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We establish generic well-posedness of certain null and fixed point problems for ordered
Banach space-valued continuous mappings.

The notion of well-posedness is of great importance in many areas of mathematics
and its applications. In this note, we consider two complete metric spaces of continuous
mappings and establish generic well-posedness of certain null and fixed point problems
(Theorems 1 and 2, resp.). Our results are a consequence of the variational principle
established in [2]. For other recent results concerning the well-posedness of fixed point
problems, see [1, 3].

Let (X ,‖ · ‖,≥) be a Banach space ordered by a closed convex cone X+ = {x ∈ X : x ≥
0} such that ‖x‖ ≤ ‖y‖ for each pair of points x, y ∈ X+ satisfying x ≤ y. Let (K ,ρ) be a
complete metric space. Denote by M the set of all continuous mappings A : K → X . We
equip the set M with the uniformity determined by the following base:

E(ε)= {(A,B)∈M×M : ‖Ax−Bx‖ ≤ ε ∀x ∈ K
}

, (1)

where ε > 0. It is not difficult to see that this uniform space is metrizable (by a metric d)
and complete.

Denote by Mp the set of all A∈M such that

Ax ∈ X+ ∀x ∈ K ,

inf
{‖Ax‖ : x ∈ K

}= 0.
(2)

It is not difficult to see that Mp is a closed subset of (M,d).
We can now state and prove our first result.

Theorem 1. There exists an everywhere dense Gδ subset �⊂Mp such that for each A∈�,
the following properties hold.

(1) There is a unique x̄ ∈ K such that Ax̄ = 0.
(2) For any ε > 0, there exist δ > 0 and a neighborhood U of A in Mp such that if B ∈U

and if x ∈ K satisfies ‖Bx‖ ≤ δ, then ρ(x, x̄)≤ ε.
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Proof. We obtain this theorem as a realization of the variational principle established in
[2, Theorem 2.1] with fA(x)= ‖Ax‖, x ∈ K . In order to prove our theorem by using this
variational principle, we need to prove the following assertion.

(A) For each A∈Mp and each ε > 0, there are Ā∈Mp, δ > 0, x̄ ∈ K , and a neighbor-
hood W of Ā in Mp such that

(A,Ā)∈ E(ε), (3)

and if B ∈W and z ∈ K satisfy ‖Bz‖ ≤ δ, then

ρ(z, x̄)≤ ε. (4)

Let A∈Mp and ε > 0. Choose ū∈ X+ such that

‖ū‖ = ε
4

, (5)

and x̄ ∈ K such that

‖Ax̄‖ ≤ ε
8
. (6)

Since A is continuous, there is a positive number r such that

r < min
{

1,
ε
16

}
, (7)

‖Ax−Ax̄‖ ≤ ε
8

for each x ∈ K satisfying ρ(x, x̄)≤ 4r. (8)

By Urysohn’s theorem, there is a continuous function φ : K → [0,1] such that

φ(x)= 1 for each x ∈ K satisfying ρ(x, x̄)≤ r, (9)

φ(x)= 0 for each x ∈ K satisfying ρ(x, x̄)≥ 2r. (10)

Define

Āx = (1−φ(x)
)
(Ax+ ū), x ∈ K. (11)

It is clear that Ā : K → X is continuous. Now (9), (10), and (11) imply that

Āx = 0 for each x ∈ K satisfying ρ(x, x̄)≤ r, (12)

Āx ≥ ū for each x ∈ K satisfying ρ(x, x̄)≥ 2r. (13)

It is not difficult to see that Ā∈Mp. We claim that (A,Ā)∈ E(ε).
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Let x ∈ K . There are two cases: either

ρ(x, x̄)≥ 2r (14)

or

ρ(x, x̄) < 2r. (15)

Assume first that (14) holds. Then it follows from (14), (10), (11), and (5) that

‖Ax− Āx‖ = ‖ū‖ = ε
4
. (16)

Now assume that (15) holds. Then by (15), (11), and (5),

‖Āx−Ax‖ = ∥∥(1−φ(x)
)
(Ax+ ū)−Ax

∥∥
≤ ‖ū‖+‖Ax‖ ≤ ε

4
+‖Ax‖. (17)

It follows from this inequality, (15), (8), and (6) that

‖Āx−Ax‖ ≤ ε
4

+‖Ax‖ < ε
2
. (18)

Therefore, in both cases, ‖Āx−Ax‖ ≤ ε/2. Since this inequality holds for any x ∈ K , we
conclude that

(A,Ā)∈ E(ε). (19)

Consider now an open neighborhood U of Ā in Mp such that

U ⊂
{
B ∈Mp : (Ā,B)∈ E

(
ε
16

)}
. (20)

Let

B ∈U , z ∈ K , (21)

‖Bz‖ ≤ ε
16

. (22)

Relations (22), (21), (20), and (1) imply that

‖Āz‖ ≤ ‖Bz‖+‖Āz−Bz‖ ≤ ε
16

+
ε
16

. (23)

We claim that

ρ(z, x̄)≤ ε. (24)
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We assume the converse. Then by (7),

ρ(z, x̄) > ε ≥ 2r. (25)

When combined with (13), this implies that

Āz ≥ ū. (26)

It follows from this inequality, the monotonicity of the norm, (21), (20), (1), and (5) that

‖Bz‖ ≥ ‖Āz‖− ε
16
≥ ‖ū‖− ε

16

= ε
4
− ε

16
= 3ε

16
.

(27)

This, however, contradicts (22). The contradiction we have reached proves (24) and
Theorem 1 itself. �

Now assume that the set K is a subset of X and

ρ(x, y)= ‖x− y‖, x, y ∈ K. (28)

Denote by Mn the set of all mappings A∈M such that

Ax ≥ x ∀x ∈ K ,

inf
{‖Ax− x‖ : x ∈ K

}= 0.
(29)

Clearly, Mn is a closed subset of (M,d). Define a map J : Mn→Mp by

J(A)x = Ax− x ∀x ∈ K (30)

and all A ∈Mn. Clearly, there exists J−1 : Mp →Mn, and both J and its inverse J−1 are
continuous. Therefore Theorem 1 implies the following result regarding the generic well-
posedness of the fixed point problem for A∈Mn.

Theorem 2. There exists an everywhere dense Gδ subset �⊂Mn such that for each A∈�,
the following properties hold.

(1) There is a unique x̄ ∈ K such that Ax̄ = x̄.
(2) For any ε > 0, there exist δ > 0 and a neighborhood U of A in Mn such that if B ∈U

and if x ∈ K satisfies ‖Bx− x‖ ≤ δ, then ‖x− x̄‖ ≤ ε.
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