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Let K be a nonempty closed convex subset of a reflexive real Banach space E which has a
uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract
of E with Q as the sunny nonexpansive retraction. Let Ti : K → E, i = 1, . . . ,r, be a fam-
ily of nonexpansive mappings which are weakly inward. Assume that every nonempty
closed bounded convex subset of K has the fixed point property for nonexpansive map-
pings. A strong convergence theorem is proved for a common fixed point of a family of
nonexpansive mappings provided that Ti, i= 1,2, . . . ,r, satisfy some mild conditions.

1. Introduction

Let K be a nonempty closed convex subset of a real Banach space E. A mapping T : K → E
is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ K . Let T : K → K be a non-
expansive self-mapping. For a sequence {αn} of real numbers in (0,1) and an arbitrary
u∈ K , let the sequence {xn} in K be iteratively defined by x0 ∈ K ,

xn+1 := αn+1u+
(
1−αn+1

)
Txn, n≥ 0. (1.1)

Halpern [5] was the first to study the convergence of the algorithm (1.1) in the framework
of Hilbert spaces. Lions [6] improved the result of Halpern, still in Hilbert spaces, by
proving strong convergence of {xn} to a fixed point of T if the real sequence {αn} satisfies
the following conditions:

(i) limn→∞αn = 0;
(ii)

∑∞
n=1αn =∞;

(iii) limn→∞((αn−αn−1)/α2
n)= 0.

It was observed that both Halpern’s and Lions’ conditions on the real sequence {αn} ex-
cluded the natural choice, αn := (n + 1)−1. This was overcome by Wittmann [12] who
proved, still in Hilbert spaces, the strong convergence of {xn} if {αn} satisfies the follow-
ing conditions:

(i) limn→∞αn = 0;
(ii)

∑∞
n=1αn =∞;

(iii)∗
∑∞

n=0

∣∣αn+1−αn
∣∣ <∞.
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Reich [9] extended this result of Wittmann to the class of Banach spaces which are uni-
formly smooth and have weakly sequentially continuous duality maps. Moreover, the se-
quence {αn} is required to satisfy conditions (i) and (ii) and to be decreasing (and hence
also satisfying (iii)∗). Subsequently, Shioji and Takahashi [10] extended Wittmann’s re-
sult to Banach spaces with uniformly Gâteaux differentiable norms and in which each
nonempty closed convex subset of K has the fixed point property for nonexpansive map-
pings and {αn} satisfies conditions (i), (ii), and (iii)∗.

Xu [13] showed that the results of Halpern holds in uniformly smooth Banach spaces if
{αn} satisfies the following conditions:

(i) limn→∞αn = 0;
(ii)

∑∞
n=1αn =∞;

(iii)∗∗ limn→∞((αn−αn−1)/αn)= 0.
As has been remarked in [13], conditions (iii) and (iii)∗ are not comparable. Also condi-
tions (iii)∗ and (iii)∗∗ are not comparable. However, condition (iii) does not permit the
natural choice αn := (n+ 1)−1 for all integers n ≥ 0. Hence, conditions (iii)∗ and (iii)∗∗

are preferred.
In [2], Chidume et al. extended the results of Xu to Banach spaces which are more

general than uniformly smooth spaces.
Next consider r nonexpansive mappings T1,T2, . . . ,Tr . For a sequence {αn} ⊆ (0,1)

and an arbitrary u0 ∈ K , let the sequence {xn} in K be iteratively defined by x0 ∈ K ,

xn+1 := αn+1u+
(
1−αn+1

)
Tn+1xn, n≥ 0, (1.2)

where Tn = Tn(modr).
In 1996, Bauschke [1] defined and studied the iterative process (1.2) in Hilbert spaces

with conditions in (i), (ii), and (iii)∗ on the parameter {αn}.
Recently, Takahashi et al. [11] extended Bauschke’s result to uniformly convex Banach

spaces. More precisely, they proved the following result.

Theorem 1.1 [11]. Let K be a nonempty closed convex subset of a uniformly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Ti : K → K , i= 1, . . . ,r, be a
family of nonexpansive mappings with F := ⋂r

i=1F(Ti) 	= ∅ and
⋂r

i=1F(Ti) =
F(TrTr−1 ···T1)= F(T1Tr ···T2) = ··· = F(Tr−1Tr−2 ···T1Tr). For given u,x0 ∈ K , let
{xn} be generated by the algorithm

xn+1 := αn+1u+
(
1−αn+1

)
Tn+1xn, n≥ 0, (1.3)

where Tn := Tn(modr) and {αn} is a real sequence which satisfies the following conditions:
(i) limn→∞αn = 0; (ii)

∑∞
n=1αn =∞, and (iii)∗

∑∞
n=1 |αn+r −αn| <∞. Then {xn} converges

strongly to a common fixed point of {T1,T2, . . . ,Tr}. Further, if Px0 = limn→∞ xn for each
x0 ∈ K , then P is a sunny nonexpansive retraction of K onto F.

More recently, O’Hara et al. [8] proved the following complementary result to
Bauschke’s theorem [1] with condition (iii)∗ replaced with (iii)∗∗ limn→∞((αn+r −αn)
/αn+r)= 0 (or equivalently, limn→∞(αn/αn+r)= 1).
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Theorem 1.2 [8]. Let K be a nonempty closed convex subset of a Hilbert space H and let
Ti : K → K , i= 1, . . . ,r, be a family of nonexpansive mappings with F :=⋂r

i=1F(Ti) 	= ∅and⋂r
i=1F(Ti) = F(TrTr−1 ···T1) = F(T1Tr ···T2) = ··· = F(Tr−1Tr−2 ···T1Tr). For given

u,x0 ∈ K , let {xn} be generated by the algorithm

xn+1 := αn+1u+
(
1−αn+1

)
Tn+1xn, n≥ 0, (1.4)

where Tn := Tn(modr) and {αn} is a real sequence which satisfies the following conditions: (i)
limn→∞αn = 0; (ii)

∑∞
n=1αn =∞, and (iii)∗∗ limn→∞(αn/αn+r) = 1. Then {xn} converges

strongly to Pu, where P is the projection of K onto F.

In the above work, the mappings T1,T2, . . . ,Tr remain self-mappings of a nonempty
closed convex subset K either of a Hilbert space or a uniformly convex space. If, however,
the domain of T1,T2, . . . ,Tr , D(Ti)= K , i= 1,2, . . . ,r, is a proper subset of E and Ti maps
K into E, then the iteration process (1.4) may fail to be well defined (see also (1.3)).

It is our purpose in this paper to define an algorithm for nonself-mappings and to
obtain a strong convergence theorem to a fixed point of a family of nonself nonexpansive
mappings in Banach spaces more general than the spaces considered by Takahashi et al.
[11] with {αn} satisfying conditions (i), (ii), and (iii)∗. We also show that our result
holds if {αn} satisfies conditions (i), (ii), and (iii)∗∗. Our results extend and improve the
corresponding results of O’Hara et al. [8], Takahashi et al. [11], and hence Bauschke [1]
to more general Banach spaces and to the class of nonself -maps.

2. Preliminaries

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx :=
{
f ∗ ∈ E∗ :

〈
x, f ∗

〉= ‖x‖2 = ∥∥ f ∗∥∥2
}

, (2.1)

where 〈·,·〉 denotes the generalized duality pairing. It is well known that if E∗ is strictly
convex, then J is single valued. In the sequel, we will denote the single-valued normalized
duality map by j.

The norm is said to be uniformly Gâteaux differentiable if for each y ∈ S1(0) := {x ∈
E : ‖x‖ = 1}, limt→0((‖x+ ty‖−‖x‖)/t) exists uniformly for x ∈ S1(0). It is well known
that Lp spaces, 1 < p <∞, have uniformly Gâteaux differentiable norm (see, e.g., [4]).
Furthermore, if E has a uniformly Gâteaux differentiable norm, then the duality map is
norm-to-w∗ uniformly continuous on bounded subsets of E.

A Banach space E is said to be strictly convex if ‖(x+ y)/2‖ < 1 for x, y ∈ E with ‖x‖ =
‖y‖ = 1 and x 	= y. In a strictly convex Banach space E, we have that if ‖x‖ = ‖y‖ =
‖λx+ (1− λ)y‖, for x, y ∈ E and λ∈ (0,1), then x = y.

Let K be a nonempty subset of a Banach space E. For x ∈ K , the inward set of x, IK (x),
is defined by IK (x) := {x+ λ(u− x) : u∈ K , λ≥ 1}. A mapping T : K → E is called weakly
inward if Tx ∈ cl[IK (x)] for all x ∈ K , where cl[IK (x)] denotes the closure of the inward
set. Every self-map is trivially weakly inward.
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Let K ⊆ E be closed convex and Q a mapping of E onto K . Then Q is said to be sunny
if Q(Qx+ t(x−Qx))=Qx for all x ∈ E and t ≥ 0. A mapping Q of E into E is said to be a
retraction if Q2 =Q. If a mapping Q is a retraction, then Qz = z for every z ∈ R(Q), range
of Q. A subset K of E is said to be a sunny nonexpansive retract of E if there exists a sunny
nonexpansive retraction of E onto K and it is said to be a nonexpansive retract of E if there
exists a nonexpansive retraction of E onto K . If E =H , the metric projection PK is a sunny
nonexpansive retraction from H to any closed convex subset of H .

In the sequel, we will make use of the following lemma.

Lemma 2.1. Let {an} be a sequence of nonnegative real numbers satisfying the relation

an+1 ≤
(
1−αn

)
an + σn, n≥ 0, (2.2)

where (i) 0 < αn < 1; (ii)
∑∞

n=1αn =∞. Suppose, either (a)σn = o(αn), or (b)
∑∞

n=1 σn <∞,
or (c) limsupn→∞ σn ≤ 0. Then an→ 0 as n→∞ (see, e.g., [13]).

We will also need the following results.

Lemma 2.2 (see, e.g., [7]). Let E be a real Banach space. Then the following inequality holds.
For each x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉 ∀ j(x+ y)∈ J(x+ y). (2.3)

Theorem 2.3 [7, Theorem 1, Proposition 2(v)]. Let K be a nonempty closed convex subset
of a reflexive Banach space E which has a uniformly Gâteaux differentiable norm. Let T :
K → E be a nonexpansive mapping with F(T) 	= ∅. Suppose that every nonempty closed
convex bounded subset of K has the fixed point property for nonexpansive mappings. Then
there exists a continuous path t→ zt, 0 < t < 1, satisfying zt = tu+ (1− t)Tzt, for arbitrary
but fixed u∈ K , which converges strongly to a fixed point of T . Further, if Pu= limt→0 zt for
each u∈ K , then P is a sunny nonexpansive retraction of K onto F(T).

3. Main results

We now prove the following theorem.

Theorem 3.1. Let K be a nonempty closed convex subset of a reflexive real Banach space E
which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive
retract of E with Q as the sunny nonexpansive retraction. Assume that every nonempty closed
bounded convex subset of K has the fixed point property for nonexpansive mappings. Let
Ti : K → E, i= 1, . . . ,r, be a family of nonexpansive mappings which are weakly inward with
F :=⋂r

i=1F(Ti) 	= ∅ and
⋂r

i=1F(QTi) = F(QTrQTr−1 ···QT1) = F(QT1QTr ···QT2) =
··· = F(QTr−1QTr−2 ···QT1QTr). For given u,x0 ∈ K , let {xn} be generated by the algo-
rithm

xn+1 := αn+1u+
(
1−αn+1

)
QTn+1xn, n≥ 0, (3.1)

where Tn := Tn(modr) and {αn} is a real sequence which satisfies the following conditions:
(i) limn→∞αn = 0; (ii)

∑∞
n=1αn = ∞; and either (iii)∗

∑∞
n=1 |αn+r − αn| < ∞, or (iii)∗∗

limn→∞((αn+r −αn)/αn+r) = 0. Then {xn} converges strongly to a common fixed point
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of {T1,T2, . . . ,Tr}. Further, if Pu = limn→∞ xn for each u ∈ K , then P is a sunny nonex-
pansive retraction of K onto F.

Proof. For x∗ ∈ F, one easily shows by induction that ‖xn− x∗‖ ≤max{‖x0− x∗‖,‖u−
x∗‖}, for all integers n≥ 0, and hence {xn} and {QTn+1xn} are bounded. But this implies
that ‖xn+1−QTn+1xn‖ = αn+1‖u−QTn+1xn‖→ 0 as n→∞. Now we show that

∥∥xn+r − xn
∥∥−→ 0 as n−→∞. (3.2)

From (3.1), we get that
∥∥xn+r − xn

∥∥= ∥∥(αn+r −αn
)(
u−QTnxn−1

)
+
(
1−αn+r

)(
QTn+rxn+r−1−QTnxn−1

)∥∥

= ∥∥(αn+r −αn
)(
u−QTnxn−1

)
+
(
1−αn+r

)(
QTnxn+r−1−QTnxn−1

)∥∥

≤ (1−αn+r
)∥∥xn+r−1− xn−1

∥∥+
∣∣αn+r −αn

∣∣M,

(3.3)

for some M > 0. We consider two cases.

Case 1. Condition (iii)∗ is satisfied. Then,

∥∥xn+r − xn
∥∥≤ (1−αn+r

)∥∥xn+r−1− xn−1
∥∥+ σn, (3.4)

where σn :=M|αn+r −αn| so that
∑∞

n=1 σn <∞.

Case 2. Condition (iii)∗∗ is satisfied. Then,

∥∥xn+r − xn
∥∥≤ (1−αn+r

)∥∥xn+r−1− xn−1
∥∥+ σn, (3.5)

where σn := αn+rβn and βn := (|αn+r −αn|M/αn+r) so that σn = o(αn+r).

In either case, by Lemma 2.1, we conclude that limn→∞‖xn+r − xn‖ = 0. Next we prove
that

lim
n→∞

∥∥xn−QTn+r ···QTn+1xn
∥∥= 0. (3.6)

In view of (3.2), it suffices to show that limn→∞‖xn+r −QTn+r ···QTn+1xn‖ = 0. Since
‖xn+r −QTn+rxn+r−1‖ = αn+r‖u−QTn+rxn+r−1‖ and limn→∞αn = 0, we have that xn+r −
QTn+rxn+r−1 → 0. From
∥∥xn+r −QTn+rQTn+r−1xn+r−2

∥∥≤ ∥∥xn+r −QTn+rxn+r−1
∥∥

+
∥∥QTn+rxn+r−1−QTn+rQTn+r−1xn+r−2

∥∥

≤ ∥∥xn+r −QTn+rxn+r−1
∥∥+

∥∥xn+r−1−QTn+r−1xn+r−2
∥∥

= ∥∥xn+r −QTn+rxn+r−1
∥∥+αn+r−1

∥∥u−QTn+r−1xn+r−2
∥∥,

(3.7)

we also have xn+r −QTn+rQTn+r−1xn+r−2 → 0. Similarly, we obtain the conclusion. Let
znt ∈ K be a continuous path satisfying

znt = tu+ (1− t)QTn+rQTn+r−1 ···QTn+1z
n
t (3.8)



238 Convergence theorems for a common fixed point

guaranteed by Theorem 2.3. Also by Theorem 2.3, znt → Pu as t → 0+, where P is
the sunny nonexpansive retraction of K onto

⋂r
i=1F(QTi) (notice

⋂r
i=1F(QTi) =

F(QTn+rQTn+r−1...QTn+1)) and hence as Ti, i = 1, ...,r, is weakly inward by [2, Remark
2.1], Pu ∈ F = ⋂r

i=1F(Ti). Let a = limsupn→∞〈u− Pu, j(xn − Pu)〉. Now we show that
a≤ 0. We can find a subsequence {xni} of {xn} such that a= limi→∞〈u−Pu, j(xni −Pu)〉.
We assume that ni ≡ k(modr) for some k ∈ {1,2, . . . ,r}. Using Lemma 2.2, we have that

∥∥zkt − xni
∥∥2 = ∥∥t(u− xni

)
+
(
1− t

)(
QTni+rQTn+r−1 ···QTni+1z

k
t − xni

)∥∥2

≤ (1− t)2
∥∥QTni+rQTni+r−1 ···QTni+1z

k
t − xni

∥∥2
+ 2t

〈
u− xni , j

(
zkt − xni

)〉

≤ (1− t)2(∥∥QTni+rQTni+r−1 ···QTni+1z
k
t −QTni+rQTni+r−1 ···QTni+1xni

∥∥

+
∥∥QTni+rQTni+r−1 ···QTni+1xni − xni

∥∥)2

+ 2t
(∥∥zkt − xni

∥∥2
+
〈
u− zkt , j(zkt − xni

)〉)

≤ (1 + t2)∥∥zt − xni
∥∥2

+
∥∥QTni+rQTni+r−1 ···QTni+1xni − xni

∥∥

× (2∥∥zkt − xni
∥∥+

∥∥QTni+rQTni+r−1 ···QTni+1xni − xni
∥∥)

+ 2t
〈
u− zkt , j

(
zkt − xni

)〉
,

(3.9)

and hence,

〈
u− zkt , j

(
xni − zkt

)〉≤ t

2

∥∥zkt − xni
∥∥2

+

∥∥QTni+rQTni+r−1 ···QTni+1xni − xni
∥∥

2t
× (2∥∥zkt − xni

∥∥+
∥∥QTni+rQTni+r−1 ···QTni+1xni − xni

∥∥).
(3.10)

Since {xni} is bounded, we have that {QTn+rQTni+r−1 ···QTni+1xni} is bounded and by
(3.6), ‖xni −QTni+rQTni+r−1 ···QTni+1xni‖ → 0 as i→∞, then it follows from the last
inequality that

limsup
t→0+

limsup
i→∞

〈
u− zkt , j

(
xni − zkt

)〉≤ 0. (3.11)

Moreover, j is norm-to-w∗ uniformly continuous on bounded subsets of E. Thus, we
obtain from (3.11) that

limsup
i→∞

〈
u−Pu, j

(
xni −Pu

)〉≤ 0, (3.12)

and hence limsupn→∞〈u−Pu, j(xn−Pu)〉 ≤ 0. Furthermore, from (3.1), we have xn+1−
Pu= αn+1(u−Pu) + (1−αn+1)(QTn+1xn−Pu). Thus using Lemma 2.2, we obtain that

∥∥xn+1−Pu
∥∥2 ≤ (1−αn+1

)2∥∥QTn+1xn−Pu
∥∥2

+ 2αn+1
〈
u−Pu, j

(
xn+1−Pu

)〉

≤ (1−αn+1
)∥∥xn−Pu

∥∥2
+ σn+1,

(3.13)

where σn+1 := αn+1βn+1 and limsupn→∞ σn+1 ≤ 0, for βn+1 := 〈u−Pu, j(xn+1−Pu)〉. Thus,
by Lemma 2.1, {xn} converges strongly to a common fixed point Pu of {T1,T2, . . . ,Tr}.
The proof is complete. �
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If in Theorem 3.1, Ti, i= 1, . . . ,r, are self-mappings then the projection operator Q is
replaced with I , the identity map on E. Moreover, each Ti for i ∈ {1,2, . . . ,r} is weakly
inward. Thus, we have the following corollary.

Corollary 3.2. Let K be a nonempty closed convex subset of a reflexive real Banach space
E which has a uniformly Gâteaux differentiable norm. Assume that every nonempty closed
bounded convex subset of K has the fixed point property for nonexpansive mappings. Let
Ti : K → K , i = 1, . . . ,r, be a family of nonexpansive mappings with

⋂r
i=1F(Ti) 	= ∅ and⋂r

i=1F(Ti) = F(TrTr−1 ···T1) = F(T1Tr ···T2) = ··· = F(Tr−1Tr−2 ···T1Tr). For given
u,x0 ∈ K , let {xn} be generated by the algorithm

xn+1 := αn+1u+
(
1−αn+1

)
Tn+1xn, n≥ 0, (3.14)

where Tn := Tn(modr) and {αn} is a real sequence which satisfies the following conditions:
(i) limn→∞αn = 0; (ii)

∑∞
n=1αn = ∞; and either (iii)∗

∑∞
n=1 |αn+r − αn| < ∞, or (iii)∗∗

limn→∞((αn+r −αn)/αn+r)= 0. Then {xn} converges strongly to a common fixed point of {T1,
T2, . . . ,Tr}. Further, if Pu = limn→∞ xn for each u ∈ K , then P is a sunny nonexpansive re-
traction of K onto F.

In the sequel, we will use the following lemma.

Lemma 3.3. Let K be a nonempty closed convex subset of a strictly convex real Banach
space E. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonex-
pansive retraction. Let Ti : K → E, i= 1, . . . ,r, be a family of nonexpansive mappings which
are weakly inward with

⋂r
i=1F(Ti) 	= ∅. Let Si : K → E, i = 1, . . . ,r, be a family of map-

pings defined by Si := (1− λi)I + λiTi, 0 < λi < 1 for each i = 1,2, . . . ,r. Then
⋂r

i=1F(Ti) =⋂r
i=1F(Si) =

⋂r
i=1F(QSi) and

⋂r
i=1F(Si) = F(QSrQSr−1 ···QS1) = F(QS1QSr ···QS2) =

··· = F(QSr−1QSr−2 ···QS1QSr).

Proof. We note that, since Ti for each i∈ {1,2, . . . ,r} is weakly inward, then by [3, Remark
3.3], Si, is weakly inward. Moreover, by [2, Remark 2.1], F(QSi) = F(Si). Furthermore,
one easily shows that F(Si)= F(Ti) for each i= 1,2, . . . ,r. Now we show that

⋂r
i=1F(Si)=

F(QSrQSr−1 ···QS1) = F(QS1QSr ···QS2) = ··· = F(QSr−1QSr−2 ···QS1QSr). For
simplicity, we prove for r = 2. It is clear that F(S1)

⋂
F(S2)⊆ F(QS2QS1). Now, we show

that F(QS2QS1) ⊆ F(S1)
⋂
F(S2). Let z ∈ F(QS2QS1) and w ∈ F(S1)

⋂
F(S2) = F(T1)

⋂

F(T2). Then,

‖z−w‖ = ∥∥QS2QS1z−w
∥∥

≤ ∥∥(1− λ2
)
Q
[(

1− λ1
)
z+ λ1T1z

]
+ λ2T2

(
Q
[(

1− λ1
)
z+ λ1T1z

])−w
∥∥

≤ (1− λ2
)∥∥(1− λ1

)
z+ λ1T1z−w

∥∥+ λ2
∥∥(1− λ1

)
z+ λ1T1z−w

∥∥

= ∥∥(1− λ1
)
(z−w) + λ1

(
T1z−w

)∥∥

≤ (1− λ1
)‖z−w‖+ λ1

∥∥T1z−w
∥∥≤ ‖z−w‖.

(3.15)

Thus from the preceding inequalities and strict convexity of E, we obtain that z−w =
T1z−w and T2(Q[(1− λ1)z + λ1T1z])−w = z−w. Therefore, we obtain that z = T1z =
T2z. This completes the proof. �
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Theorem 3.4. Let K be a nonempty closed convex subset of a strictly convex reflexive real
Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a
sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Assume that
every nonempty closed bounded convex subset of K has the fixed point property for nonex-
pansive mappings. Let Ti : K → E, i= 1, . . . ,r, be a family of nonexpansive mappings which
are weakly inward with

⋂r
i=1F(Ti) 	= ∅. Let Si : K → E, i= 1, . . . ,r, be a family of mappings

defined by Si := (1− λi)I + λiTi, 0 < λi < 1 for each i = 1,2, . . . ,r. For given u,x0 ∈ K , let
{xn} be generated by the algorithm

xn+1 := αn+1u+
(
1−αn+1

)
QSn+1xn, n≥ 0, (3.16)

where Sn := Sn(modr) and {αn} is a real sequence which satisfies the following conditions:
(i) limn→∞αn = 0; (ii)

∑∞
n=1αn = ∞; and either (iii)∗

∑∞
n=1 |αn+r − αn| < ∞, or (iii)∗∗

limn→∞((αn+r − αn)/αn+1) = 0. Then, {xn} converges strongly to a common fixed point of
{T1,T2, . . . ,Tr}. Further, if Pu= limn→∞ xn for each u∈ K , then P is a sunny nonexpansive
retraction of K onto F.

Proof. By Lemma 3.3,
⋂r

i=1F(Ti) =
⋂r

i=1F(Si) =
⋂r

i=1F(QSi) and
⋂r

i=1F(QSi) =
F(QSrQSr−1 ···QS1)= F(QS1QSr ···QS2)= ··· = F(QSr−1QSr−2 ···QS1QSr). Thus, as
in the proof of Theorem 3.1, xn→ x∗ ∈⋂r

i=1F(Ti). The proof is complete. �

If in Theorem 3.4, Ti, i= 1, . . . ,r, are self-mappings, the following corollary follows.

Corollary 3.5. Let K be a nonempty closed convex subset of a strictly convex reflex-
ive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that
every nonempty closed bounded convex subset of K has the fixed point property for non-
expansive mappings. Let Ti : K → K , i = 1, . . . ,r, be a family of nonexpansive mappings
with

⋂r
i=1F(Ti) 	= ∅. Let Si : K → K , i = 1, . . . ,r, be a family of mappings defined by Si :=

(1− λi)I + λiTi, 0 < λi < 1 for each i= 1,2, . . . ,r. For given u,x0 ∈ K , let {xn} be generated
by the algorithm

xn+1 := αn+1u+
(
1−αn+1

)
Sn+1xn, n≥ 0, (3.17)

where Sn := Sn(modr) and {αn} is a real sequence which satisfies the following conditions:
(i) limn→∞αn = 0; (ii)

∑∞
n=1αn = ∞; and either (iii)∗

∑∞
n=1 |αn+1 − αn| < ∞, or (iii)∗∗

limn→∞((αn+1−αn)/αn+r) = 0. Then {xn} converges strongly to a common fixed point of
{T1,T2, . . . ,Tr}. Further, if Pu= limn→∞ xn for each u∈ K , then P is a sunny nonexpansive
retraction of K onto F.

Remark 3.6. Corollaries 3.2 and 3.5 are improvements of Theorems 1.1 and 1.2 to more
general Banach spaces (having a uniformly Gâteaux differentiable norm) than uniformly
convex spaces. Moreover, If E is a Hilbert space, Corollary 3.2 reduces to the result of
Bauschke [1].
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