
EPSILON NIELSEN FIXED POINT THEORY

ROBERT F. BROWN

Received 11 October 2004; Revised 17 May 2005; Accepted 21 July 2005

Let f : X → X be a map of a compact, connected Riemannian manifold, with or without
boundary. For ε > 0 sufficiently small, we introduce an ε-Nielsen number Nε( f ) that is
a lower bound for the number of fixed points of all self-maps of X that are ε-homotopic
to f . We prove that there is always a map g : X → X that is ε-homotopic to f such that g
has exactly Nε( f ) fixed points. We describe procedures for calculating Nε( f ) for maps of
1-manifolds.
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1. Introduction

Forster has applied Nielsen fixed point theory to the study of the calculation by computer
of multiple solutions of systems of polynomial equations, using a Nielsen number to
obtain a lower bound for the number of distinct solutions [4]. Because machine accuracy
is finite, the solution procedure requires approximations, but Forster’s information is still
applicable to the original problem. The reason is that sufficiently close functions on well-
behaved spaces are homotopic and the Nielsen number is a homotopy invariant.

The point of view of numerical analysis concerning accuracy is described by Hilde-
brand in his classic text [5] in the following way. “Generally the numerical analyst does
not strive for exactness. Instead, he attempts to devise a method which will yield an ap-
proximation differing from exactness by less than a specified tolerance.” The work of
Forster does not involve an initially specified tolerance. In particular, although the homo-
topy between two sufficiently close maps is through maps that are close to both, Forster
puts no limitation on the homotopies he employs. The purpose of this paper is to intro-
duce a type of Nielsen fixed point theory that does assume that a specified tolerance for
error must be respected.

If distortion is limited to a pre-assigned amount, then it may not be possible, without
exceeding the limit, to deform a map f so that it has exactly N( f ) fixed points. For a
very simple example, consider a map f : I → I = [0,1] such that f (0) = f (2/3) = 1 and
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f (1/3) = f (1) = 0. If a map g has N( f ) = 1 fixed point, then there must be some t ∈ I
such that | f (t)− g(t)| > 1/3.

This example suggests a concept of the geometric minimum (fixed point) number of
a map f : X → X different from the one, MF[ f ], that is the focus of Nielsen fixed point
theory, namely,

MF[ f ]=min
{

#Fix(g) : g is homotopic to f
}

, (1.1)

where #Fix(g) denotes the cardinality of the fixed point set. The distance d( f ,g) between
maps f ,g : Z → X , where Z is compact and X is a metric space with distance function d,
is defined by

d( f ,g)=max
{
d
(
f (z),g(z)

)
: z ∈ Z

}
. (1.2)

Given ε > 0, a homotopy {ht} : Z → X is an ε-homotopy if d(ht,ht′) < ε for all t, t′ ∈ I . For
a given ε > 0, we define the ε-minimum (fixed point) number MFε( f ) of a map f : X → X
of a compact metric space by

MFε( f )=min
{

#
(

Fix(g)
)

: g is ε-homotopic to f
}
. (1.3)

Note that the concept of ε-homotopic maps does not give an equivalence relation.
The notation MF[ f ] for the minimum number incorporates the symbol [ f ], generally

used to denote the homotopy class of f , because MF[ f ] is a homotopy invariant. We
do not use the corresponding notation for the ε-minimum number because it is not
invariant on the homotopy class of f . For instance, although a constant map k of I is
homotopic to the map f of the example, for which MFε( f )= 3 for any ε ≤ 1/3, obviously
MFε(k)= 1 for any choice of ε.

Let f : X → X be a map of a compact manifold. Just as the Nielsen number N( f ) has
the property N( f ) ≤MF[ f ], in the next section we will introduce the ε-Nielsen num-
ber Nε( f ), for ε sufficiently small, that has the property Nε( f ) ≤MFε( f ). Our main
result, proved in Section 3, is a “minimum theorem”: given f : X → X , there exists g with
d(g, f ) < ε such that g has exactly Nε( f ) fixed points. Wecken’s minimum theorem, that
if f : X → X is a map of an n-manifold, then there is a map g homotopic to f with exactly
N( f ) fixed points, requires that n �= 2. It is well known that on all but a few surfaces there
are maps f for which no map homotopic to f has only N( f ) fixed points, and indeed the
gap between MF[ f ] and N( f ) can be made arbitrarily large [2]. In contrast to Wecken’s
theorem, our result holds for manifolds of all dimensions. Finally, in Section 4, we discuss
the problem of calculating Nε( f ).

2. The ε-Nielsen number

Throughout this paper, X is a compact, connected differentiable manifold, possibly with
boundary. We introduce a Riemannian metric on X and denote the associated distance
function by d. If the boundary of X is nonempty, we choose a product metric on a tubu-
lar neighborhood of the boundary and then use a partition of unity to extend to a metric
for X . There is an ε > 0 small enough so that, if p,q ∈ X with d(p,q) < ε, then there
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is a unique geodesic cpq connecting them. This choice of ε is possible even though the
manifold may have a nonempty boundary because the metric is a product on a neighbor-
hood of the boundary. For the rest of this paper, ε > 0 will always be small enough so that
points within a distance of ε are connected by a unique geodesic. We view the geodesic
between p and q as a path cpq(t) in X such that cpq(0)= p and cpq(1)= q. The function
that takes the pair (p,q) to cpq is continuous. If x ∈ cpq then d(p,x)≤ d(p,q) because cpq
is the shortest path from p to q (see [7, Corollary 10.8 on page 62]).

If f ,g : Z → X are maps with d( f ,g) < ε, then setting ht(z)= c f (z)g(z)(t) defines an ε-
homotopy between f and g. Thus an equivalent definition of the ε-minimum number of
f : X → X is

MFε( f )=min
{

#
(

Fix(g)
)

: d( f ,g) < ε
}
. (2.1)

For a map f : X → X , let

Δε( f )= {x ∈ X : d
(
x, f (x)

)
< ε

}
. (2.2)

Theorem 2.1. The set Δε( f ) is open in X .

Proof. Let R+ denote the subspace of R of non-negative real numbers. Define Df : X →
R+ by Df (x) = d(x, f (x)). Since [0,ε) is open in R+, it follows that Δε( f ) = D−1

f ([0,ε))
is an open subset of X . �

For a map f : X → X , define an equivalence relation on Fix( f ) as follows: x, y ∈ Fix( f )
are ε-equivalent, if there is a path w : I → X from x to y such that d(w, f ◦w) < ε. The
equivalence classes will be called the ε-fixed point classes or, more briefly, the ε-fpc of f .

Theorem 2.2. Fixed points x, y of f : X → X are ε-equivalent if and only if there is a
component of Δε( f ) that contains both of them.

Proof. Suppose x, y ∈ Fix( f ) are ε-equivalent and let w be a path in X from x to y such
that d(w, f ◦w) < ε. Thus, for each s ∈ I we have d(w(s), f (w(s))) < ε and we see that
w(I)⊂ Δε( f ). Since w(I) is connected it is contained in some component of Δε( f ). Con-
versely, suppose x, y ∈ Fix( f ) are in the same component of Δε( f ). The components of
Δε( f ) are pathwise connected so there is a path w in it from x to y. Since w is in Δε( f ),
that means d(w, f ◦w) < ε and thus x and y are ε-equivalent. �

Theorems 2.1 and 2.2 imply that the ε-fpc are open in Fix( f ), so there are finitely
many of them Fε1, . . . ,Fεr . We denote the component of Δε( f ) that contains Fεj by Δεj ( f ).
An ε-fpc Fεj = Fix( f )∩Δεj ( f ) is essential if the fixed point index i( f ,Δεj ( f )) �= 0. The
ε-Nielsen number of f , denoted by Nε( f ), is the number of essential ε-fpc.

Theorem 2.3. If fixed points x and y of f : X → X are ε-equivalent, then x and y are in
the same (Nielsen) fixed point class. Therefore each fixed point class is a union of ε-fpc and
Nε( f )≥N( f ).

Proof. If x and y are ε-equivalent by means of a path w between them such that d(w, f ◦
w) < ε then ht(s) = cw(s) f (w(s))(t) defines a homotopy, relative to the endpoints, between
w and f ◦w so x and y are in the same fixed point class. Therefore a fixed point class
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F of f is the union of ε-fpcs. If F is essential, the additivity property of the fixed point
index implies that at least one of the ε-fpc it contains must be an essential ε-fpc. Thus
Nε( f )≥N( f ). �

The ε-Nielsen number is a local Nielsen number in the sense of [3], specifically
Nε( f )= n( f ,Δε( f )). However, in local Nielsen theory, the domain U of the local Nielsen
number n( f ,U) is the same for all the maps considered whereas Δε( f ) depends on f .

Theorem 2.4. Let f : X → X be a map, then Nε( f )≤MFε( f ).

Proof. Given a map g : X → X with d( f ,g) < ε, let {ht} : X → X be the ε-homotopy with
h0 = f and h1 = g defined by ht(x)= c f (x)g(x)(t). Theorem 2.1 implies that d(x, f (x))≥ ε
for all x in the boundary of Δεj ( f ). Thus for x in the boundary of Δεj ( f ) and t ∈ I we have

d
(
x,ht(x)

)
+d
(
ht(x), f (x)

)≥ d
(
x, f (x)

)≥ ε. (2.3)

Since {ht} is an ε-homotopy, d(ht(x), f (x)) = d(ht(x),h0(x)) < ε so d(x,ht(x)) > 0, that
is, ht has no fixed points on the boundary of Δεj ( f ). Therefore the homotopy property of
the fixed point index implies that

i
(
f ,Δεj ( f )

)= i
(
g,Δεj ( f )

)
. (2.4)

Consequently, if Fεj = Fix( f )∩Δεj ( f ) is an essential ε-fpc, then i(g,Δεj ( f )) �= 0 so g has a
fixed point in Δεj ( f ). We conclude that g has at least Nε( f ) fixed points. �

Although Theorem 2.4 tells us that Nε( f ) is a lower bound for the number of fixed
points of all maps g that are ε-homotopic to f , the number Nε( f ) is not itself invariant
under ε-homotopies. In fact it fails to be invariant under ζ-homotopies for ζ > 0 arbi-
trarily small, as the following example demonstrates.

Example 2.5. Let f : I → I be the map whose graph is the solid line in Figure 2.1. Let
g : I → I equal f except on the interval [p,q], where the graph of g is the line segment
connecting (p, f (p)) and (q, f (q)). Given ζ > 0, we can adjust f so that setting ht(x) =
tg(x) + (1− t) f (x) for x ∈ [p,q] and ht(x)= f (x)= g(x) elsewhere defines a ζ-homotopy
between f and g. However, Nε( f )= 3 whereas Nε(g)= 1.

Since N( f ) = 1 for any map of the interval I , this example also demonstrates that
3=Nε( f ) > N( f ). For an example where Nε( f ) > N( f ) in which N( f ) > 1, we consider
the map of the circle described by Figure 2.2. (Note: the line in Figure 2.2 labelled ΓC is
not relevant to the description of the example. However, we will need it in Section 4 for
the algorithm that computes Nε( f ) for maps of the circle.)

Example 2.6. The circle S1 is represented in Figure 2.2 as I/{0,1}. The map f is of degree
−3 so N( f )= 4. There are a total of seven ε-fpc; these consist of single fixed points except
for the ε-fpc on the left which is essential and the one on the right which is not. Thus we
have Nε( f )= 6.
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Figure 2.1. Map of the interval.
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Figure 2.2. Map of the circle.

3. The minimum theorem

Lemma 3.1. Let F be a closed subset of a compact manifoldX and letU be an open, connected
subset of X that contains F, then there is an open, connected subset V of X containing F such
that the closure of V is contained in U .
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Proof. Since F and X −U are disjoint compact sets, there is an open set W containing
F such that the closure of W is contained in U . There are finitely many components
W1, . . . ,Wr of W that contain points of the compact set F. Let a1 be a path in U from
x1 ∈W1 ∩ F to x2 ∈W2 ∩ F and let A1 be an open subset of U containing a1 such that
the closure of A1 is in U . Since a1 is connected, we may assume A1 is also connected.
Continuing in this manner, we let

V =W1∪A1∪W2∪A2∪···∪Wr , (3.1)

which is connected. The closures of each of the Wi and Ai are in U so the closure of V is
also in U . �

Let Fεj = Fix( f )∩Δεj ( f ) be an ε-fpc. By Lemma 3.1, there is an open, connected subset
Vj of Δεj ( f ) containing Fεj whose closure cl(Vj) is in Δεj ( f ). For the map Df : X → R+

defined by Df (x)= d(x, f (x)), we see that Df (cl(Vj))= [0,δj] where δj < ε. Choose αj >
0 small enough so that δj + 2αj < ε.

Theorem 3.2 (Minimum Theorem). Given f : X → X , there exists g : X → X with d(g, f )
< ε such that g has exactly Nε( f ) fixed points.

Proof. We will define g outside Δε( f ) to be a simplicial approximation to f such that
d(g, f ) < α, where α denotes the minimum of the αj . The proof then consists of describing
g on each Δεj ( f ) so, to simplify notation, we will assume for now that Δε( f ) is connected
and thus we are able to suppress the subscript j. Triangulate X and take a subdivision
of such small mesh that if u is a simplicial approximation to f with respect to that tri-
angulation, then d(u, f ) < α/2 and, for σ a simplex that intersects X − int(V), we have
u(σ)∩ σ =∅. By the Hopf construction, we may modify u, moving no point more than
α/2, so that it has finitely many fixed points, each of which lies in a maximal simplex in V
and therefore in the interior of X (see [1, Theorem 2 on page 118]). We will still call the
modified map u, so we now have a map u with finitely many fixed points and it has the
property that d(u, f ) < α.

Refine the triangulation of X so that the fixed points of u are vertices. Since V is a
connected n-manifold, we may connect the fixed points of u by paths in V , let P be the
union of all these paths. With respect to a sufficiently fine subdivision of the triangulation
of X , the star neighborhood S(P) of P, which is a finite, connected polyhedron, has the
property that the derived neighborhood of S(P) lies in V . Let T be a spanning tree for the
finite connected graph that is the 1-skeleton of S(P), then T contains Fix(u). Let R(T) be
a regular neighborhood of T in V ∩ int(X) then, since T is collapsible, R(T) is an n-ball
by [8, Corollary 3.27 on page 41]. Thus we have a subset W = int(R(T)) of V containing
Fix(u) and a homeomorphism φ : W → Rn. We may assume that φ(Fix(u)) lies in the
interior of the unit ball in Rn, which we denote by B1. Set φ−1(B1)= B∗1 . If x ∈ B∗1 , then

d
(
x,u(x)

)≤ d
(
x, f (x)

)
+d
(
f (x),u(x)

)
< δ +α < ε (3.2)

so there is a unique geodesic cxu(x) connecting x to u(x). Consider the map H : B∗1 × I →
X defined by H(x, t) = cxu(x)(t), then H−1(W) is an open subset of B∗1 × I containing
B∗1 ×{0}. Therefore, there exists t0 > 0 such that H(B∗1 × [0, t0])⊂W .
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Denote the origin in Rn by 0 and let 0∗ = φ−1(0). Define a retraction ρ : B∗1 − 0∗ →
∂B∗1 , the boundary of B∗1 , by

ρ(x)= φ−1

(
1∣∣φ(x)
∣∣φ(x)

)
. (3.3)

Define K : B∗1 × [0, t0]→W by setting K(0∗, t)= 0∗ for all t and, otherwise, let

K(x, t)= φ−1(∣∣φ(x)
∣∣φ
(
H
(
ρ(x), t

)))
. (3.4)

The function K is continuous because φ(H(∂B∗1 × I)) is a bounded subset of Rn. Now
define DK : B∗1 × [0, t0]→R+ by DK (x, t)= d(x,K(x, t)). Since D−1

K ([0,η)) is an open sub-
set of B∗1 × [0, t0] containing B∗1 ×{0}, there exists 0 < t1 < t0 such that d(x,K(x, t1)) < α.
Define v : B∗1 → X by v(x)= K(x, t1).

Next we extend v to the set B∗2 consisting of x ∈W such that 0≤ |φ(x)| ≤ 2 by letting

v(x)= cxu(x)
((

1− t1
)∣∣φ(x)

∣∣+ 2t1− 1
)

(3.5)

when 1≤ |φ(x)| ≤ 2. Noting that v(x)= u(x) if φ(x)= 2, we extend v to all of X by setting
v = u outside B∗2 .

The map v has a single fixed point at 0∗. If i( f ,Δε( f )) �= 0, we let g = v : X → X . If
i( f ,Δε( f )) = 0, by [1, Theorem 4 on page 123], there is a map g : X → X , identical to v
outside of B∗1 , such that g has no fixed point in B∗1 and d(g,v) < α.

We claim that d(g, f ) < ε. For x �∈ B∗2 , we defined g(x)= u(x) where d(u, f ) < α < ε. If
x ∈ B∗2 −B∗1 , then g(x)= v(x)∈ cxu(x) so d(v(x),u(x))≤ d(x,u(x)). Therefore,

d
(
g(x), f (x)

)= d
(
v(x), f (x)

)

≤ d
(
v(x),u(x)

)
+d
(
u(x), f (x)

)

≤ d
(
x,u(x)

)
+d
(
u(x), f (x)

)

≤ (d(x, f (x)
)

+d
(
f (x),u(x)

))
+d
(
u(x), f (x)

)

< δ + 2α < ε.

(3.6)

Now suppose x ∈ B∗1 . If i( f ,Δε( f )) �= 0, then g(x)= v(x)= K(x, t1) so

d
(
g(x), f (x)

)= d
(
K
(
x, t1

)
, f (x)

)

≤ d
(
K
(
x, t1

)
,x
)

+d
(
x, f (x)

)

< α+ δ < ε.
(3.7)

If i( f ,Δε( f ))= 0 then

d
(
g(x), f (x)

)≤ d
(
g(x),v(x)

)
+d
(
v(x), f (x)

)

= d
(
g(x),v(x)

)
+d
(
K
(
x, t1

)
, f (x)

)

≤ α+ (α+ δ) < ε

(3.8)

which completes the proof that d(g, f ) < ε.
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We return now to the general case, in which Δε( f ) may not be connected. Applying
the construction above to each Δεj ( f ) gives us a map g : X → X with exactly Nε( f ) fixed
points. For x �∈ Δε( f ) we defined g to be a simplicial approximation with d(g(x), f (x)) <
α < ε. For x ∈ Δεj ( f ), the argument just concluded proves that

d
(
g(x), f (x)

)≤ 2αj + δj < ε (3.9)

because α is the minimum of the αj , so we know that d(g, f ) < ε. �

Theorem 3.2 throws some light on the failure of the Wecken property for surfaces [2].
For instance, consider the celebrated example of Jiang [6], of a map f of the pants surface
with N( f ) = 0 but MF[ f ] = 2. The fixed point set of f consists of three points, one
of them of index zero. The other two fixed points, y1 and y2, are of index +1 and −1
respectively and Jiang described a path, call it σ , from y1 to y2 such that σ is homotopic
to f ◦ σ relative to the endpoints. Suppose ε > 0 is small enough so that points in the
pants surface that are within ε of each other are connected by a unique geodesic. If there
were a path τ from y1 to y2 such that τ and f ◦ τ were ε-homotopic, then Nε( f )= 0 and
therefore, by Theorem 3.2, there would be a fixed point free map homotopic to f . Since
Jiang proved that no map homotopic to f can be fixed point free, we conclude that no
such path τ exists. In other words, for any path τ from y1 to y2 that is homotopic to f ◦ τ
relative to the endpoints, it must be that d(τ, f ◦ τ) > ε.

4. Calculation of the ε-Nielsen number

In some cases, the ε-Nielsen theory does not differ from the usual theory. If a map f :
X → X has only one fixed point, as a constant map does for example, then there is only
one ε-fpc so Nε( f )=N( f ). For another instance, let 1X : X → X denote the identity map.
Again we have only one ε-fpc for any ε > 0 because Δε(1X)= X .

However, in general we would expect Nε( f ) > N( f ) and Example 2.5 can easily be
modified to produce a map of the interval for which Nε( f )−N( f ) is arbitrarily large.
The problem of calculating the ε-Nielsen number appears to be even more difficult than
that for the usual Nielsen number because Nε( f ) is not homotopy invariant so it does
not seem that the tools of algebraic topology can be applied. The goal then is to obtain
enough information from the given map f itself to determine Nε( f ). As in the usual
Nielsen theory, even a complete description of the fixed point set Fix( f ) is not sufficient,
except in extreme cases such as those we noted, without information about the fixed point
class structure on Fix( f ), which generally has to be obtained in some indirect manner.

We will next present a procedure that determines Nε( f ) for a map f : I → I just by
solving equations involving the map f itself. Let Aε denote the set of solutions to the
equation f (x) = x + ε and let Bε be the set of solutions to f (x) = x− ε. Thus, looking
back at Figure 2.1, Aε corresponds to the intersection of the graph of f and the boundary
of the ε-neighborhood of the diagonal that lies above the diagonal and Bε corresponds
to the intersection of the graph of f and the boundary of that neighborhood that lies
below the diagonal. The set Qε = I − (Aε ∪ Bε) is a union of intervals that are open in
I . We define the essential intervals in Qε to be the intervals with one endpoint in Aε and
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the other in Bε together with the interval [0,x) if x ∈ Bε and (x,1] if x ∈ Aε. Although
Qε may consist of infinitely many intervals, only finitely many of them can be essential.
Otherwise, let Aε0 ⊆ Aε be the endpoints of the essential intervals, then Aε0 contains a
sequence converging to some point a0 ∈ Aε. Thus every neighborhood of a0 contains
points of Aε0, but it also contains points of Bε, which contradicts the continuity of f . The
reason is that, by the definition of essential interval, for any set of three successive points
a1 < a2 < a3 in Aε0 there must be at least one b ∈ Bε such that a1 < b < a3.

We claim that Nε( f ) equals the number of essential intervals. Note that Δε( f ) is a
union of intervals of Qε. For J an interval of Qε, we write its closure as cl(J)= [ j0, j1]. If
J is an essential interval, then one of the points ( j0, f ( j0)) and ( j1, f ( j1)) must lie above
the diagonal and the other below it, and therefore f has a fixed point in J . The graph of
f restricted to cl(J) can be deformed vertically, keeping the endpoints fixed, to the line
segment connecting ( j0, f ( j0)) and ( j1, f ( j1)) so, by the homotopy property of the fixed
point index, i( f , J)=±1. Now let K be an interval of Qε that is not essential and write its
closure as cl(K)= [k0,k1]. Either both of (k0, f (k0)) and (k1, f (k1)) lie above the diagonal
or both lie below it and thus the restriction of the graph of f to cl(K) can be deformed
vertically, keeping the endpoints fixed, to the line segment connecting (k0, f (k0)) and
(k1, f (k1)). Since the components of the complement of the diagonal in I × I are convex,
the line segment does not intersect the diagonal and therefore i( f ,K)= 0. We have proved
that the essential intervals in Qε ⊂ I are the Δεj that contain the essential ε-fpc of f and
that establishes our claim.

For an example of the use of this procedure, we return to Example 2.5, pictured in
Figure 2.1. Denoting points of I that lie in Aε by a and those in Bε by b then, in the
ordering of I we have

0 < (a < b) < (b < a) < (a < b) < 1. (4.1)

We note that there are three essential intervals, as indicated by the parentheses, so again
we have Nε( f )= 3.

A modification of the previous procedure can be used for maps f : S1 → S1. In this case,
the set of points (x, y)∈ S1× S1 such that d(x, y)= ε is the union of two disjoint simple
closed curves, which we will call ΓA and ΓB, on the torus. We denote by Aε ⊂ S1 the points
x such that (x, f (x))∈ ΓA and by Bε the points x ∈ S1 such that (x, f (x))∈ ΓB. Since the
complement of the diagonal in S1 × S1 is connected, if an interval in S1 − (Aε ∪Bε) has
one endpoint in each of those sets, it does not necessarily contain a fixed point of f . Thus,
in order to identify intervals of that type that do contain fixed points, we consider the set
of points (x, y) ∈ S1 × S1 such that d(x, y) = 2ε. This set is the union of two disjoint
simple closed curves and we choose one of them arbitrarily, calling it ΓC (see Figure 2.2).
Denote by Cε ⊂ S1 the points x such that (x, f (x))∈ ΓC. The set Qε = S1− (Aε ∪Bε ∪Cε)
is a union of connected open subsets of S1 which we will refer to as open intervals in S1.
Now we may call an open interval essential if one of its endpoints is in Aε and the other in
Bε. Again, there are only finitely many essential intervals and the number of them equals
Nε( f ). The reasoning is similar to that for maps of the interval. An essential interval J
does contain fixed points and a homotopy shows that i( f , J)=±1. If an interval K in S1

is not essential, that means either that at least one of the endpoints of K lies in Cε or both
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its endpoints lie in one of the sets Aε or Bε. Then there is a homotopy of f to a map that
is identical to f outside of K but has no fixed points in K , so we conclude that i( f ,K)= 0.

Referring to Figure 2.2 for Example 2.6, we can write

(1=)0 < (a < b) < c < (a < b) < (b < a) < (a < b)

< c < (a < b) < c < (a < b) < b < b < c < 1(= 0)
(4.2)

and conclude that Nε( f )= 6.
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