reidemeister classes, Sk( p̃, q̃) is a homotopy invariant.

Remark 2.13. It seems to be only a technical (but rather cumbersome) problem to gen-
eralize Theorem 2.11 for ϕ ∈K, provided (i)–(iii) hold, or even for ϕ ∈ CAC, provided
(i), (ii), and (iii′) hold. One can also develop multivalued versions of relative Nielsen
theorems for periodic coincidences (on the total space, on the complement, etc.). For
single-valued versions of relative Nielsen theorems for periodic points (including those
on the closure of the complement), see [57] and cf. the survey paper [40].

2.6. ad (f). One can easily check that, in the single-valued case, condition (ii) can be
avoided and X in condition (i) or (i′) (for cases (a)–(e)) can be very often a (compact)
ANR-space.

Definition 2.14. ANR (or AR) denotes the class of absolute neighborhood retracts (or abso-
lute retracts), namely, X is an ANR-space (or an AR-space) if each embedding h : X

�
Y of

X into a metrizable space Y (an embedding h : X
�
Y is a homeomorphism which takes



146 Nielsen number and differential equations

X to a closed subset h(X)⊂ Y) satisfies that h(X) is a neighborhood retract (or a retract)
of Y .

In this subsection, we will employ the hyperspace (�(X),dH), where �(X) := {K ⊂ X |
K is compact } and dH stands for the Hausdorff metric; for its definition and properties,
see, for example, [9]. According to the results in [31], if X is locally continuum connected
(or connected and locally continuum connected), then �(X) is ANR (or AR).

Remark 2.15. Obviously, condition (i) implies X ∈ ANR which makes X locally contin-
uum connected. Hence, in order to deal with hyperspaces (�(X),dH) which are ANR, it
is sufficient to take X ∈ ANR. On the other hand, to have hyperspaces which are ANR,
but not AR, X has to be disconnected.

Furthermore, if ϕ : X � X is a Hausdorff-continuous map with compact values (or,
equivalently, an upper semicontinuous and lower semicontinuous map with compact val-
ues), then the induced (single-valued) map ϕ∗ : �(X)→�(X) can be proved to be con-
tinuous (see, e.g., [9]). If ϕ is still compact (i.e., ϕ∈K), then ϕ∗ becomes compact, too.
It is a question whether similar implications hold for ϕ∈ CAC or ϕ∈ C.

Applying the Nielsen theory (cf. [55]) in the hyperspace (�(X),dH) which is ANR, we
can immediately state the following corollary.

Corollary 2.16 (see [7]). Let X be a locally continuum connected metric space and let
ϕ : X � X be a Hausdorff-continuous compact map (with compact values). Then there exist
at least N(ϕ∗) compact invariant subsets K ⊂ X , that is,

N(ϕ∗)≤ #
{
K ⊂ X | K is compact with ϕ(K)= K}, (2.13)

where N(ϕ∗) is the Nielsen number for fixed points of the induced (single-valued) map ϕ∗ :
�(X)→�(X) in the hyperspace (�(X),dH).

If X is compact, so is �(X) (see, e.g., [9]). Applying, therefore, the Nielsen theory for
periodic points in (�(X),dH)∈ ANR, we obtain the following corollary.

Corollary 2.17 (see [7]). Let X be a compact, locally connected metric space and let ϕ :
X � X be a Hausdorff-continuous compact map (with compact values). Then there exist at
least Sk(ϕ∗) compact periodic subsets K ⊂ X , that is,

Sk(ϕ∗)≤ #
{
K ⊂ X | K is compact with ϕk(K)= K ,

ϕj(K) �= K , for j < k
}

,
(2.14)

where Sk(ϕ∗) is the Nielsen number for k-periodic points of the induced (single-valued) map
ϕ∗ : �(X)→�(X) in the hyperspace (�(X),dH).

Remark 2.18. Similar corollaries can be obtained by means of relative Nielsen numbers
in hyperspaces, for the estimates of the number of compact invariant (or periodic) sets
on the total space X or of those with ϕ(K)= K �⊂ A (or with ϕk(K)= K and ϕj(K) �= K ,
for j < k), where A⊂ X is a closed subset. For more details, see [7].
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3. Poincaré translation operator approach

In [5] (cf. [9]), the following types of Poincaré operators are considered separately:
(a) translation operator for ordinary systems,
(b) translation operator for functional systems,
(c) translation operator for systems with constraints,
(d) translation operator for systems in Banach spaces,
(e) translation operator for random systems,
(f) translation operator for directionally u.s.c. systems.

For all the types (a)–(f), it can be proved that, under natural assumptions, the Poincaré
operators related to given systems are the desired compositions of Rδ-maps with contin-
uous (single-valued) maps. On the other hand, these operators can be easily checked to
be admissibly homotopic to identity which signalizes that they are useless as far as they
are considered on some nontrivial ANR-subsets (e.g., on an annulus or on a torus). Thus,
the only chance to overcome this handicap seems to be the composition with a suitable
homeomorphism, because the associated Nielsen number can be reduced to the Nielsen
number of this homeomorphism.

3.1. ad (a). Consider the upper-Carathéodory system

x′ ∈ F(t,x), x ∈Rn, (3.1)

where
(i) the values of F(t,x) are nonempty, compact, and convex, for all (t,x) ∈ [0,τ]×
Rn,

(ii) F(t,·) is u.s.c., for a.a. t ∈ [0,τ],
(iii) F(·,x) is measurable, for every x ∈Rn, that is, for any closed U ⊂ Rn and every

x ∈Rn, the set {t ∈ [0,τ] | F(t,x)∩U �= ∅} is measurable,
(iv) |F(t,x)| ≤ α+β|x|, for every x ∈Rn and a.a. t ∈ [0,τ], where α and β are suitable

nonnegative constants.
By a solution to (3.1), we mean an absolutely continuous function x ∈ AC([0,τ],Rn)

satisfying (3.1), for a.a. t ∈ [0,τ] (i.e., the one in the sense of Carathéodory).
Hence, if x(·,x0) is a solution to (3.1) with x(0,x0) = x0 ∈ Rn, then the translation

operator Tτ :Rn �Rn at time τ > 0 along the trajectories of (3.1) is defined as follows:

Tτ
(
x0
)

:= {x(τ,x0
) | x(·,x0

)
is a solution to (3.1) with x(0,x0)= x0

}
. (3.2)

As already mentioned, Tτ defined by (3.2) can be proved (see [5] or [9]) to be a com-
position of an Rδ-mapping, namely

ϕ
(
x0
)

: x0 �
{
x
(·,x0

) | x(·,x0
)

is a solution to (3.1) with x
(
0,x0

)= x0
}

, (3.3)

and the continuous (single-valued) evaluation map ψ(y) : y→ y(τ), that is, Tτ = ψ ◦ϕ.
Now, let X ⊂ Rn be a bounded subset satisfying conditions (i) and (ii) of part 2 and

let � : X → X be a homeomorphism. If Tλτ is a self-map of X , that is, if Tλτ : X � X , for
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each λ∈ [0,1], then we can still consider the composition

X × [0,1]
ϕ|

◦AC
(
[0,λτ], Imϕ(X),[0,1]

)
ψ|

. . . X

�

�◦Tλτ ◦X

(3.4)

where ϕ| := ϕ|X , ψ| := ψ|AC([0,λτ],Imϕ(X),[0,1]) denote the respective restrictions. Since X is,
by hypothesis, bounded (i.e., � ◦Tλτ ∈K), we can define the Nielsen number (see part 2
(a)) N(� ◦Tλτ)=N(�), where

N(�)≤#
{
x ∈ AC

(
[0,τ],Rn

) |
x is a solution to (3.1) with �

(
x
(
0,x0

))= x(τ,x0
)∈ X ,x

(
0,x0

)∈ X}. (3.5)

Two problems occur, namely,
(i) to guarantee that Tλτ is a self-map of X , for each λ∈ [0,1],

(ii) to compute N(�).
For the first requirement, we have at least two possibilities:

(i) X := Tn =Rn/Zn,
(ii) the usage of Lyapunov (bounding) functions (cf. [9, Chapter III.8]).

If X = Tn, then the requirement concerning a finitely generated abelian fundamental
group π1(X) is satisfied and (cf. (3.5))

N
(
� ◦Tτ

)=N(�)= ∣∣Λ(�)
∣∣, (3.6)

where Λ stands for the generalized Lefschetz number (see [11] and cf. [9]).
Hence, if

F
(
t, . . . ,xj , . . .

)≡ F(t, . . . ,xj + 1, . . .
)
, (3.7)

for all j = 1, . . . ,n, where x = (x1, . . . ,xn), then we can immediately give the following the-
orem.

Theorem 3.1. System (3.1) admits, under (i)–(iv) and (3.7), at least |Λ(�)| solutions
x(·,x0) such that �(x(0,x0)) = x(τ,x0)(mod1), where � is a continuous self-map of Tn

and τ is a positive number.

Example 3.2. For � =−id, we obtain that |Λ(−id)| = 2n, and so system (3.1) admits at
least 2n 2τ-periodic solutions x(·) on Tn, that is, x(t + 2τ) ≡ x(t)(mod1), provided still
F(t+ τ,−x)≡−F(t,x).

Lyapunov (bounding) functions can be employed for obtaining a positive flow-
invariance of X under Tλτ even in more general situations (cf., e.g., [9]).
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It has also meaning to assume that Tτ has a compact attractor, that is, Tτ ∈ CA, which
implies in Rn that Tτ ∈ CAC. Thus, a subinvariant subset S ⊂ Rn exists with respect to
Tτ , namely Tτ(S) ⊂ S, such that Tτ(S) is compact. If, in particular, S ∈ ANR, then the
Nielsen number N(Tτ|S) is well defined, but the same obstruction with its computation
as above remains actual. Moreover, a number λ∈ [0,1] can exist such that Tλτ|S(x0) �∈ S,
for some x0 ∈ S, by which the computation of N(Tτ|S) need not be reduced to N(id|S),
and so forth.

As concerns the application of other Nielsen numbers, the situation is more compli-
cated, especially with respect to their computation. In order to define relative Nielsen
numbers, a closed connected subset A ⊂ X should be positively flow-invariant under
Tλτ|A (which can be guaranteed by means of bounding Lyapunov functions) and �(A)⊂
A. Then both the numbers N(� ◦ Tτ ;A) + #S(� ◦ Tτ ;A) = N(�;A) + #S(�;A) and
NS(� ◦ Tτ ;A) = NS(�;A) are well defined, provided the assumptions in the absolute
case hold. For periodic coincidences, X was assumed to be still compact, for example,

X = Tn, but then the related Nielsen number Sk(�̃ ◦Tτ)= Sk(�̃) is again well defined. In
particular, for X = Tn, we obtain

Sk(�̃)≥
[

1
k

∑
m|k

µ
(
k

m

)∣∣Λ(�m
)∣∣]+

, (3.8)

provided Λ(�k) �= 0, k ∈N, where Λ(�m) denotes the Lefschetz number of �m, [r]+ =
[r] + sgn(r − [r]) with [r] being the integer part of r, and µ is the Möbius function, that
is, for d ∈N,

µ(d)=


0 if d = 1,

(−1)l if d is a product of l distinct primes,

0 if d is not square-free.

(3.9)

In view of (3.8), we can get the following theorem.

Theorem 3.3. System (3.1) admits, under (i)–(iv), (3.7), and Λ(�k) �= 0, k ∈N, at least
[(1/k)

∑
m|k µ(k/m)|Λ(�m)|]+ geometrically distinct k-tuples of solutions x(·,x0) such that

� ◦ x(τ;� ◦ x(τ; . . .� ◦ x(τ;x
(
0,x0

)
. . .
)))= x(0,x0

)
(mod1), (3.10)

where � is a continuous self-map of Tn and τ is a positive number.

Example 3.4. For

�= A=
(

0 1
1 1

)
=⇒ A5 =

(
3 5
5 8

)
, (3.11)
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we obtain that

det(I −A)= det

(
1 −1
−1 0

)
=−1,

det
(
I −A5)= det

(−2 −5
−5 −7

)
=−11.

(3.12)

Since µ(1)= 1 and µ(5)=−1, we arrive at

1
5

∑
m|5

µ
(

5
m

)∣∣det
(
I −Am)∣∣= 1

5

(− 1|− 1|+ 1|− 11|)= 2, (3.13)

and subsequently (3.1) with (3.7) admits at least two geometrically distinct 5-tuples of
solutions x such that

A◦ x(τ;A◦ x(τ;A◦ x(τ;A◦ x(τ;A◦ x(τ;x
(
0,x0

))))))= x(0,x0
)
(mod1). (3.14)

For invariant and periodic sets, we must assume that the related Poincaré translation
operators are continuous, namely we should consider (instead of (3.1)) Carathéodory
systems of equations

x′ = F(t,x), x ∈Rn, (3.15)

with uniquely solvable initial value problems (i.e., with F satisfying a uniqueness condi-
tion). Let us suppose that the related translation operator Tτ has a compact attractor, say
K ⊂Rn, for which it is (in the single-valued case) sufficient to assume only that, for every
x0 ∈Rn, we have {

x0,Tτ
(
x0
)
,T2

τ

(
x0
)
, . . .

}∩K �= ∅, (3.16)

where the bar {·} denotes the closure of the orbit {·} in Rn. Then Tτ ∈ CAC, and subse-
quently a subset K0 :=⋃n∗

k=0T
k
τ (K)⊂ Rn exists, for some n∗ ∈N, such that Tτ(K0)⊂ K0

and Tτ|K0 ∈K. Since a continuous image of a locally connected set need not be locally
connected, let K be such that K0 is locally connected. Thus, (�(K0),dH)∈ ANR, and so
the Nielsen numbers N(T∗τ |�(K0)) and Sk(T∗τ |�(K0)) are well defined, satisfying

N
(
T∗τ |�(K0)

)≤ #
{
K1 ⊂ K0 | K1 is compact with Tτ

(
K1
)= K1

}
, (3.17)

Sk
(
T∗τ |�(K0)

)≤ #
{
K2 ⊂ K0 | K2 is compact with Tk

τ

(
K1
)= K2,

T
j
τ
(
K2
) �= K2, for j < k

}
.

(3.18)

However, the computation of these Nielsen numbers cannot be reduced in general to the
one ofN(T∗0 |�(K0))=N(id|�(K0)) and Sk(T∗0 |�(K0))=N(id|�(K0)), respectively. Moreover,
it has good sense, as pointed out in part 2(f), only for disconnected K0.

3.2. ad (b). Consider the upper-Carathéodory functional system

x′ ∈ F(t,xt), x ∈Rn, (3.19)
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where xt(·)= x(t+ ·), for t ∈ [0,τ], denotes, as usual, a function from [−δ,0], δ ≥ 0, into
Rn, and F : [0,τ]×� �Rn, where � := AC([−δ,0],Rn), is an upper-Carathéodory map,
that is,

(i) the set of values of F(t, y) is nonempty, compact, and convex, for all (t, y) ∈
[0,τ]×�,

(ii) F(t,·) is u.s.c., for a.a. t ∈ [0,τ],
(iii) F(·, y) is measurable for all y ∈�, that is, for any closedU ⊂Rn and every y ∈�,

the set {t ∈ [0,τ] | F(·, y)∩U �= ∅} is measurable,
(iv) |F(t, y)| ≤ α+β|y|, for every y ∈� and a.a. t ∈ [0,τ], where α and β are suitable

nonnegative constants.
By a solution to (the initial problem of) (3.19), we mean again an absolutely contin-

uous function x ∈ AC([−δ,τ],Rn) (with x(t)= x∗, for t ∈ [−δ,0]), satisfying (3.19), for
a.a. t ∈ [−δ,τ]; such solutions exist on [−δ,τ], for δ ≥ 0.

Hence, if x(·,x∗) is a solution of (3.8) with x(t,x∗) = x∗ ∈ E, for t ∈ [−δ,0], where
E consists of equicontinuous functions, then the translation operator Tτ : AC([−δ,0],
Rn) � AC([−δ,0],Rn) at the time τ > 0 along the trajectories of (3.8) is defined as fol-
lows:

Tτ(x∗) := {x(τ + t,x∗), t ∈ [−δ,0] |
x(·,x∗) is a solution to (3.19) with x(t,x∗)= x∗, for t ∈ [−δ,0]

}
.

(3.20)

Tτ defined by (3.20) can be proved (see [5] or [9]) to be again a composition of an
Rδ-mapping

ϕ(x∗) : x∗ �
{
x(·,x∗) |
x(·,x∗) is a solution to (3.19) with x(t,x∗)= x∗, for t ∈ [−δ,0]

} (3.21)

and the continuous (single-valued) evaluation mapping ψ(y) : y → y(τ), that is, Tτ =
ψ ◦ϕ.

Now, let X ⊂ AC([−δ,0],Rn) be a bounded, closed subset consisting of equicontinu-
ous functions satisfying conditions (i) and (ii) in part 2, and let � : X → X be a homeo-
morphism. If Tλτ : X � X , for each λ∈ [0,1], then we can still consider the composition

X × [0,1]
ϕ|

◦AC
(
[−δ,λτ], Imϕ(X),[0,1]

)
ψ|

. . . X

�

�◦Tλτ ◦X

(3.22)

where ϕ| := ϕ|X , ψ| := ψ|AC([−δ,λτ],Imϕ(X),[0,1]) denote the respective restrictions. Since X
is, by hypothesis, a bounded, closed subset consisting of equicontinuous functions, it is
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compact, and so is � ◦Tλτ : X × [0,1] � X (i.e., � ◦Tλτ ∈K, for every λ∈ [0,1]). There-
fore, all the Nielsen numbers N(� ◦Tτ) = N(�), N(� ◦Tτ) + #S(� ◦Tτ ;A) = N(�) +

#S(�;A),NS(� ◦Tτ ;A)=NS(�;A), Sk(�̃ ◦Tτ)= Sk(�̃),N(T∗τ |�(K0)), and Sk(T∗τ |�(K0))
are again well defined, satisfying the analogies of (3.5), (3.8), (3.17), and (3.18), respec-
tively. On the other hand, there is one serious difference, namely since X is infinite-
dimensional, we cannot take X = Tn. Thus, there are no analogies of Theorems 3.1 and
3.3, whenever δ > 0. For δ = 0, the functional case reduces obviously to the ordinary one.

3.3. ad (c). Consider again system (3.19), where F : [0,τ]×� �Rn is the same as in part
(b). For nonempty, compact, and convex set K ⊂Rn, the constraint, let us denote

K := {ξ ∈� | ξ(t)∈ K , for t ∈ [−δ,0]
}

(3.23)

and assume that the following Nagumo-type condition holds:

F(t, y)∩TK
(
y(0)

) �= ∅, (3.24)

for all (t, y)∈ [0,τ]×K , where

TK
(
y(0)

)= {z ∈Rn | liminf
h→0+

d
(
y(0) +hz,K

)
h

= 0
}

(3.25)

is the tangent cone (in the sense of Bouligand).
Then, for every x∗ ∈K , there exists at least one Carathéodory solution x(·,x∗) to

(3.19) such that x(t,x∗)= x∗ ∈ E, for t ∈ [−δ,0], and x(t,x∗)∈ K , for t ∈ [0,τ]. Hence,
we can define the associated translation operator Tτ : K � K at the time τ > 0 along the
trajectories of (3.19) which makes the set K subinvariant, that is, Tλτ(K)⊂K , for every
λ∈ [0,1]. Moreover, Tλτ can be shown to satisfy condition (iii); for more details, see [5]
or [9].

Hence, although all the above Nielsen numbers can again be well defined, provided
(ii), the convexity of K , and subsequent convexity of K , makes most of the problems
trivial, because K ∈ AR, that is, N(Tτ) = 1, and so forth. Unfortunately, to avoid the
convexity of K seems to be a difficult task. The only nontrivial situations seem to be those
of the relative numbersN(� ◦Tτ ;A) + #S(� ◦Tτ ;A)= 1 + #S(�;A) andNS(� ◦Tτ ;A)=
NS(�;A).

3.4. ad (d). Consider the functional system

x′ +Ax ∈ F(t,xt), x ∈ B, (3.26)

where B is a separable Banach space, A is a closed, linear operator in B, generating
an analytic semigroup, and F : [0,τ]×� � B is an upper-Carathéodory map, where
�= C([−δ,0],B). Under suitable restrictions in terms of the Hausdorff measure of non-
compactness, imposed on A and F, one can show (see [5] or [9]) the existence of mild
solutions x ∈ C([−δ,τ],B), that is,

x(t)= eAtx(0) +
∫ t

0
eA(t−s) f (s)ds, (3.27)
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for t ∈ [0,τ], with x(t) = x∗, for t ∈ [−δ,0], where f is a measurable selection of
F(s,xs(t)), t ∈ [−δ,0]. Hence, we can define the associated translation operator Tτ : X �
X , where X ⊂ C([−δ,0],B) is a subset satisfying conditions (i), (ii), and to show that
Tτ ∈ C is, under the mentioned restrictions, a γ-condensing composition (on equicon-
tinuous sets) of an Rδ-mapping and the continuous evaluation mapping (see [5] or [9]).
Nevertheless, in view of the difficulties discussed in part 2(e), it does not have much
meaning to speak about applications of the Nielsen number to the above system in B be-
fore developing (even in the single-valued case) the appropriate Nielsen theory for con-
densing maps.

3.5. ad (e). Consider the random system

x′(κ, t)∈ F(κ, t,x(κ, t)
)
, κ∈Ω, x ∈Rn, (3.28)

where Ω is a complete probabilistic space and
(i) the set of values of F(κ, t,x) is nonempty, compact, and convex, for all (κ, t,x)∈

Ω× [0,τ]×Rn,
(ii) F(κ, t,·) is u.s.c., for a.a. (κ, t)∈Ω× [0,τ],

(iii) F(·,·,x) is measurable, for all x ∈ Rn, that is, for any closed U ⊂ Rn and every
x ∈Rn, the set {(κ, t)∈Ω× [0,τ] | F(·,·,x)∩U �= ∅} is measurable,

(iv) |F(κ, t,x)| ≤ µ(κ, t)(1 + |x|), for every x ∈Rn and a.a. (κ, t)∈Ω× [0,τ], where µ :
Ω× [0,τ]→ [0,∞) is a map such that µ(·, t) is measurable and µ(κ,·) is Lebesgue
integrable on [0,τ].

The operator F satisfying (i)–(iv) is called the random upper-Carathéodory operator.
Similarly, for metric spaces X and Y , we say that a multivalued mapping with nonempty,
closed values ϕ : Ω×X � Y is a random operator if ϕ is product-measurable and ϕ(κ,·)
is u.s.c., for every κ∈Ω. By a random homotopy χ : Ω×X × [0,1] � Y , we understand a
product-measurable mapping with nonempty, closed values which is u.s.c. w.r.t. the last
variable and which, for every λ ∈ [0,1], satisfies that χ(·,·,λ) is a random operator. A
measurable map (a random variable) x̂ : Ω→ X ∩Y is said to be a random fixed-point of
a random operator ϕ : Ω×X � Y if x̂(κ)∈ ϕ(κ, x̂(κ)), for a.a. κ∈Ω.

By a solution to (3.28), we mean a function x such that x(·, t) is measurable, x(κ,·)
is absolutely continuous, and x(κ, t) satisfies (3.28), for a.a. (κ, t)∈Ω× [0,τ], where the
derivative x′(κ, t) is considered with respect to t. Under (i)–(iv), such solutions exist on
[0,τ].

Besides (3.28), consider still the one-parameter family of deterministic systems

x′ ∈ Fκ(t,x)
[

:= F(κ, t,x, )
]
. (3.29)

This is because of the possibility to define the associated random translation operator Tτ
in a deterministic way, just by means of the translation operator of (3.29).

Hence, defining

Tτ
(
κ,x0

)
:= {x(τ,x0

) | x(·,x0
)

is a solution to (3.29) with x
(
0,x0

)= x0
}

, (3.30)
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one can prove (see [5] or [9]) that Tτ is a random operator with compact values, com-
posed of a random operator with Rδ-values and the continuous evaluation mapping.
Thus, according to an important statement (see [9, Proposition 4.20, Chapter III.4])
allowing us to transform the investigation of random fixed points of Tτ to the one of
Tτ(κ,·), for every κ ∈ Ω, it holds that Tτ possesses a random fixed point, whenever
Tτ(κ,·) has a fixed point, for every κ∈Ω.

In view of the related deterministic obstructions in part (a), it will be useful to consider
another composition with a homeomorphism � : X � X , namely � ◦ Tλτ|Ω×X×[0,1] =
� ◦ψ| ◦ϕ|Ω×X×[0,1] : Ω×X × [0,1] � X , that is,

Ω×X × [0,1]
ϕ|

◦AC
(
[0,λτ], Imϕ(Ω,X),[0,1]

)
ψ|

. . . X

�

�◦Tλτ ◦X

(3.31)

where X ⊂Rn is a bounded subset satisfying conditions (i) and (ii) of part 2,

ϕ
(
κ,x0

)
:
(
κ,x0

)
�
{
x
(·,x0

) | x(·,x0
)

is a solution to (3.29) with x
(
0,x0

)= x0
}

(3.32)

is an Rδ-mapping, for every κ∈Ω, and ϕ| := ϕΩ×X , ψ| := ψ|AC([0,λτ],Imϕ(Ω,X),[0,1]) denote
the respective restrictions. Of course, x̂ : Ω→ X is a random fixed point of � ◦ Tλτ if
and only if the original system (3.28) has a random solution x(κ, t) such that �(x(κ,0))=
x(κ,τ) = x̂(κ), for a.a. κ ∈ Ω. Since � ◦ Tλτ : Ω×X × [0,1] � X can be verified to be
a compact random homotopy (see [9, Theorem 4.23, Chapter III.4]), we believe that
one can define (via the mentioned transformation to the deterministic case) the random

Nielsen numbers Nκ(� ◦Tτ)=Nκ(�) and Sk(�̃ ◦Tτ)κ = Sk(�̃)κ, where the indices κ in-
dicate the randomness, as the number of essential random classes of coincidence points,
respectively of essential random classes of irreducible cyclically different k-orbits of coin-
cidences. The random essentiality can be defined similarly as in [38, pages 156-157] by
means of nontrivial related random coincidence indices. They should provide the lower
bound of the numbers of random coincidence points and random irreducible cyclically
different k-orbits of coincidences of � ◦Tτ , respectively.

If so, then we can randomize Theorems 3.1 and 3.3 as follows.

Conjecture 3.5. System (3.28) admits, under (i)–(iv) and (3.7), at least |Λ(�)| ran-
dom solutions x(κ, t,x0) such that �(x(κ,0,x0)) = x(κ,τ,x0)(mod1), for a.a. κ ∈ Ω, and
[(1/k)

∑
m|k µ(k/m)|Λ(�m)|]+ geometrically distinct k-tuples of random solutions x(κ, t,x0)

such that

� ◦ x(κ,τ;� ◦ x(κ,τ; . . .� ◦ x(κ,τ;x
(
0,x0

)
. . .
)))= x(κ,0,x0

)
(mod1), (3.33)

for a.a. κ∈Ω, where � is a continuous self-map of Tn and τ is a positive number.
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Remark 3.6. Examples 3.2 and 3.4 can then be appropriately randomized as well.

3.6. ad (f). Let M ∈ R and let ΓM := {(t,x) ∈ R×Rn | |x| ≤Mt} be a closed, convex
cone. We say that a multivalued mapping with nonempty, closed values F :R×Rn �Rn

is ΓM-directionally u.s.c. if, at each point (t0,x0)∈R×Rn, and for every ε > 0, there exists
δ > 0 such that, for all (t,x) ∈ B((t0,x0),δ) satisfying |x− x0| ≤M(t− t0), the following
holds: F(t,x)⊂ F(t0,x0) + εB.

Consider the ΓM-directionally u.s.c. system (3.1). Since the solution set of (3.1) can be
characterized by means of the Filippov-like regularization of (3.1), the related translation
operator to (3.1) can be associated to the regularized system.

Thus, let F : [0,τ]×Rn � Rn in (3.1) be still convex-valued, locally bounded, and
measurable. Then the mapping

φ(t,x)=
⋂
δ>0

⋂
N⊂Rn+1

µ(N)=0

convF
(
B
(
(t,x),δ

)\N) (3.34)

is called the Filippov-like regularization of the right-hand side of (3.1), where µ stands for
the Lebesgue measure, and conv for the closure of the convex hull of a set. The Filippov-
like regularization can be proved to have the following properties (cf. [9]):

(i) φ(·,·) is u.s.c., for all (t,x)∈ [0,τ]×Rn,
(ii) F(t,x)⊂ φ(t,x), for all (t,x)∈ [0,τ]×Rn,

(iii) φ is minimal in the following sense: if φ0 : [0,τ]×Rn �Rn satisfies (i) and (ii),
then φ(t,x)⊂ φ0(t,x), for all (t,x)∈ [0,τ]×Rn.

We have proved (see [9, Proposition 4.29, Chapter III.4]) that, under the above as-
sumptions and F([0,τ]× S)⊂ B(0,L), where 0 < L <M, every solution of the regularized
inclusion

x′ ∈ φ(t,x), x ∈ S, (3.35)

is a solution to the original inclusion (3.1) with F : [0,τ]× S� Rn, where S ⊂ Rn, and
vice versa.

Hence, if x(·,x0) is a solution to (3.1) with x(0,x0)= x0 ∈ S, then the translation op-
erator Tτ : S� S at time τ > 0 along the trajectories of (3.1) can be defined as follows:

Tτ
(
x0
)

:= {x(τ,x0
) | x(·,x0

)
is a solution to (3.1) with x

(
0,x0

)= x0 ∈ S
}

, (3.36)

and all that was presented in part (a) can be rewritten via (3.35) for (3.1). In particular,
we can state the following corollary.

Corollary 3.7. Let F : [0,τ]×Rn � Rn be ΓM-directionally u.s.c., for some M ∈ R, and
let F([0,τ]×Rn) ⊂ B(0,L), where 0 < L < M. Furthermore, let F be convex-valued and
measurable. At last, let F satisfy (3.7). Then the conclusions of Theorems 3.1 and 3.3 hold for
(3.1).

Remark 3.8. Examples 3.2 and 3.4 can be appropriately rewritten under the assumptions
of Corollary 3.7, too.
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4. Hammerstein solution operator approach

For the sake of simplicity, we will concentrate on ordinary systems (3.1). Here, unlike in
the foregoing section, fixed points of the associated (Hammerstein) operators will repre-
sent solutions to the given problems. Therefore, in view of Remark 2.1, these operators
should be, in principle, “only” Rδ-maps.

The following multiplicity results for (3.1) will be considered:
(a) general multiplicity principle,
(b) multiplicity criterium for initial value problems,
(c) multiplicity criteria for boundary value problems.

4.1. ad (a). Consider the problem

x′ ∈ F(t,x), for a.a. t ∈ I ,
x ∈ S,

(4.1)

where I ⊂R is a given interval, F : I ×R�R is an upper-Carathéodory map (cf. condi-
tions (i)–(iv) in part 3(a)), and S ⊂ ACloc(I ,Rn), where ACloc(I ,Rn) denotes the class of
locally absolutely continuous functions from I into Rn.

Before applying the Nielsen theory presented in part 3(a) to (4.1), it will be convenient
to introduce the following definition which follows R. F. Brown’s modification of the
Leray–Schauder boundary condition.

Definition 4.1. A mapping T :Q�U , where U is an open subset of C(I ,Rn) containing
Q, is retractible onto Q, if there exists a (continuous) retraction r : U → Q such that p ∈
U\Q with r(p)= q implies that p �∈ T(q).

The advantage of the above definition lies in the fact that, for a retractible mapping
T :Q�U with a retraction r, the composition r|T(Q) ◦T :Q→Q has a fixed point q̂ ∈Q
if and only if q̂ is a fixed point of T . Therefore, if q̂ ∈ T(q̂) represents the solution to
(4.1), where T ∈K is an Rδ-map, so does q̂ ∈ r|T(Q) ◦T(q̂) and, in spite of Remark 2.1,
N(r|T(Q) ◦T)≤ #Fix(T), whenever the Nielsen number N(r|T(Q) ◦T) is well defined (cf.
conditions (i)–(iii) in part 3(a)).

The following statement is crucial (see [10] or [9]).

Proposition 4.2. Let G : I ×Rn ×Rn � Rn be an upper-Carathéodory map and assume
that

(i) there exists a closed, connected subsetQ of C(I ,Rn) with a finitely generated abelian
fundamental group such that, for any q ∈ Q, the set T(q) of all solutions of the
linearized problem

x′ ∈G(t,x,q(t)
)
, for a.a. t ∈ I , x ∈ S, (4.2)

is Rδ ,
(ii) T(Q) is bounded in C(I ,Rn) and T(Q)⊂ S,

(iii) there exists a locally integrable function α : I → R such that |G(t,x(t),q(t))| :=
sup{|y| | y ∈ G(t,x(t),q(t))} ≤ α(t), a.e. in I , for any pair (q,x) ∈ ΓT , where ΓT
denotes the graph of T .
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Assume, furthermore, that
(iv) the operator T :Q�U , related to (4.2), is retractible onto Q with a retraction r in

the sense of Definition 4.1.
At last, let

G(t,c,c)⊂ F(t,c), (4.3)

for a.a. t ∈ I and any c ∈Rn. Then the original problem (4.1) admits at least N(r|T(Q) ◦T)
solutions belonging to Q, where N stands for the Nielsen number in part 2(a).

Remark 4.3. IfQ is still compact and such that T(Q)⊂Q∩ S or if T is single-valued, then
the fundamental group π1(Q) need not be abelian and finitely generated (see [2]).

In order to apply Proposition 4.2, the following main steps have to be taken:
(i) the Rδ-structure of the solution set to (4.2) must be verified,

(ii) the inclusion T(Q) ⊂ S or, most preferably, T(Q) ⊂ Q∩ S must be guaranteed,
together with the retractibility of T ,

(iii) N(r|T(Q) ◦T) must be computed.

4.2. ad (b). For initial value problems, condition (i) can be easily verified, provided G
is still product-measurable (cf. [9]). In fact, since upper-Carathéodory inclusions with
product-measurable right-hand sides G possess, for each q ∈ Q ⊂ C(I ,Rn), an Rδ-set of
solutions x(·,x0) with x(0,x0) = x0, for every x0 ∈ Rn, such a requirement can be, in
Proposition 4.2 with S := {x ∈ ACloc(I ,Rn) | x(0,x0)= x0}, simply avoided. Moreover, if
Q is still compact and such that T(Q)⊂Q∩ S, then (see Remark 4.3) π1(Q) need not be
abelian and finitely generated.

Thus, Proposition 4.2 simplifies, for initial value problems, as follows (cf. [2]).

Proposition 4.4. Let G : I ×Rn ×Rn � Rn be an upper-Carathéodory product-measur-
able mapping, where I = [0,∞) or I = [0,τ], τ ∈ (0,∞). Assume, furthermore, that there ex-
ists a (nonempty) compact, connected subset Q ⊂ C(I ,Rn) which is a neighbourhood retract
of C(I ,Rn) such that |G(t,x,q(t))| ≤ µ(t)(|x|+ 1) holds, for every (t,x,q)∈ I ×Rn×Q. Let
the initial value problem

x′ ∈G(t,x,q(t)
)
, for a.a. t ∈ I , x(0)= x0, (4.4)

have, for each q ∈Q, a nonempty set of solutions T(q) such that T(Q)⊂Q∩ S, where S :=
{x ∈ ACloc(I ,Rn) | x(0)= x0}. Then the original initial value problem

x′ ∈ F(t,x), for a.a. t ∈ I , x(0)= x0, (4.5)

admits at least N(T) solutions, provided (4.3) holds a.e. on I , for any c ∈Rn.

Example 4.5. Consider the scalar (n= 1) initial value problem with x0 = 0 and I = [0,τ],
τ > 0. Letting

Q :={q ∈ AC
(
[0,τ],R

) |
q(0)= 0 and δ2 ≤ q′(t)≤ δ1or − δ1 ≤ q′(t)≤−δ2, for a.a. t ∈ [0,τ]

}
,

(4.6)
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where 0 < δ2 < δ1 are suitable constants, Q can be easily verified to be a disjoint (!) union
of two convex, compact sets, and consequently Q is a compact ANR, that is, also a neigh-
borhood retract of C([0,τ],R). Unfortunately, Q is disconnected, which excludes the di-
rect application of Proposition 4.4.

Nevertheless, for example, the inclusion

x′ ∈ δ Sgn(x), for a.a. t ∈ [0,τ], δ > 0, (4.7)

where

Sgn(x)=


−1, for x ∈ (−∞,0),

[−1,1], for x = 0,

1, for x ∈ (0,∞),

(4.8)

admits obviously two classical C1-solutions x1(t) = δt with x1(0) = 0, and x2(t) = −δt
with x2(0)= 0, satisfying the given inclusion everywhere.

The linearized inclusion

x′ ∈ δ Sgn
(
q(t)

)
, for a.a. t ∈ [0,τ], δ > 0, (4.9)

possesses, for each q ∈Q, either the solution x1(t)= δt with x1(0)= 0 or x2(t)=−δt with
x2(0)= 0, depending on sgn(q(t)), provided δ2 ≤ δ ≤ δ1. Observe that there are no more
solutions, for each q ∈ Q. Thus, we also have T(Q) ⊂ Q∩ S (i.e., condition (ii)), where
S := {x ∈ ACloc(I ,Rn) | x(0)= 0}.

The only handicap is related to the mentioned disconnectedness of Q. However, since
T :Q→Q, where

T(q)=
δt, for q ≥ 0,

−δt, for q ≤ 0,
(4.10)

is obviously single-valued, the application of the multivalued Nielsen theory, as in part
2(a) (cf. [2]), in the proof of Proposition 4.4 can be replaced by the application of the
single-valued one, where Q ∈ ANR can already be disconnected (see, e.g., [55]). We can,
therefore, conclude, on the basis of the appropriately modified Proposition 4.4, that the
original inclusion (4.7) admits at least N(T)= 2 solutions x(t) with x(0)= 0, as observed
by the direct calculations. In fact, it must therefore have a nontrivial Rδ-set of infinitely
many piece-wise linear solutions x(t) with x(0)= 0. The computation of N(T)= 2 (i.e.,
condition (iii)) is trivial, because Q =Q+∪Q−, where

(AR�)Q+ :={q ∈ AC
(
[0,τ],R

) |
q(0)= 0,δ2 ≤ q′(t)≤ δ1, for a.a. t ∈ [0,τ]

}
,

(AR�)Q− :={q ∈ AC
(
[0,τ],R

) |
q(0)= 0,−δ1 ≤ q′(t)≤−δ2, for a.a. t ∈ [0,τ]

}
,

(4.11)
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and so for the computation of the generalized Lefschetz numbers we have Λ(T|Q+ ) =
Λ(T|Q−)= 1, where T|Q+ :Q+→Q+ and T|Q− :Q− →Q−.

The same is obviously true for the inclusion

x′ ∈ [δ + f (t,x)
]
Sgn(x), for a.a. t ∈ [0,τ], δ > 0, (4.12)

where f : [0,τ]×R→ R is a Carathéodory and locally Lipschitz function in x, for a.a.
t ∈ [0,τ], such that δ2 ≤ δ + f (t,x)≤ δ1, for some 0 < δ2 < δ1, because again T :Q→Q.

Of course, we could arrive at the same conclusion even without an explicit usage of
the Nielsen theory, just through double application (separately on Q+ and Q−) of the
Lefschetz theory.

Remark 4.6. In view of Example 4.5, it is more realistic to suppose in Proposition 4.4 that
(at least for n = 1) the solution operator T is single-valued and that Q can be discon-
nected and not necessarily compact. Naturally, the first requirement seems to be rather
associated with differential equations than inclusions.

4.3. ad (c). For boundary value problems, condition (i) is much more complicated
to be verified (cf. [9, Chapter III.3]). Therefore, we restrict ourselves to semilinear
Carathéodory inclusions with linear boundary conditions in the following form:

x′ +A(t)x ∈ F(t,x), for a.a. t ∈ I ,
Lx =Θ, Θ∈Rn,

(4.13)

where A : [0,τ]→ Rn ×Rn is a (single-valued) continuous n× n matrix and F : [0,τ]×
Rn � Rn is an upper-Carathéodory (cf. conditions (i)–(iv) in part 3(a)) product-meas-
urable mapping with nonempty, compact, and convex values.

In [10] (cf. [9]), we proved the following theorem by means of Proposition 4.2.

Theorem 4.7. Let A : [0,τ]→Rn×Rn and F : [0,τ]×Rn �Rn be as above. Let, further-
more, L : C([0,τ],Rn)→Rn be a linear operator such that the homogeneous problem

x′ +A(t)x = 0, Lx = 0, (4.14)

has only the trivial solution on [0,τ]. Then the original problem (4.13) has at leastN(r|T(Q) ◦
T) solutions, where T denotes the solution operator to the linearized problem

x′ +A(t)x ∈ F(t,q(t)
)
, for a.a. t ∈ I , q ∈Q,

Lx =Θ, Θ∈Rn,
(4.15)

provided there exists a closed, connected subset Q ∈ C([0,τ],Rn) with a finitely generated
abelian fundamental group such that

(i) T(Q) is bounded,
(ii) T is retractible onto Q with a retraction r, in the sense of Definition 4.1,

(iii) T(Q)⊂ {x ∈ AC([0,τ],Rn) | Lx =Θ}.
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Remark 4.8. In the single-valued case, we can assume the unique solvability of the lin-
earized problem (4.15). Moreover, Q again need not have a finitely generated abelian
fundamental group. In the multivalued case, the latter statement is true, provided Q is
compact and T(Q)⊂Q (cf. Remark 4.3).

Remark 4.9. Although the solution operator T in the foregoing part (b) is rather Cauchy
than Hammerstein, here T is indeed Hammerstein, which justifies the title of the whole
section, because the focus is on boundary value problems.

Now, consider the planar (n= 2) inclusions

x′ + ax ∈ e(t,x, y)y(1/m) + g(t,x, y),

y′ + by ∈ f (t,x, y)x(1/n) +h(t,x, y),
(4.16)

where a, b are positive constants and m, n are odd integers with min(m,n) ≥ 3. Let,
furthermore, e, f ,g,h :R3 �R2 be product-measurable upper-Carathéodory maps with
nonempty, compact, and convex values satisfying the inequalities∣∣e(t,x, y)

∣∣≤ E0,
∣∣ f (t,x, y)

∣∣≤ F0,∣∣g(t,x, y)
∣∣≤G,

∣∣h(t,x, y)
∣∣≤H ,

(4.17)

for a.a. t ∈R and all (x, y)∈R2, where E0, F0, G, and H are suitable constants. Let e0, f0,
δ1, and δ2 be positive constants such that

0 < e0 ≤ e(t,x, y), for a.a. t ∈R, all x ∈R, |y| ≥ δ2, (4.18)

jointly with

0 < f0 ≤ f (t,x, y), for a.a. t ∈R, all y ∈R, |x| ≥ δ1. (4.19)

Applying Theorem 4.7, the following theorem was proved in [10] (cf. [9]).

Theorem 4.10. If (
1
a

)∣∣e0δ
1/m
2 −G∣∣≥ δ1 >

(
H

f0

)n
,

(
1
b

)∣∣ f0δ1/n
1 −H∣∣≥ δ2 >

(
G

e0

)m
,

(4.20)

then, under the above assumptions, system (4.16) admits at least two entirely bounded solu-
tions. If the maps e, f , g, and h are still τ-periodic in t, then system (4.16) admits at least
three τ-periodic solutions, provided sharp inequalities hold in (4.20).

Remark 4.11. In fact, there was a gap in our papers concerning conditions (4.18) and
(4.19) (see [2, 10]). More precisely, we assumed (4.18) and (4.19) only on smaller do-
mains than here, by which the Hammerstein solution operator T need not satisfy T(Q)⊂
Q. On the other hand, if we assume (4.18) and (4.19) on the whole domains like here,
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then there evidently appear disjoint subinvariant subdomains with respect to T which are
AR-spaces. Thus, the same result can also be obtained (similarly to Example 4.5) without
the explicit usage of the Nielsen theory, for example, by means of the fixed-point index
(cf. [29]).

The following example (which is due to our Ph.D. student Tomáš Fürst) brings a mod-
ification of Theorem 4.10 in the sense that the possible subinvariant subdomains (if any),
mentioned in Remark 4.11, cannot be easily detected.

Example 4.12. Consider the planar system of integrodifferential equations

x′1(t) + ax1(t)= 3
√
p2(t)− 3

√
p1(t) +h1

(
t,x1(t),x2(t)

)
,

x′2(t) + ax2(t)= 3
√
p1(t) + 3

√
p2(t) +h2

(
t,x1(t),x2(t)

)
,

(4.21)

for a.a. t ∈ [0,τ], τ > 0, where a > 0 is a constant, hi : [0,τ]×R2 → R2 are Carathéodory
functions such that hi(t,x1,x2)≡ hi(t+ τ,x1,x2), i= 1,2, and

pi(t)= 1
τ

∫ τ
0
xi(s)ds−B

(
1
τ

∫ τ
0
xi(s)ds− xi(t)

)
, (4.22)

for i= 1,2, with a sufficiently small constant B ≥ 0 which will be specified below. Assume
the existence of constants D > 0 and δ > 0 such that |hi(t,x1,x2)| ≤ (1/2)Dδ, for a.a. t ∈
[0,τ] and all (x1,x2)∈R2, and

3
√

32(3 3
√
B+D)
a

<
3
√
δ2 <

√
2

a(D+ 2)
. (4.23)

Under the above assumptions, system (4.21) admits at least three τ-periodic solutions.
The third solution can be proved, similarly to Theorem 4.10, by means of the fixed-point
index. We note that the above conditions can be improved, but our goal was only to avoid
the handicap mentioned in Remark 4.11. The last inequalities are satisfied, for example,
for a= 0.5, B = 0.0001, D = 0.01, δ = 1.

5. Concluding remarks

In this final part, we will briefly mention
(a) consequences and links (of the obtained results),
(b) some further possibilities,
(c) open problems.

5.1. ad (a). In Theorem 1.1, the existence of a subharmonic (i.e., kω-periodic with k >
1) solution is assumed to the equation or, more generally, inclusion (see Remark 1.2)
which must not be uniquely solvable for the initial value problem. The necessity of the
uniqueness absence in Theorems 1.1 and 1.7 (see Remarks 1.2 and 1.8) can be expressed
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equivalently as a nontrivial Rδ-structure of the solutions of the initial value problems
which was treated in Proposition 4.4 and (more appropriately) in Example 4.5. The exis-
tence of purely subharmonic (i.e., with k > 1) solution x(t)≡ x(t + kω) of Carathéodory
differential equation de facto means the nontrivial Rδ-structure of solutions of the ini-
tial value problem. Generically, initial value problems of Carathéodory equations are
uniquely solvable.

Although the generalization of inclusion (4.7), namely

x′ ∈ [δ + f (t,x)]Sgn(x), for a.a. t ∈ [0,τ], δ > 0, (5.1)

has under the above assumptions at least two (and subsequently a nontrivial Rδ-structure
of) solutions x(t) with x(0)= 0, it only gives a chance for the existence of a subharmonic
solution. The sufficiency is far from being obvious. On the other hand, using the inverse
limit method in [9, Chapter II.2], one can prove the Rδ-structure of solutions to the ini-
tial value problem on the whole half-line [0,∞), provided appropriate assumptions hold
there. If the above inclusion appears in the triangular system considered in Theorem 1.7
(cf. Remark 1.8), then the same consequences are true.

The existence of three (harmonic) periodic solutions, required in Theorem 1.4, was
proved in Theorem 4.10, but one should still verify the braid type of the conjugated tra-
jectories in B3/Z, to obtain infinitely many subharmonics. This is, in general, a difficult
task. In our concrete situation, it means that the amplitude of the third harmonic solu-
tion, namely the one not located in the subinvariant subdomains mentioned in Remark
4.11, should be sufficiently large. Although it does not seem to be the case here, numeri-
cal simulations signalize, rather curiously, coexistence of infinitely many (sub)harmonics.
This could mean that some further harmonics with not necessarily large amplitudes may
exist.

5.2. ad (b). Our Nielsen theories concern the coincidence problems of the form p(x)=
q(x), where p : Γ⇒ X is a Vietoris map, that is, in particular that p−1 : X � Γ is “onto” (for
more details, see [38]). Some other theories (see, e.g., [24, 25, 26, 27, 28, 32, 33, 34, 35,
36, 37]) deal with the problems of the form Lx =Nx, where L : X → Y is an isomorphism
(cf. [24, 25, 26, 27, 28]) or, more generally, a Fredholm operator of index zero (cf. [32,
33, 36, 37]), or even more generally, a Fredholm operator of nonnegative index (cf. [34,
37]), between Banach spaces X and Y . We recall that L : X → Y is a Fredholm operator,
if the image ImL of L is closed in Y and the kernel KerL and cokernel Y/Im L of L are
finite dimensional. Then the index of the Fredholm operator L is defined by indexL :=
dimKerL−dimY/ImL. Thus, the crucial assumptions here are that KerL �= {0} and index
L ≥ 0. Moreover, since Lx = Nx is rewritten into a fixed-point problem by the classical
Lyapunov–Schmidt reduction method, this construction is an extension of J. Mawhin’s
coincidence degree theory.

At first glance, it might seem that there is a lot in common for these two alterna-
tive approaches, but there is actually no real connection. Although Fredholm operators
have acyclic (namely convex) fibres and are proper on bounded sets, they are not Vietoris
maps, because they are not “onto.” Of course, one may just restrict to the range of L, but
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this would dramatically decrease the number of admissible homotopies. In J. Mawhin’s
coincidence degree theory as well as M. Fečkan’s papers, homotopies are not assumed to
take their values in the range of L.

Nevertheless, it is definitely possible to combine both approaches to define a “gen-
eralized Nielsen number” for maps L, p, and q which would provide the lower bound
of the number of coincidences of the maps L and N := q ◦ p−1, where L is a (not nec-
essarily invertible) Fredholm operator of nonnegative index and p is a Z-Vietoris map.
Thus, one could consider unified coincidence problems of the form Y

L← X
p⇐ Γ

q→ Y ,
that is, Lx ∈ Nx, where N := q ◦ p−1, which reduce to p(x) = q(x), for L−1 = id|Y , and
to Lx =Nx, for p−1 = id|X (which implies N = q). For the discussion concerning the re-
lated fixed-point index, see, for example, [19]. For some further possibilities, see [22, 23],
where integral equations involving Urysohn-type operators are examined; [35], where
small vector fields on manifolds are studied; and [56], where a relative Nielsen number
on the closure of a complement is applied via Poincaré’s translation operator on the lines
of R. Srzednicki’s geometric method.

In contrast to our papers [2, 3, 4, 10, 11, 12, 13] (cf. also [9]) and [56], all multiplicity
results in [24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37] were obtained for differential equations
involving necessarily small or tendentiously implemented parameters. For a survey of
multiplicity criteria for concrete boundary value problems, see [27, 37].

In the fixed-point theory, there are besides the Nielsen theories only few more theo-
rems for multiple fixed points (see, e.g., [1, 21, 30, 39, 41, 45, 46, 53, 54] and the references
therein). Since many applications of the Nielsen theories to multiplicity results for differ-
ential equations and inclusions seem to be alternatively obtained by different techniques,
it would be interesting, when comparing the results, to specify those available only by
means of Nielsen numbers.

5.3. ad (c). We conclude by formulating some open problems.

For the Nielsen theories:
(i) to develop the Nielsen theory for condensing maps (single-valued or multivalued,

with or without the explicit usage of the generalized Lefschetz number for con-
densing maps on noncontractible sets),

(ii) to develop the Nielsen theory for periodic coincidences available to multivalued
maps on noncompact domains,

(iii) to develop the relative Nielsen theories for periodic coincidences available to mul-
tivalued maps (eventually, on noncompact domains),

(iv) to develop the unified Nielsen theory for multivalued maps of the form Y
L← X

p⇐
Γ

q→ Y , where L is a Fredholm operator of a nonnegative index and (p,q) is a pair
satisfying condition (iii) in part 2(a),

(v) to verify the conjecture in [20] that if ϕ satisfying condition (iii) in part 2(a) as-
sumes only simply connected values, then N(ϕ)≤ #Fix(ϕ),

(vi) to show that the random Nielsen numbers can be defined via the transformation
to the deterministic case as conjectured in part 3(e).

For applications of Nielsen theories to differential equations and inclusions:
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(i) to obtain nontrivial applications of the Nielsen theory to initial or boundary value
problems with no subinvariant subdomain with respect to the representing solu-
tion operators,

(ii) to prove (or, at least, to detect) the existence of a subharmonic (most preferably,
3ω-periodic) solution to a scalar differential equation or inclusion, as required in
Theorem 1.1,

(iii) to apply the Nielsen theory for obtaining at least three (harmonic) periodic solu-
tions of a planar Carathéodory system of equations, whose trajectories are conju-
gated in B3/Z to the admissible braid type, as required in Theorem 1.4,

(iv) to verify Conjecture 3.5.
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odic solutions, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2443–2451.

[30] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progress in
Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Mas-
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