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We introduce a class of generalized vector quasivariational-like inequality problems in
Banach spaces. We derive some new existence results by using KKM-Fan theorem and
an equivalent fixed point theorem. As an application of our results, we have obtained
as special cases the existence results for vector quasi-equilibrium problems, generalized
vector quasivariational inequality and vector quasi-optimization problems. The results of
this paper generalize and unify the corresponding results of several authors and can be
considered as a significant extension of the previously known results.

1. Introduction

Let K be a nonempty subset of a space X and f : K ×K → R be a bifunction. The equi-
librium problem introduced and studied by Blum and Oettli [4] in 1994 is defined to
be the problem of finding a point x ∈ K such that f (x, y)≥ 0 for each y ∈ K . If we take
f (x, y)= 〈T(x), y− x〉, where T : K → X∗ (dual of X) and 〈·,·〉 is the pairing between X
and X∗ then the equilibrium problem reduces to standard variational inequality, intro-
duced and studied by Stampacchia [20] in 1964. In recent years this theory has become
very powerful and effective tool for studying a wide class of linear and nonlinear prob-
lems arising in mathematical programming, optimization theory, elasticity theory, game
theory, economics, mechanics, and engineering sciences. This field is dynamic and has
emerged as an interesting and fascinating branch of applicable mathematics with wide
range of applications in industry, physical, regional, social, pure, and applied sciences.
The papers by Harker and Pang [9] and M. A. Noor, K. I. Noor, and T. M. Rassias [18, 19]
provide some excellent survey on the developments and applications of variational in-
equalities whereas for comprehensive bibliography for equilibrium problems we refer to
Giannessi [8], Daniele, Giannessi, and Maugeri [5], Ansari and Yao [3] and references
therein.

In the present paper, we consider a general type of variational inequality problem
which contains equilibrium problems as a special case. So it is interesting to compare
these two ways of the problem setting. We establish some existence results for solution to
this type of variational inequality problem by using KKM-Fan theorem and an equivalent
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fixed point theorem. From special cases, we obtain various known and new results for
solving various classes of equilibrium problems, variational inequalities and related prob-
lems. Our results generalizes and improves the corresponding results in the literature.

2. Preliminaries

Let X and Y be real Banach Spaces. A nonempty subset P of X is called convex cone if
λP ⊆ P for all λ ≥ 0 and P + P = P. A cone P is called pointed cone if P is a cone and
P
⋂

(−P) = {0}, where 0 denotes the zero vector. Also, a cone P is called proper if it is
properly contained in X . Let K be a non-empty subset of X . We will denote by 2K the
set of all nonempty subsets of K , clX(K) the closure of K in X , L(X ,Y) the space of
all continuous linear operators from X to Y and 〈u,x〉 the evaluation of u ∈ L(X ,Y)
at x ∈ X . Let T : X → 2Y be a multifunction, the graph of T denoted by �(T), is the
set {(x, y) ∈ X ×Y : x ∈ X , y ∈ T(x)}. The inverse of T denoted by T−1 is a multifunc-
tion from R(T), range of T , to X defined by x ∈ T−1(y) if and only if y ∈ T(x). Also T
is said to be upper semicontinuous on X if for each x ∈ X and each open set U in Y
containing T(x), there exists an open neighbourhood V of x in X such that T(y) ⊆ U ,
for each y ∈ V . T is said to be upper hemicontinuous at x if for each y ∈ X , λ ∈ [0,1],
the multifunction λ→ T(λy + (1− λ)x) is upper semicontinuous at 0+. A multifunction
T : K → 2L(X ,Y) is called generalized upper hemicontinuous at x ∈ K if for each y ∈ K ,
λ→ 〈T(λy + (1− λ)x),η(y,x)〉 is upper semicontinuous at 0+, where η : K ×K → X is a
bifunction. Let C : K → 2Y be a multifunction such that for each x ∈ K ,C(x) is a closed,
convex moving cone with intC(x) �= ∅, where intC(x) denotes the interior of C(x). The
partial order 
Cx on Y induced by C(x) is defined by declaring y 
Cx z if and only
if z − y ∈ C(x) for all x, y,z ∈ K . We will write y ≺Cx z if z − y ∈ intC(x) in the case
intC(x) �= ∅. Let f : K × K → Y , η : K × K → X be bifunctions and T : K → 2L(X ,Y),
S : K → 2X be multifunctions. The purpose of this paper is to consider the generalized
vector quasi-variatonal-like inequality problem of finding x∗ ∈ K ∩ clX S(x∗) such that,
for each x ∈ S(x∗) there exists t∗ ∈ T(x∗) such that

〈
t∗,η

(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (2.1)

If we take T as single valued mapping then as corollary, we consider the problem of find-
ing x∗ ∈ K ∩ clX S(x∗) such that, for each x ∈ S(x∗),

〈
T
(
x∗
)
,η
(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (2.2)

If η(x, y)= x− g(y), for all x, y ∈ K , where g : K → K is a mapping, then as corollary, we
consider the problem of finding x∗ ∈ K ∩ clX S(x∗) such that, for each x ∈ S(x∗) there
exists t∗ ∈ T(x∗) such that

〈
t∗,x− g

(
x∗
)〉

+ f
(
x∗,x

)
/∈− intY C

(
x∗
)
. (2.3)

Problems (2.2) and (2.3) also appears to be new.
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If f ≡ 0 and S : K → 2K be a multifunction with closed values, then (2.1) reduces to
the problem of finding x∗ ∈ S(x∗) such that, for each x ∈ S(x∗) there exists t∗ ∈ T(x∗)
such that

〈
t∗,η

(
x,x∗

)〉
/∈− intY C

(
x∗
)
. (2.4)

It is called generalized vector quasi-variational-like inequality problem considered and stud-
ied by Ding [6].

If f ≡ 0 and clX S(x) = K for each x ∈ K , (2.1) becomes the generalized vector
variational-like inequality problem of finding x∗ ∈ K such that for each x ∈ K there exists
t∗ ∈ T(x∗) such that

〈
t∗,η

(
x,x∗

)〉
/∈− intY C

(
x∗
)
. (2.5)

This problem was introduced and studied by Ansari [1, 2] and B.-S. Lee and G.-M. Lee
[16], and if η(x, y)= x− y for each x, y ∈ K , then (2.5) was considered by Lin, Yang, and
Yao [17] and Konnov and Yao [15].

When T ≡ 0 and S : K → 2K , problem (2.1) reduces to the vector quasi-equilibrium
problem of finding x∗ ∈ K such that

x∗ ∈ clX S
(
x∗
)
, f

(
x∗,x

)
/∈− intY C

(
x∗
) ∀y ∈ S

(
x∗
)
. (2.6)

This problem was considered and studied by Khaliq and Krishan [11]. If η(x, y)= x− y
for each x, y ∈ K and S : K → 2K , problem (2.1) reduces to the problem of finding x∗ ∈ K
such that for each x ∈ S(x∗) there exists t∗ ∈ T(x∗) such that

x∗ ∈ clX S
(
x∗
)

and
〈
t∗,x− x∗

〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
, (2.7)

which is known as vector quasi-variational inequality problem studied by Khaliq, Siddiqi,
and Krishan [13].

From the above special cases, it is clear that our generalized vector quasi-variational-
like inequality problem (2.1) is a more general format of several classes of variational
inequalities and equilibrium problems. It includes as special cases the generalized vector
quasi-variational and variational-like inequality problems in [1, 2, 6, 8, 12, 13, 14, 15, 16,
17] as well as the vector quasi-equilibrium problems in [3, 4, 5, 8, 11].

Now, we mention some more definitions which will be used in the sequel.

Definition 2.1. A multifunction F : X → 2X is called KKM-map, if for every finite subset
{x1, . . . ,xn} of X , con{x1, . . . ,xn} ⊂

⋃n
i=1F(xi), where con{x1, . . . ,xn} is the convex hull of

{x1, . . . ,xn}.
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Definition 2.2. Let C : K → 2Y be a multifunction such that C(x) is a proper closed and
convex moving cone with intY C(x) �= ∅, then a mapping g : K → Y is called Cx-convex
if for each x, y ∈ K and λ ∈ [0,1], (1− λ)g(x) + λg(y)− g((1− λ)x + λy) ∈ C(x) and is
called affine if for each x, y ∈ K and λ∈R,

g
(
λx+ (1− λ)y

)= λg(x) + (1− λ)g(y). (2.8)

Remark 2.3. If g : K → Y is a Cx-convex vector-valued function then,
∑n

i=1 λig(yi)
− g(

∑n
i=1 λi yi)∈ C(x), for all yi ∈ K , ti ∈ [0,1], i= 1, . . . ,n with

∑n
i=1 λi = 1.

Definition 2.4. Let f : K × K → Y , η : K × K → X be bifunctions and T : K → 2L(X ,Y)

be a multifunction, then the pair (T , f ) is called η−Cx-pseudomonotone in K if for all
x, y ∈ K ,

∃u∈ T(x),
〈
u,η(y,x)

〉
+ f (x, y) /∈− intY C(x)

=⇒∀v ∈ T(y),
〈
v,η(y,x)

〉
+ f (x, y) /∈− intY C(x),

(2.9)

and the pair (T , f ) is called weakly η−Cx-pseudomonotone in K if for all x, y ∈ K ,

∃u∈ T(x),
〈
u,η(y,x)

〉
+ f (x, y) /∈− intY C(x)

=⇒∃v ∈ T(y),
〈
v,η(y,x)

〉
+ f (x, y) /∈− intY C(x).

(2.10)

We also need the following KKM-Fan theorem [7] and a fixed point theorem which is
a weaker version of Tarafdar’s theorem in [21].

Theorem 2.5. Let K be a nonempty subset of a topological vector space X and F : K → 2K

be a KKM-mapping with closed values. If there is a subset D contained in a compact convex
subset of K such that ∩x∈DF(x) is compact then ∩x∈DF(x) �= ∅.

Theorem 2.6. Let K be a nonempty subset of a Hausdorff topological vector space X and
F : K → 2K be a multifunction with nonempty convex values such that F−1(y) is open in K
for each y ∈ K . If there exists a nonempty subset D contained in a compact convex subset of
K such that K \∪y∈DF(y) is compact or empty. Then there exists x∗ ∈ K such that x∗ ∈
F(x∗).

Remark 2.7. Theorem 2.5 has many equivalent formulations in terms of fixed points and
is also equivalent to Theorem 2.6.

3. Existence results

Throughout this section and next section, unless otherwise specified, we assume that K is
a nonempty closed convex subset of real Banach space X and Y is a real Banach space. We
assume thatC : K → 2Y is a multifunction such that for each x ∈ K ,C(x) is a proper closed
and convex moving cone with intY C(x) �= ∅. Consider a multifunction S : K → 2X such
that for each x ∈ K , K ∩ S(x) �= ∅, S−1(x) is weakly open in K , clS(x) is weakly closed
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and for all α∈ (0,1], (1−α)x+αy ∈ S(x) and set E = {x ∈ K : x ∈ clS(x)}. Assume that
the mapping x→ Y \ (− intY C(x)) for each x ∈ K , is a weakly closed mapping, that is, its
graph is closed in X ×Y with weak topologies of X and Y .

Theorem 3.1. Let f : K ×K → Y and η : K ×K → X be bifunctions and T : K → 2L(X ,Y) be
a multifunction. Suppose the following assumptions holds:

(i) for each x ∈ K , η(x,x)= 0 and f (x,x)∈ C(x)∩−C(x),
(ii) T is generalized upper hemicontinuous in K with nonempty compact values,

(iii) η(·,·) is affine in the first argument and is continuous in the second argument, f is
Cx-convex in second argument and the pair (T , f ) is weakly η−Cx-pseudomonotone
for each x ∈ K ,

(iv) for each x, y ∈ K and xλ ∈ K such that xλ
w−−→ x (weak), there exists a subnet xµ of xλ

and s∈ f (x, y)−C(x) such that f (xµ, y)
w−−→ s,

(v) there is a nonempty weakly compact subset D of K and a subset Do of a weakly
compact convex subset of K such that for all x ∈ K \D, there exists z ∈ Do ∩ S(x),
〈T(x),η(z,x)〉+ f (x,z)⊂− intY C(x).

Then there exists x∗ ∈ K ∩ clX S(x∗) such that for each x ∈ S(x∗) there exists t∗ ∈ T(x∗)
such that

〈
t∗,η

(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (3.1)

Proof. To prove the theorem, we first define the multifunctions P1 and P2 for each x, y ∈
K by

P1(x)= {z ∈ K :
〈
T(x),η(z,x)

〉
+ f (x,z)⊂− intY C(x)

}
,

P2(x)= {z ∈ K :
〈
T(z),η(z,x)

〉
+ f (x,z)⊂− intY C(x)

}
.

(3.2)

Now for i= 1,2 set

Φi(x)=


S(x)∩Pi(x) if x ∈ E

K ∩ S(x) if x ∈ K \E
(3.3)

and Qi(y)= K \Φ−1
i (y). Then

Qi(y)= K \ {x ∈ K : y ∈Φi(x)
}

= K \ [{x ∈ E : y ∈ S(x)∩Pi(x)
}∪ {x ∈ K \E : y ∈ S(x)

}]
= K \ [{E∩ S−1(y)P−1

i (y)
}∪ {(K \E)∩ S−1(y)

}]
= K \ [{E∩P−1

i (y)∪ (K \E)
}∩ S−1(y)

]
= K \ [{(K \E)∪P−1

i (y)
}∩ S−1(y)

]
= [K \ {(K \E)∪P−1

i (y)
}]∪ [K \ S−1(y)

]
= [E∩ {K \P−1

i (y)
}]∪ [K \ S−1(y)

]
.

(3.4)
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We divide the proof into six steps.
Step 1. E is nonempty and weakly closed: Since K ∩ S(x) �= ∅ for all x ∈ K , ∪y∈KS−1(y)
= K . By the given assumption and condition (v), S−1(y) is open in K for each y ∈ K
and K \D ⊂ ∪y∈DoS

−1(y) ⊂ K . Hence K \∪y∈DoS
−1(y) is contained in D and is weakly

compact. Thus Theorem 2.6 implies that S has a fixed point in K and hence E �= ∅. Also
weakly closedness of clS(·) implies that E is weakly closed.
Step 2. Q1 is KKM mapping in K : Suppose that there exists a finite subset {y1, . . . , yn} of
K and λi ≥ 0, i= 1, . . . ,n, with

∑n
i=1 λi = 1, such that

xo =
n∑
i=1

λi yi /∈
n⋃
i=1

Q1
(
yi
)
, (3.5)

then we have xo ∈Φ−1
1 (yi), which implies that yi ∈Φ1(xo) for all i = 1, . . . ,n. If xo ∈ E,

then Φ1(xo)= S(xo)∩P1(xo). Hence yi ∈ P1(xo), which implies that

〈
T
(
xo
)
,η
(
yi,xo

)〉
+ f

(
xo, yi

)⊂− intY C
(
xo
)
. (3.6)

This implies that for all u∈ T(xo),

〈
u,η

(
yi,xo

)〉
+ f

(
xo, yi

)∈− intY C
(
xo
)

i= 1, . . . ,n. (3.7)

Which implies

n∑
i=1

λi
〈
u,η

(
yi,xo

)〉
+

n∑
i=1

λi f
(
xo, yi

)∈− intY C
(
xo
)
. (3.8)

Using (3.8), Cx-convexity of f and assumption (i), we have for all u∈ T(x0)

0= 〈u,η
(
xo,xo

)〉

=
〈
u,η

( n∑
i=1

λi yi,xo

)〉

=
n∑
i=1

λi
〈
u,η

(
yi,xo

)〉
+

n∑
i=1

λi f
(
xo, yi

)
+ f

(
xo,

n∑
i=1

λi yi

)

−
n∑
i=1

λi f
(
xo, yi

)− f
(
xo,xo

)∈− intC
(
xo
)−C

(
xo
)−C

(
xo
)

=− intC
(
xo
)
.

(3.9)

Which implies C(xo)= Y , a contradiction. If xo ∈ K \E, then Φ1(xo)= K ∩ S(xo). Hence
xo =

∑n
i=1 λi yi ∈ S(xo), a contradiction again. Thus Q1 is KKM mapping.
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Step 3. Q2 is KKM mapping in K : Using the definition of Pi (i= 1,2) and weakly η−Cx-
pseudomonotonicity of the pair (T , f ) we have K \ P−1

1 (y) ⊂ K \ P−1
2 (y). Thus Q1(y) ⊂

Q2(y) for all y ∈ K and hence Q2 is also KKM-mapping.
Step 4. Q2(y) for each y ∈ K is weakly closed: Weakly closedness of Q2(y) follows from
(3.4), if we prove that for each y ∈ K

K \P−1
2 (y)= {x ∈ K : y /∈ P2(x)

}
= {x ∈ K :

〈
T(y),η(y,x)

〉
+ f (x, y) �− intY C(x)

} (3.10)

is weakly closed. Assume that xλ
w−−→ x and xλ ∈ K \ P−1

2 (y). Which implies that there
exists tλ ∈ T(y) such that

〈
tλ,η

(
y,xλ

)〉
+ f

(
xλ, y

)
/∈− intY C

(
xλ
)
. (3.11)

Since T(y) is compact, without loss of generality, we can assume that there exists t ∈ T(y)
such that tλ→ t. Also

〈
tλ,η

(
y,xλ

)〉= 〈tλ− t,η
(
y,xλ

)〉
+
〈
t,η
(
y,xλ

)〉
,

∥∥〈tλ− t,η
(
y,xλ

)〉∥∥≤ ∥∥tλ− t
∥∥∥∥η(y,xλ

)∥∥−→ 0.
(3.12)

Since t is also continuous when X and Y are equipped by the weak topologies and η is
continuous in the second argument,

〈
t,η
(
y,xλ

)〉 w−−→ 〈
t,η(y,x)

〉
. (3.13)

Thus (3.11)–(3.13), yields

〈
tλ,η

(
y,xλ

)〉−→ 〈
t,η(y,x)

〉
. (3.14)

By assumption (iv) there exists a subnet xµ of xλ and s ∈ f (x, y)−C(x) such that f (xµ,

y)
w−−→ s. Therefore, using (3.11), (3.14), assumption (iv), and weak closedness of x →

Y \ (− intC(x)) in K , we have

〈
t,η(x, y)

〉
+ s∈ Y \ (− intY C(x)

)
. (3.15)

Thus

〈
t,η(y,x)

〉
+ f (x, y)= 〈t,η(y,x)

〉
+ s+ f (x, y)− s∈ Y \ (− intY C(x)

)
+C(x)

= Y \ (− intY C(x)
)
.

(3.16)

Which implies that x ∈ K \P−1
2 (y) and hence K \P−1

2 (y) is weakly closed.
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Step 5. There exists x∗ ∈ K \ ∪y∈KΦ−1
2 (y). By (v) for each x ∈ K \D, there exists z ∈

Do∩ S(x) such that z ∈Φ2(x). Which implies that K \D ⊂∪z∈DoΦ
−1
2 (z). Hence

D ⊃
⋂
z∈Do

K \Φ−1
2 (z)=

⋂
z∈Do

Q2(z). (3.17)

Thus all the assumptions of Theorem 2.5 are satisfied and hence there exists

x∗ ∈
⋂
y∈K

K \Φ−1
2 (y)= K \

⋃
y∈K

Φ−1
2 (y). (3.18)

Step 6. x∗ is a solution of (2.1). If x∗ ∈ K \E, (3.18) implies that Φ2(x∗)=∅. But given
assumption implies Φ2(x∗) = K ∩ S(x∗) �= ∅, which is a contradiction. If x∗ ∈ E, then
Φ2(x∗)= P2(x∗)∩ S(x∗)=∅. Which implies that for each y ∈ S(x∗), y /∈ P2(x∗). That
is for each y ∈ S(x∗),

〈
T(y),η

(
y,x∗

)〉
+ f

(
x∗, y

) �⊂ − intY C
(
x∗
)
. (3.19)

Suppose that x∗ is not solution of (2.1). Which implies that there exists y∗ ∈ S(x∗),

〈
T
(
x∗
)
,η
(
y∗,x∗

)〉
+ f

(
x∗, y∗

)⊂− intY C
(
x∗
)
. (3.20)

Since T is generalized upper hemicontinuous for α > 0, small enough

〈
T
(
αy∗ + (1−α)x∗

)
,η
(
y∗,x∗

)〉
+ f

(
x∗, y∗

)⊂− intY C
(
x∗
)
. (3.21)

On the other hand using assumption (ii), (3.19), η(x,x) = 0 and Cx-convexity of f , we
have

〈
T
(
αy∗ + (1−α)x∗

)
,η
(
y∗,x∗

)〉
+ f

(
x∗, y∗

)

= 1
α

{〈
T
(
αy∗ + (1−α)x∗

)
,η
(
αy∗ + (1−α)x∗,x∗

)〉
+ f

(
x∗,αy∗ + (1−α)x∗

)}

+
1
α

{
α f
(
x∗, y∗

)
+ (1−α) f

(
x∗,x∗

)− f
(
x∗,αy∗ + (1−α)x∗

)}

− 1−α

α
f
(
x∗,x∗

)

⊂ Y \ {−C
(
x∗
)}

+C
(
x∗
)

+
{
C
(
x∗
)∩ (−C

(
x∗
))}

= Y \ {−C
(
x∗
)}
.

(3.22)

Which contradicts (3.21). Hence x∗ must be a solution of (2.1). �
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Corollary 3.2. If in Theorem 3.1 we take T as single valued mapping then there exists
x∗ ∈ K ∩ clX S(x∗) such that, for each x ∈ S(x∗),

〈
T
(
x∗
)
,η
(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (3.23)

Corollary 3.3. If in Theorem 3.1 we take η(x, y) = x− g(y), for all x, y ∈ K , where g :
K → K is a mapping, then there exists x∗ ∈ K ∩ clX S(x∗) such that, for each x ∈ S(x∗)
there exists t∗ ∈ T(x∗) such that

〈
t∗,x− g

(
x∗
)〉

+ f
(
x∗,x

)
/∈− intY C

(
x∗
)
. (3.24)

Theorem 3.4. If we avoid compactness of T(x) for each x ∈ K and replace the weakly
η−Cx-pseudomonotonicity of the pair (T , f ) by η−Cx-pseudomonotonicity and the as-
sumption (v) by

(v)o there is a nonempty weakly compact subset D of K and a subset Do of a weakly
compact convex subset of K such that for all x ∈ K \D, there exists z ∈ Do ∩ S(x),
〈T(x),η(z,x)〉+ f (x,z)∩− intY C(x) �= ∅

in Theorem 3.1, then there exists x∗ ∈ K ∩ clX S(x∗) such that for each x ∈ S(x∗) there exists
t∗ ∈ T(x∗) such that

〈
t∗,η

(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (3.25)

Proof. We first define a multifunction P3 for each x ∈ K by

P3(x)= {z ∈ K : ∃t ∈ T(z) :
〈
t,η(z,x)

〉
+ f (x,z)∈− intY C(x)

}
. (3.26)

Using P1, P3 with the corresponding Φi and Qi, i = 1,3 analogously to the proof of
Theorem 3.1, we can show thatQ1 is a KKM-mapping. By the η−Cx-pseudomonotonicity
of the pair (T , f ), K \P−1

1 (y)⊂ K \P−1
3 (y) and hence Q1(y)⊂Q3(y) for all x ∈ K . Thus

Q3 is also a KKM mapping in K . Now weakly closedness of Q3(y) follows from (3.4), if
we prove that for each y ∈ K

K \P−1
3 (y)= {x ∈ K : y /∈ P3(x)

}
= {x ∈ K : ∃t ∈ T(y) :

〈
t,η(y,x)

〉
+ f (x, y) /∈− intY C(x)

} (3.27)

is weakly closed. Assume that xλ
w−−→ x and xλ ∈ K \ P−1

3 (y). Which implies that for all
t ∈ T(y) we have

〈
t,η
(
y,xλ

)〉
+ f

(
xλ, y

)
/∈− intY C

(
xλ
)
. (3.28)

Thus assumption (iv) implies that there is a subnet xµ and s ∈ f (x, y)−C(x) such that
f (xµ, y)
w−−→ s. Using (3.28), continuity of η in the second argument and of t in the weak topolo-
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gies and weak closedness of x→ Y \− intC(x) in K , we have 〈t,η(y,x)〉+ s /∈− intY C(x).
Thus

〈
t,η(y,x)

〉
+ f (x, y)= 〈t,η(y,x)

〉
+ s+ f (x, y)− s∈ Y \− intC(x) +C(x)

= Y \− intC(x),
(3.29)

which shows that K \P−1
3 (y) is weakly closed and so is Q3(y). Similarly as for Q2, using

(v)o,∩z∈DoQ3(z) is weakly compact. Thus all the assumptions of Theorem 2.5 are satisfied
and hence there exists

x∗ ∈
⋂
y∈K

K \Φ−1
3 (y)= K \

⋃
y∈K

Φ−1
3 (y). (3.30)

Now it remains to show that x∗ is a solution of (2.1), which follows directly from Step 4
of Theorem 3.1 with minor modifications. �

Theorem 3.5. Suppose that all the assumptions of Theorem 3.4 are satisfied except weak
η− Cx-pseudomonotonicity of the pair (T , f ) in (iii) and the condition that generalized
upper hemicontinuity of T is strengthened to the upper semicontinuity of T in the weak
topology of X and norm topology of L(X ,Y). Then there exists x∗ ∈ K ∩ clX S(x∗) such that,
for each x ∈ S(x∗) there exists t∗ ∈ T(x∗) such that

〈
t∗,η

(
x,x∗

)〉
+ f

(
x∗,x

)
/∈− intY C

(
x∗
)
. (3.31)

Proof. To prove this theorem it is sufficient to prove that there exists x∗ ∈ ∩y∈KQ1(y). To
apply Theorem 2.5 for Q1, it remains to check only the weak closedness of Q1(y) for each
y ∈ K , which follows from (3.4), if we prove that for each y ∈ K

K \P−1
1 (y)= {x ∈ K : y /∈ P1(x)

}
= {x ∈ K :

〈
T(x),η(y,x)

〉
+ f (x, y) �− intY C(x)

} (3.32)

is weakly closed. Assume that xλ
w−−→ x and xλ ∈ K \ P−1

1 (y). Which implies that there
exists tλ ∈ T(xλ) such that

〈
tλ,η

(
y,xλ

)〉
+ f

(
xλ, y

)
/∈− intY C

(
xλ
)
. (3.33)

Upper semi-continuity of T implies that for each ε > 0, there exists a weak neighborhood
N(x) such that T(N(x)) ⊂ B(T(x),ε). We can take xλ ∈ N(x) and hence there is t′λ ∈
T(x) such that ‖tλ − t′λ‖ < ε. Since T(x) is compact, without loss of generality, we can
assume that there exists t ∈ T(x) such that t′λ→ t. Consequently, ‖tλ− t‖→ 0. Thus using
arguments similar to those used in Theorem 3.1, Q1(y) is closed and hence the proof is
complete. �
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Remark 3.6. Theorem 3.1 improves and generalizes [11, Theorem 1] and [13, Theo-
rem 3.1]. Our proof of Theorem 3.1 depends on the KKM-Fan theorem and fixed point
theorem whereas the proof of main results in [11, 13] depends on one person game the-
orems. If K is weakly compact, f (x, y)= 0, η(x, y)= x− y and A(x)= K , for all x, y ∈ K ,
Theorem 3.1 collapses to [17, Theorem 3.1]. Of course, in this case the coercivity assump-
tion (v) is omitted. The coercivity assumption is unavoidable if K is only closed and con-
vex. We note that when T ≡ 0 and S : K → 2K in Corollary 3.2, we obtain existence results
for the vector quasi-equilibrium problem (2.6) and if we take f ≡ 0 and clX S(x)= K for
each x ∈ K in Theorem 3.1 we obtain existence results for the generalized vector quasi-
variational-like inequality problem (2.5).

4. Applications

In this section we establish some existence results for generalized vector quasi variational
inequalities and vector quasi optimization problems.

We need the following special case of Definition 2.4

Definition 4.1. Let T : K → 2L(X ,Y) be a multifunction and g : K → K be a mapping then
T is called weakly generalized Cx-pseudomonotone in K if for all x, y ∈ K ,

∃u∈ T(x),
〈
u, y− g(x)

〉
/∈− intY C(x)=⇒∃v ∈ T(y),

〈
v, y− g(x)

〉
/∈− intY C(x).

(4.1)

Theorem 4.2. Let T : K → 2L(X ,Y) be generalized upper hemicontinuous and weakly gen-
eralized Cx-pseudomonotone multifunction in K with nonempty compact values. Let η :
K ×K → K be affine in the first argument and continuous in the second argument such
that for each x ∈ K , η(x,x)= 0. Suppose that there is a nonempty weakly compact subset D
of K and a subset Do of a weakly compact convex subset of K such that for all x ∈ K \D,
there exists z ∈Do∩ S(x),

〈
T(x),η(z,x)

〉⊂− intY C(x). (4.2)

Then the generalized vector quasi-variational-like inequality problem of finding x∗ ∈ K ∩
clX S(x∗) such that for each x ∈ S(x∗) there exists t∗ ∈ T(x∗) such that

〈
t∗,η

(
x,x∗

)〉
/∈− intY C

(
x∗
)
, (4.3)

has a solution.

Proof. If we take f = 0, then we see that all the assumptions of Theorem 3.1 holds and
hence the proof follows. �

Theorem 4.3. Let f : K ×K → Y be bifunction such that f (x,x) ∈ C(x)∩−C(x) and is
Cx-convex in second argument. Suppose that for each x, y ∈ K and xλ ∈ K such that xλ

w−−→ x

(weak), there exists a subnet xµ of xλ and s ∈ f (x, y)−C(x) such that f (xµ, y)
w−−→ s. Also

assume that there is a nonempty weakly compact subset D of K and a subset Do of a weakly
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compact convex subset of K such that for all x ∈ K \D, there exists z ∈Do∩ S(x),

f (x,z)∈− intY C(x). (4.4)

Then the vector quasi-equilibrium problem of finding x∗ ∈ K ∩ clX S(x∗) such that for each
x ∈ S(x∗),

f
(
x∗,x

)
/∈− intY C

(
x∗
)
, (4.5)

has a solution.

Proof. If we take T = 0 then proof directly follows from Theorem 3.1. �

Corollary 4.4. If in Theorem 4.2 we take η(x, y) = x− g(y) for all x, y ∈ K , where g :
K → K be a mapping. Then the generalized vector quasi-variational inequality problem of
finding x∗ ∈ K ∩ clX S(x∗) such that for each x ∈ S(x∗) there exists t∗ ∈ T(x∗) such that

〈
t∗,x− g

(
x∗
)〉

/∈− intY C
(
x∗
)
, (4.6)

has a solution.

Corollary 4.5. If in Theorem 4.3 we take f (x, y)= φ(y)−φ(x) for all x, y ∈ K , where φ :
K → Y be a vector-valued function. Then the vector quasi-optimization problem of finding
x∗ ∈ K ∩ clX S(x∗) such that for each x ∈ S(x∗),

φ
(
x∗
)−φ(x) /∈− intY C

(
x∗
)
, (4.7)

has a solution.

Remark 4.6. Ding [6] and Kim and Tan [14] respectively employed the scalarization
technique and one person game theorems to prove the existence results for the gener-
alized vector quasi-variational-like inequality problem and the generalized vector quasi-
variational inequality problem whereas we have used KKM-Fan theorem and fixed point
theorem in our results. The results of this section extends, generalizes and improves the
corresponding results in [1, 2, 6, 8, 10, 12, 14, 16].
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