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Let X be an H-space of the homotopy type of a connected, finite CW-complex, f : X → X
any map and pk : X → X the kth power map. Duan proved that pk f : X → X has a fixed
point if k ≥ 2. We give a new, short and elementary proof of this. We then use rational
homotopy to generalize to spaces X whose rational cohomology is the tensor product of
an exterior algebra on odd dimensional generators with the tensor product of truncated
polynomial algebras on even dimensional generators. The role of the power map is played
by a θ-structure μθ : X → X as defined by Hemmi-Morisugi-Ooshima. The conclusion is
that μθ f and f μθ each has a fixed point.

Copyright © 2006 Martin Arkowitz. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let G be a topological group and f : G→ G a map (i.e., a continuous function). Let
pk : G→ G be the kth power map defined by pk(x) = xk. Recall that a fixed point of f
is an element x0 ∈ G such that f (x0) = x0. In 1993 Duan Haibo proved the following
interesting fixed point theorem.

Theorem 1.1 [1]. If G is a compact, connected topological group and f : G→ G is a map,
then for any k ≥ 2, the map pk f :G→G has a fixed point.

This theorem was proved more generally for homotopy-associative H-spaces having
the homotopy type of a finite, connected CW-complex (Theorem 2.2). In 1996, Lupton
and Oprea [2] gave a new proof of Duan’s theorem using rational homotopy theory. In
1997, Hemmi-Morisugi-Ooshima [3] extended Duan’s theorem to spaces more general
than homotopy-associative H-spaces. In all of the above results, the existence of a fixed
point of a map was obtained by showing the Lefschetz number of the map is non-zero.

The purpose of this paper is two-fold. First, we give a new, short proof of Duan’s
theorem. The proof is elementary in that the only non-trivial result required is the

Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2006, Article ID 17563, Pages 1–10
DOI 10.1155/FPTA/2006/17563

http://dx.doi.org/10.1155/S1687182006175634


2 Duan’s fixed point theorem: proof and generalization

Hopf-Leray-Samelson theorem on the rational cohomology of a homotopy-associative
H-space. Secondly, we use rational methods, in particular, a result of Halperin [4], and
ideas from [3] to generalize Duan’s theorem.

2. Duan’s theorem

We begin by briefly discussing the Lefschetz number and H-spaces. All spaces will be
assumed to have the homotopy type of a finite, connected CW-complex (though this as-
sumption can be weakened). The cohomology of a space with coefficients in the additive
group of rationals will be written H∗(X) = {Hn(X)}, so that cohomology will always
be taken with rational coefficients. A map f : X → X induces a linear transformation
f ∗n :Hn(X)→Hn(X). The Lefschetz number is defined by

L( f )=
N∑

n=0

(−1)nTr
(
f ∗n

)
, (2.1)

where Hi(X)= 0, for i > N , and Tr denotes the trace. Lefschetz’s famous fixed point the-
orem asserts that if L( f ) �= 0, then f has a fixed point [5].

Next we state some basic facts about H-spaces. An H-space consists of a space X and
a map m : X ×X → X (called the multiplication) such that m restricted to each factor is
homotopic to the identity map id. For an H-space X , the power map pk : X → X , k ≥ 1, is
inductively defined as follows: p1 = id, and pk is the composition

X
Δ

X ×X pk−1×id
X ×X m

X , (2.2)

where Δ is the diagonal map. The multiplication m induces a homomorphism m∗ :
H∗(X) → H∗(X ×X) ≈ H∗(X)⊗H∗(X). An element x ∈ Hn(X) is called primitive if
m∗(x) = x⊗ 1 + 1⊗ x. If x ∈ Hn(X) is primitive, then it follows immediately from the
definitions that

p∗k (x)= kx. (2.3)

The H-space X is said to be homotopy-associative if the maps m(m× id), m(id×m) :
X ×X ×X → X are homotopic. The Hopf-Leray-Samelson theorem ([6, page 268] and
[7, Theorem 7.20]) asserts that if X is a homotopy-associative H-space, then

H∗(X)=Λ
(
x1,x2, . . . ,xr

)
, (2.4)

an exterior algebra on odd degree generators x1,x2, . . . ,xr which are primitive.
With these generalities out of the way, we state an obvious lemma and proceed with

Duan’s theorem and its proof.
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Lemma 2.1. IfA is an n×nmatrix of rationals and B is a diagonal n×nmatrix of rationals,

A=

⎛
⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎝

b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bn

⎞
⎟⎟⎟⎟⎠

, (2.5)

then Tr(AB)= a11b1 + a22b2 + ···+ annbn = Tr(BA).

We write the diagonal matrix B as diag(b1,b2, . . . ,bn).

Theorem 2.2 [1]. If X is a homotopy-associative H-space, f : X → X any map and pk :
X → X the kth power map, k ≥ 2, then pk f : X → X has a fixed point.

Proof. We show that L(pk f ) �= 0. For this we consider the trace of (pk f )∗n = f ∗np∗nk

Hn(X)
p∗nk

Hn(X)
f ∗n

Hn(X). (2.6)

By the theorem of Hopf-Leray-Samelson,

H∗(X)=Λ
(
x1,x2, . . . ,xr

)
, (2.7)

where the xi are primitive elements of odd degree |xi| =mi. If n≥ 1 then a basis ofHn(X)
consists of elements

yi1i2···il = xi1xi2 ···xil , (2.8)

where l ≥ 1, 1≤ i1 < i2 < ··· < il ≤ r andmi1 +mi2 + ···+mil = n. We examine the matrix
of p∗nk and f ∗n with respect to this basis. Since p∗k (xi)= kxi,

p∗nk
(
yi1i2···il

)= kl yi1i2···il . (2.9)

Now suppose that there are b(n)
1 basis elements in Hn(X) of length one (i.e., those of the

form yi), b(n)
2 basis elements in Hn(X) of length two (i.e., those of the form yi1i2 , i1 < i2),

etc., where b(n)
i ≥ 0. Then the matrix B of p∗nk is diagonal,

B = diag

(
k, . . . ,k︸ ︷︷ ︸
b(n)

1

,k2, . . . ,k2
︸ ︷︷ ︸

b(n)
2

, . . .

)
. (2.10)

Next we consider the matrix A of f ∗n with respect to this basis. Now f ∗n is obtained
by taking the homomorphism on integral n-dimensional cohomology induced by f and

tensoring it with the rationals. Thus A is a matrix of integers. Let e(n)
1 be the sum of the

first b(n)
1 diagonal entries of A, e(n)

2 the sum of the next b(n)
2 diagonal entries, etc. Then by

Lemma 2.1,

Tr
((
pk f

)∗n)= Tr(AB)= ke(n)
1 + k2e(n)

2 + ···+ kre(n)
r . (2.11)
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Thus Tr((pk f )∗n)≡ 0(mod k) for n≥ 1, and so L(pk f )≡ 1(mod k). Since k ≥ 2, we have
L(pk f ) �= 0. This completes the proof. �

Remark 2.3. There are some simple extensions of Theorem 2.2:
(1) If the H-space X has a homotopy inverse, one can define pk for all integers k.

Theorem 2.2 then holds for all |k| ≥ 2.
(2) Theorem 2.2 holds for the map f pk : X → X since it is well known that L( f pk)=

L(pk f ).
(3) Let k be an integer such that |k| ≥ 2. Suppose that X is a homotopy-associative H-

space and there is a map μ : X → X such that μ∗(xi) = aixi, where ai ≡ 0(mod k),
for i= 1,2, . . . ,r. Then the previous proof shows that if f : X → X is any map, then
μ f and f μ each has a fixed point. We will return to this in Section 4.

We note the following immediate consequence of Duan’s theorem which appears in
[5, Theorem 1, page 49].

Corollary 2.4. Let G be a compact, connected topological group, a ∈ G and k ≥ 2. Then
there exists x0 ∈G such that xk0 = a.

Proof. Let La :G→G be left multiplication by a. By Duan’s theorem, La−1 pk+1 has a fixed
point x0. �

3. Fixed points and eigenvalues

In this section we consider spaces with restricted cohomology and state a result on the
Lefschetz number of self maps of such spaces. This result, Theorem 3.1, which may be of
some interest in itself, will be used to generalize Duan’s theorem in Section 4.

Let Y be a space and consider the vector space I∗(H∗(Y))= {In(H∗(Y))} of indecom-
posables of H∗(Y) defined by

I∗
(
H∗(Y)

)= H+(Y)
H+(Y) ·H+(Y)

, (3.1)

where H+ denotes positive-dimensional cohomology. A map f : Y → Y ′ induces f ∗ :
H∗(Y ′) → H∗(Y) and this induces a linear transformation I∗( f ∗) : I∗(H∗(Y ′)) →
I∗(H∗(Y)).

For the rest of this section we consider spaces X whose cohomology has the following
form

H∗(X)=Λ
(
x1,x2, . . . ,xr

)⊗P(y1, y2, . . . , ys
)
/
〈
yn1

1 , yn2
2 , . . . , ynss

〉
, (3.2)

where Λ(x1,x2, . . . ,xr) is an exterior algebra on odd dimensional generators x1,x2, . . . ,xr ,
P(y1, y2, . . . , ys) is a polynomial algebra on even dimensional generators y1, y2, . . . , ys and
〈yn1

1 , yn2
2 , . . . , ynss 〉 is the ideal generated by the powers yn1

1 , yn2
2 , . . . , ynss . In short, H∗(X) is a

tensor product of monogenic algebras.
We will always assume for a space X which satisfies (3.2) that 1 < n1 < n2 < ··· < ns.
We give examples of such spaces in Examples 3.3(1).
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Now let X be a space satisfying (3.2) and f : X → X a map. The vector space of inde-
composables I∗(H∗(X)) can be split into its odd and even degree parts

I∗
(
H∗(X)

)=V ⊕W , (3.3)

where V =⊕iodd I
i(H∗(X)) and W =⊕ieven I

i(H∗(X)). Then I∗( f ∗) : I∗(H∗(X)) →
I∗(H∗(X)) induces linear transformations

fV :V −→V , fW :W −→W. (3.4)

The following theorem will be proved in Section 5.

Theorem 3.1. Let X be a space satisfying (3.2) and f : X → X a map. Suppose that −1 is
not an eigenvalue of fW . Then

L( f ) �= 0⇐⇒ fV has no eigenvalue equal to 1. (3.5)

We make some remarks on the theorem.

Remarks 3.2. (1) The matrices of the linear transformations fV and fW can be determined
from the induced linear transformation f ∗ applied to the algebra generators x1,x2, . . . ,
xr , y1, y2, . . . , ys of H∗(X). In general, it is difficult to calculate the eigenvalues of a linear
transformation since this requires finding the roots of the characteristic polynomial. In
applying Theorem 3.1 to show L( f ) �= 0, however, it is only necessary to show that −1
and 1 are not roots of the appropriate characteristic polynomials. This is much easier to
do.

(2) The theorem holds if r or s= 0. In addition, the conclusion L( f ) �= 0 holds without
the hypothesis that fV has no eigenvalue equal to 1, provided all ni are odd. This can be
seen from the proof.

(3) A result similar to Theorem 3.1 has been proved by Lupton and Oprea [2]. In
Remark 5.3 we discuss the relation of their result to our work.

We next give some examples related to Theorem 3.1.

Examples 3.3. (1) We indicate one way (though not the only way) to construct spaces X
satisfying (3.2). LetA be a space such thatH∗(A)=Λ(x1, . . . ,xr). For example,A could be
the product of any number of the following spaces: homotopy-associative H-spaces and
odd dimensional spheres. Let B be a space such that H∗(B)= P(y1, . . . , ys)/〈yn1

1 , . . . , ynss 〉.
For example, B could be the product of any number of the following spaces: projective
spaces and even dimensional spheres. Then X = A×B is a space which satisfies (3.2).

(2) We next show that the hypothesis that −1 is not an eigenvalue of fW is necessary
in general. Let X be the complex projective space CP2n+1 and let f : X → X be a map of
degree −1, that is, f ∗2(u)=−u for every u∈H2(X). Then 1 is not an eigenvalue of fV ,
−1 is an eigenvalue of fW and L( f )= 0.

(3) Here we show that the strict inequality 1 < n1 < n2 < ··· < nr is necessary in
Theorem 3.1. Define f : S2 × S2 → S2 × S2 by f (x, y) = (y,−x). Let {u,v} ⊆H2(S2 × S2)
be the basis corresponding to the two 2-spheres. Then f ∗2(u) = v, f ∗2(v) = −u and
f ∗4(uv)=−uv, and so L( f )= 0.



6 Duan’s fixed point theorem: proof and generalization

4. Theta spaces

In this section we will use Theorem 3.1 to extend Duan’s theorem to spaces X which sat-
isfy (3.2). In order to do this it is necessary to describe a map X → X which plays the role
of the power map of H-spaces. This has been done by Hemmi-Morisugi-Ooshima [3]. We
begin this section by summarizing their work (with some small changes in terminology).

For the remainder of the paper we will use X to denote a space which satisfies (3.2) of
Section 3 and will use Y to denote an arbitrary space (of the homotopy type of a finite,
connected CW-complex).

Definition 4.1. Let Y be a space and {m1,m2, . . . ,mt} a set of positive integers defined as
follows:

Im
(
H∗(Y)

) �= 0⇐⇒m=mi, for some i= 1,2, . . . , t. (4.1)

Let θ : {m1,m2, . . . ,mt} → Z be an integer-valued function. Then a θ-structure on Y is a
map μθ : Y → Y such that

Imi
(
μ∗θ
)
(y)= θ(mi

)
(y), (4.2)

for every y ∈ Imi(H∗(Y)). The pair (Y ,μθ) (or just Y) is called a θ-space. A constant θ-
structure is one such that θ(mi)= k, for all i, where k ∈ Z is a fixed integer.

There is a long list of θ-spaces in [3] and we mention some of them below. All θ func-
tions in the following list have the form θ(mi)= ke(mi), for some integer k and function e.

(i) H-spaces and co-H-spaces have constant θ-structure given by the power map.
(ii) Semi-simple Lie groups G and their classifying spaces BG have θ-structure given

by the unstable Adams operations ψk on BG and Ωψk on ΩBG=G, for certain k.
(iii) Complex and Quaternionic Grassman manifolds Gp,q with some restrictions on

p and q have θ-structure.
(iv) The Stiefel manifolds U(2n+ 2)/U(2n) have constant θ-structure k if and only if

k ≡ 0,1,5(mod 8).
In addition, the existence of θ-structure on a large class of spaces is obtained from the

following corollary of Theorem 1 in [3]:
If X is a simply-connected space which satisfies (3.2) of Section 3, then there exists

infinitely many θ-structures on X .
In Theorem 2 of [3] the authors consider self maps f : Y → Y of a θ-space, for certain

θ, and show the existence of fixed points of f μθ and μθ f . The restrictions on θ are that
θ(mi) = ke(mi), where e(mi) = (b− a)mi + 2a− b, for b ≥ a ≥ 1 and |k| ≥ 2. We prove a
similar theorem below (by different methods) which restricts the spaces to those satisfy-
ing (3.2) but allows a much larger class of functions θ.

Theorem 4.2. Let X be any space satisfying (3.2) and f : X → X any map. Let
{m1,m2, . . . ,mt} be the set of degrees of the non-zero indecomposables of H∗(X) and let
θ : {m1,m2, . . . ,mt} → Z−{0,±1} be any function. If μθ : X → X is a θ-structure on X , then
f μθ and μθ f each has a fixed point.
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Proof. We apply Theorem 3.1 to μθ f : X → X . We decompose I∗(H∗(X))= V ⊕W into
odd and even parts and first consider I∗( f ∗μ∗θ ) |W= (μθ f )W : W → W . Suppose
w ∈Wmi is an eigenvector of (μθ f )W with eigenvalue −1. Then

fW
(
θ
(
mi
)
(w)

)= Imi
(
f ∗μ∗θ

)
(w)= (μθ f

)
W (w)=−w, (4.3)

and so fW (w) = (−1/θ(mi))w. Thus −1/θ(mi) is an eigenvalue of fW which is a ratio-
nal number. But fW is induced by a map f : X → X and so, as noted in the proof of
Theorem 2.2, with respect to some basis of W , fW is represented by an integral matrix
(see also [2, §3]). But the only rational eigenvalues of an integral matrix are integers [8,
Theorem 4.16]. Therefore −1/θ(mi) cannot be an eigenvalue of fW since θ(mi) �= ±1.
Thus −1 is not an eigenvalue of fW . A similar argument shows that 1 is not an eigenvalue
of fV . Therefore by Theorem 3.1, L(μθ f ) �= 0. An analogous argument holds for f μθ . �

Remark 4.3. We illustrate how Theorem 4.2 can be used in some concrete examples. Let
X = A×B be a space of the type discussed in Examples 3.3(1). If μθ is a θ-structure on
A and μθ′ is a θ-structure on B, then μθ ×μθ′ is a θ-structure on A×B. More specifically,
suppose A is a homotopy-associative H-space with μθ the kth power map and B is a
product of even dimensional spheres and projective spaces with μθ′ a θ-structure which
is constant at l (for example, the product of maps of degree l). If k and l are both �= 0, ±1,
then Theorem 4.2 applies to the θ-structure μθ ×μθ′ on X .

5. Proof of Theorem 3.1

We state a special case of a theorem of Halperin which will be needed to prove Theorem
3.1. This requires the use of rational homotopy theory, in particular, Sullivan minimal
models (see [9] and [10]). For a space X which satisfies (3.2), one can construct the min-
imal model � of X . This has the following properties: � is a free-commutative, graded,
differential algebra with generators x1, . . . ,xr , y1, . . . , ys (which are in one-one correspon-
dence with the generators of H∗(X) and have the same degree) and generators z1, . . . ,zs
with |zi| = |yi|ni− 1. Then

� =Λ
(
x1, . . . ,xr ,z1, . . . ,zs

)⊗P(y1, . . . , ys
)
, (5.1)

with |xi| and |zi| odd and |yi| even. Note that a vector space basis for � consists of all

x
η1

1 ···xηrr yλ1
1 ··· yλss zτ1

1 ···zτss , where 0≤ ηi, τi ≤ 1 and 0≤ λi. The differential d on � is
defined by: dxi = 0, dyi = 0 and dzi = ynii . ClearlyH∗(�,d)=H∗(X). We split the vector
space I∗(�) of indecomposables of � into the direct sum of an odd degree partO and an
even degree part E. We identify O = 〈x1, . . . ,xr ,z1, . . . ,zs〉 and E = 〈y1, . . . , ys〉. A map f :
X → X induces a homomorphism φ : � →�. This determines I∗(φ) : I∗(�)→ I∗(�)
and thence φO :O→O and φE : E→ E. We now state a special case of Halperin’s theorem
for spaces which satisfy (3.2).

Theorem 5.1 [4, Theorem 3]. The number of eigenvalues of φO which are 1 equals the
number of eigenvalues of φE which are 1 if and only if L( f ) �= 0.
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Using this theorem, we now prove Theorem 3.1.

Proof. We fix l, 1≤ l ≤ s, and write φ(zl) as a linear combination of basis elements in the
vector space �,

φ(zl)=
∑

i

alizi +
∑

j

bl jx j + εl, (5.2)

where εl is decomposable and |zl| = |zi| = |xj| for all i and j in the above sums. We let
I = {i | |zi| = |zl|} and apply d to both sides of (5.2) to obtain

φ
(
dzl
)=

∑

i∈I
ali y

ni
i +dεl . (5.3)

But φ(dzl)= φ(ynll )= (φ(yl))nl , and so (5.3) yields

(
φ
(
yl
))nl =

∑

i∈I
ali y

ni
i +dεl . (5.4)

Next we write φ(yl) as a linear combination of basis elements

φ
(
yl
)=

∑

k∈K
clk yk + δl, (5.5)

where K = {k | |yk| = |yl|} and δl is decomposable. Since n1 < ··· < ns, it follows that
I ∩K = {l}. Then we obtain from (5.4) and (5.5),

(
∑

k∈K
clk yk + δl

)nl
=
∑

i∈I
ali y

ni
i +dεl . (5.6)

Consider any t with 1≤ t ≤ s. We will equate the terms which are linear combinations of
yat for all a > 0 on the left side of (5.6) with those on the right side of (5.6). For this it
is necessary to analyze the elements dεl and δl in terms of the vector space basis above,
noting that εl and δl are decomposable and that |dεl| = |zl|+ 1 and |δl| = |yl|. Now δl
may contain a term of the form uay

a
t , where ua is a rational and a ≥ 2. Thus the only

possible terms on the left side of (5.6) which are powers of yt are cnllt y
nl
t and unla y

anl
t . For

the right side of (5.6) note that εl may contain a term of the form vb y
b
t zt, where b > 0

and vb is a rational. Then dεl will contain vb y
nt+b
t . Thus the only possible terms which are

powers of yt on the right side of (5.6) are alt y
nt
t and vb y

nt+b
t . Now suppose t ∈ K and t �= l.

Then t /∈ I and (5.6) yields

cnllt y
nl
t = vb ynt+bt . (5.7)

Thus if t > l, then nl < nt, and so clt = 0. Next suppose t ∈ I and t �= l. Then t /∈ K and
(5.6) yields

unla y
anl
t = alt yntt . (5.8)
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If l > t, then anl > nt, and so alt = 0. Finally, if l = t, then cnlll = all. Putting this information
into (5.2) and (5.5), we have

φO
(
zl
)=

∑

i≥l
alizi +

∑

j

bl jx j , (5.9)

φE
(
yl
)=

∑

k≤l
clk yk, (5.10)

where all = cnlll . Now E = 〈y1, . . . , ys〉 and φE : E→ E. From (5.10), the eigenvalues of φE
(in degree |yl|) are rational numbers of the form cii. These are the same as the eigenvalues
of fW . By hypothesis, none of these eigenvalues equals −1. Clearly I∗(φ) : 〈x1, . . . ,xr〉 →
〈x1, . . . ,xr〉. By examining the matrix of φO, we see that the eigenvalues of φO consist of
those of the form aii = cniii together with the eigenvalues of φO|〈x1, . . . ,xr〉. Now aii = 1 if
and only if cii = 1. Thus the number of eigenvalues of φO which are 1 equals the number
of eigenvalues of φE which are 1 plus the number of eigenvalues of φO|〈x1, . . . ,xr〉 which
are 1. But the eigenvalues of φO|〈x1, . . . ,xr〉 are just the eigenvalues of fV . By Halperin’s
theorem, L( f ) �= 0 if and only if no eigenvalue of fV equals 1. �

Remark 5.2. Halperin’s theorem as stated and proved in [4] is more general in two distinct
ways than what we have stated above. First of all, the theorem applies to elliptic spaces.
These are spaces whose (rational) cohomology and rational homotopy groups (i.e., ho-
motopy groups tensored with the rationals) vanish in all sufficiently high dimensions.
The spaces which satisfy (3.2) are elliptic spaces. Secondly, the theorem gives a formula
for the Lefschetz number of a map f in terms of the eigenvalues of fV and fW . Since we
are interested in fixed points of maps, we have only considered the case where L( f ) �= 0.
This has led to a simplified statement of the theorem.

Remark 5.3. Lupton and Oprea consider an elliptic space X whose minimal model � is
oddly graded, that is, � = Λ(x1, . . . ,xr), an exterior algebra on odd dimensional gener-
ators. It is not assumed that the differential d = 0. If f : X → X is a map such that the
induced map φO = I∗(φ) : I∗(�) → I∗(�) does not have 1 as an eigenvalue, then the
main result of [2, § 5] asserts that L( f ) �= 0. It is possible to modify the statement and
proof of Theorem 3.1 slightly so as to include this result. One assumes that the minimal
model � of X has the form

� =Λ
(
x1, . . . ,xr ,z1, . . . ,zs

)⊗P(y1, . . . , ys
)
, (5.11)

with |xi| and |zi| odd and |yi| even. Furthermore, dxi ∈Λ(x1, . . . ,xr), dzi = yni and dyi =
0 with n1 < ··· < ns. We assume that φE : E→ E does not have −1 as an eigenvalue. Then
the modified version of Theorem 3.1 asserts that L( f ) �= 0 if and only if φO does not have 1
as an eigenvalue. For the proof it is only necessary to show that φO(xi)∈ 〈x1, . . . ,xr〉which
requires straightforward arguments similar to those given in the proof of Theorem 3.1.
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