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Schaefer’s fixed point theorem is used to study the controllability in an infinite delay sys-
tem x′(t)=G(t,xt) + (Bu)(t). A compact map or homotopy is constructed enabling us to
show that if there is an a priori bound on all possible solutions of the companion control
system x′(t) = λ[G(t,xt) + (Bu)(t)], 0 < λ < 1, then there exists a solution for λ = 1. The
a priori bound is established by means of a Liapunov functional or applying an integral
inequality. Applications to integral control systems are given to illustrate the approach.
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1. Introduction

This paper is concerned with the problem of controllability in an infinity delay system

x′(t)=G
(
t,xt

)
+ (Bu)(t), t ∈ J = [0,b], (1.1)

where x(t) ∈ Rn, xt(θ) = x(t + θ) for −∞ < θ ≤ 0, u(t), the control, is a real m-vector
valued function on J , B is a bounded linear operator acting on u, and G is defined on
J ×C with C being the Banach space of bounded continuous functions φ : (−∞,0]→ Rn

with the supremum norm | · |C.
The problem of controllability in delay systems has been the subject of extensive inves-

tigations by many scientists and researchers for over half of a century. A large number of
applications have appeared in biology, medicine, economics, engineering, and informa-
tion technology. Many actual systems have the property of “after-effect,” that is, the future
state depends not only on the present, but also on the past history. It is well-known that
such a delay factor, when properly controlled, can essentially improve system’s qualitative
and quantitative characteristics in many aspects. For historical background and discus-
sion of applications, we refer the reader to the work of Balachandran and Sakthivel [1],
Chukwu [4], Górniewicz and Nistri [8], and references therein.
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Equation (1.1) describes the state of a system (physical, chemical, economic, etc.)
whose evolution in time t is governed by G(t,xt) + (Bu)(t). In general, we view a solu-
tion of (1.1) as a function of u(t) so that the behavior of the system depends on (or is
controlled by) the choice of u within a set U given in advance. Assume that two states
of the system are given, one to be considered as an initial state φ, and the other as a final
state γ. The problem of controllability is to determine whether there are available controls
which can transfer the state x from φ to γ along a solution (1.1), that is, whether there
exists a u0 ∈ U such that ẋ(t) = G(t,xt) + Bu0(t) has a solution joining φ and γ. When
this is possible for arbitrary choice of φ and γ, we can say, roughly speaking, that system
(1.1) is controllable by means of U .

The main method of proving controllability has been to write (1.1) as an integral equa-
tion

x(t)= x0 +
∫ t

0

[
G
(
s,xs

)
+Bu(s)

]
ds (1.2)

viewing the right-hand side as a mapping Px on an appropriate space, when u is properly
chosen in terms of x. Then, apply a fixed point theorem, say Schauder’s, to the mapping
P when P : K → K is compact for a closed, convex subset K of a Banach space. However,
P, in general, does not satisfy this condition unless the growth of G(t,xt) in x is restricted.
This presents a significant challenge to investigators. A modern approach to such a prob-
lem is to use topological degree or transversality method (see Górniewicz and Nistri [8]).
Here we will use a fixed point theorem of Schaefer [12] which is a variant of the nonlinear
alternative of Leray-Schauder degree theory, but much easier to use.

The paper is organized as follows. In Section 2, we prove our main result on controlla-
bility of (1.1). Applications to specific systems are given in Section 3 which also contains
some general results and remarks concerning the approach.

2. Controllability

We start this section with some descriptions of spaces associated with our discussion. Let
R= (−∞,∞), R− = (−∞,0], and R+ = [0,∞), respectively, and | · | denote the Euclidean
norm in Rn. For an n× n matrix A= (ai j)n×n, define ‖A‖ = sup|x|≤1 |Ax|. We denote by
C(X ,Y) the set of bounded continuous functions φ : X → Y for normed spaces X and Y .
For J given in (1.1), we define C0 = {φ ∈ C(J ,Rn) : φ(0) = 0} with the supremum norm
| · |C0 , and set C0(μ)= {φ ∈ C0 : |φ|C0 ≤ μ}. Let L2(J) denote the Banach space of square
Lebesgue integrable functions x : J → Rn with the norm |x|2 = (

∫
J |x(s)|2ds)1/2 with the

understanding x = 0∈ L2(J) if and only if x(t)= 0 a.e. on J . We denote by U the space of
admissible controls and choose U as a complete subspace of L2(J) with a norm | · |U . The
symbol ‖ · ‖ is reserved for the norm of a linear operator.

We assume that B : U → L2(J) is a bounded linear operator. For a given u∈U , we say
that x : (−∞,b]→ Rn is a solution x = x(t,φ) of (1.1) on J with initial function φ if x is
absolutely continuous on J and satisfies

x′(t)=G
(
t,xt

)
+ (Bu)(t), a.e. t ∈ J = [0,b] (2.1)

with x0 = φ, that is, x(s)= φ(s) for all s∈ R−.
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Our result rests on a fixed point theorem of Schaefer [12]. Its relation to Leray-
Schauder degree theorem is explained in Smart [13, page 29]. Schaefer’s theorem has
been used in a variety of areas in differential equations and control theory (see Burton
[2], Burton and Zhang [3], Balachandran and Sakthivel [1]).

Theorem 2.1 (Schaefer). Let V be a normed space, F a continuous mapping of V into V
which is compact on each bounded subset of V . Then either

(i) the equation x = λF(x) has a solution for λ= 1, or
(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

If we view Uλ(x)= λF(x) in Schaefer’s theorem as a homotopy, then it can be restated
in the form of Leray-Schauder Principle (cf. Zeidler [14, page 245]), which is often used
in application.

Definition 2.2. System (1.1) is said to be controllable on the interval J if for each φ ∈ C
and γ ∈ Rn, there exists a control u ∈ U such that the solution x(t) = x(t,φ) of (1.1)
satisfies x(b)= γ.

Throughout this paper, we let φ ∈ C and γ ∈ Rn be arbitrary, but fixed. For each y ∈
C0, we define

ȳ(t)=
⎧
⎨

⎩
y(t) +φ(0) t ∈ J ,

φ(t) t ∈ R−.
(2.2)

This implies that ȳ0 = φ; that is, ȳ(s)= φ(s) for all s∈ R−. For each continuous function
z : (−∞,b]→ R with z0 = φ, we define

[z]= γ−φ(0)−
∫

J
G
(
s,zs
)
ds. (2.3)

We now introduce a companion to (1.1)

x′(t)= λ
[
G
(
t,xt

)
+ (Bu)(t)

]
, a.e. t ∈ J = [0,b] (1.1λ)

for λ∈ [0,1] and make the following assumptions.
(H1) The linear operator T : U → Rn defined by

T(u)=
∫

J
Bu(s)ds (2.4)

is invertible; that is, for each α ∈ Rn, there exists a unique uα ∈ U such that
α= ∫J(Buα)(s)ds.

(H2) For each y ∈ C0, G(s, ȳs) is Lebesgue measurable in s on J , and for each μ > 0,
there exists an integrable function Mμ : J → R+ such that |G(s, ȳs)| ≤Mμ(s) for all s ∈ J
whenever y ∈ C0(μ).

(H3) For any ε > 0 and y ∈ C0, there exists a δ > 0 such that [x ∈ C0, |x− y|C0 < δ],
imply

∫

J

∣
∣G
(
s, x̄s

)−G
(
s, ȳs

)∣∣ds < ε. (2.5)
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(H4) For each φ ∈ C and γ ∈ Rn, there exists a constant L = L(φ,γ) > 0 such that
|xλ(t)| ≤ L for all t ∈ J whenever xλ(t) = x(t,φ) is a solution of (1.1λ) with u(t) = uα(t)
for α= [xλ] and λ∈ (0,1).

Theorem 2.3. If (H1)–(H4) are satisfied, then (1.1) is controllable on J .

Proof. Let φ ∈ C and γ ∈ Rn be fixed. We define a function F : C0 → C0 by

(Fy)(t)=
∫ t

0

[
G
(
s, ȳs

)
+Bu[ ȳ](s)

]
ds (2.6)

for each y ∈ C0 and t ∈ J . It is clear that F is well-defined. For the linear operator T
defined in (H1), we have

∣
∣T(u)

∣
∣=

∣
∣
∣
∣

∫

J
Bu(s)ds

∣
∣
∣
∣≤

∫

J

∣
∣Bu(s)

∣
∣ds≤ b1/2|Bu|2 ≤ b1/2‖B‖|u|U. (2.7)

Thus, T : U → R is bounded, and hence T−1 is also bounded, say ‖T−1‖ ≤ M1 (see
Friedman [6, page 143]).

We now show that F is continuous on C0. For each ε > 0 and y ∈ C0, by (H3) there
exists a δ > 0 such that [x ∈ C0, |x− y|C0 < δ] imply

∫

J

∣
∣G
(
s, x̄s

)−G
(
s, ȳs

)∣∣ds <
ε

(
1 + b1/2‖B‖‖T−1‖) . (2.8)

Observe
∫

J

∣
∣Bu[x̄](s)−Bu[ ȳ](s)

∣
∣ds

≤ b1/2
∣
∣Bu[x̄]−Bu[ ȳ]

∣
∣

2 ≤ b1/2‖B‖∣∣u[x̄]−u[ ȳ]
∣
∣
U = b1/2‖B‖∣∣T−1[x̄]−T−1[ ȳ]

∣
∣
U

≤ b1/2‖B‖∥∥T−1
∥
∥
∣
∣[x̄]− [ ȳ]

∣
∣≤ b1/2‖B‖∥∥T−1

∥
∥
∣
∣
∣
∣

∫

J

[
G
(
s, x̄s

)−G
(
s, ȳs

)]
ds
∣
∣
∣
∣,

(2.9)

where [x̄]= γ−φ(0)− ∫J G(s, x̄s)ds and [ ȳ]= γ−φ(0)− ∫J G(s, ȳs)ds. Thus, we obtain

∣
∣F(x)(t)−F(y)(t)

∣
∣≤

∫

J

∣
∣G
(
s, x̄s

)−G
(
s, ȳs

)∣∣ds+
∫

J

∣
∣Bu[x̄](s)−Bu[ ȳ](s)

∣
∣ds

≤ (1 + b1/2‖B‖∥∥T−1
∥
∥)
∫

J

∣
∣G
(
s, x̄s

)−G
(
s, ȳs

)∣∣ds < ε.
(2.10)

This implies that |F(x)− F(y)|C0 < ε whenever |x− y|C0 < δ, and hence F is continuous
on C0.

Next, we show that for each μ > 0, the set {F(y) : y ∈ C0(μ)} is uniformly bounded
and equicontinuous. By the definition of F, we have

∣
∣F(y)(t)

∣
∣=

∣
∣
∣
∣

∫ t

0
G
(
s, ȳs

)
ds+

∫ t

0

(
Bu[ ȳ]

)
(s)ds

∣
∣
∣
∣≤

∫

J
Mμ(s)ds+ b1/2‖B‖∣∣u[ ȳ]

∣
∣
U. (2.11)
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Notice that [ ȳ]= ∫J Bu[ ȳ](s)ds= T(u[ ȳ]) so that u[ ȳ] = T−1[ ȳ]. Therefore,

∣
∣u[ ȳ]

∣
∣
U ≤

∥
∥T−1

∥
∥
∣
∣[ ȳ]

∣
∣≤M1

[
|γ|+

∣
∣φ(0)

∣
∣+

∫

J

∣
∣G
(
s, ȳs

)∣∣ds
]

≤M1

[
|γ|+

∣
∣φ(0)

∣
∣+

∫

J
Mμ(s)ds

]
=: M2.

(2.12)

Combine (2.11) and (2.12) to obtain |F(y)|C0 ≤M3 for some M3 > 0 and for all y ∈
C0(μ). Thus, {F(y) : y ∈ C0(μ)} is uniformly bounded. Now let t1, t2 ∈ J with t1 < t2.
Then for y ∈ C0(μ), we have

∣
∣F(y)

(
t2
)−F(y)

(
t1
)∣∣≤

∫ t2

t1
Mμ(s)ds+

∫ t2

t1

∣
∣Bu[ ȳ](s)

∣
∣ds

≤
∫ t2

t1
Mμ(s)ds+

(
t2− t1

)1/2
(∫ t2

t1

∣
∣Bu[ ȳ](s)

∣
∣2
ds
)1/2

≤
∫ t2

t1
Mμ(s)ds+

(
t2− t1

)1/2‖B‖∣∣u[ ȳ]
∣
∣
U

≤
∫ t2

t1
Mμ(s)ds+

(
t2− t1

)1/2‖B‖M2

(2.13)

by (2.12). Thus, {F(y) : y ∈ C0(μ)} is uniformly bounded and equicontinuous on J , and
hence F is compact by Ascoli-Arzela’s theorem.

Finally, suppose that x = λF(x) for some x ∈ C0 and 0 < λ < 1; that is,

x(t)= λ
[∫ t

0
G
(
s, x̄s

)
ds+

∫ t

0
Bu[x̄](s)ds

]
(2.14)

for t ∈ J . Differentiate (2.14) with respect to t to obtain

x̄′(t)= x′(t)= λ
[
G
(
t, x̄t

)
+Bu(t)

]
, a.e. t ∈ J (2.15)

with u = u[x̄]. From (2.15), we see that x̄ is a solution of (1.1λ) with x̄0 = φ. More-
over, |x̄|C0 ≤ L by (H4). This implies that |x|C0 ≤ L + |φ(0)|. Therefore, alternative (i)
of Theorem 2.1 must hold, and there exists y ∈ C0 such that y = F(y). Following the
argument in (2.14) and (2.15), we see that ȳ is a solution of (1.1) with ȳ0 = φ and

ȳ(b)− ȳ(0)=
∫ b

0
G
(
s, ȳs

)
ds+

∫ b

0
Bu[ ȳ](s)ds=

∫ b

0
G
(
s, ȳs

)
ds+ [ ȳ]

=
∫ b

0
G
(
s, ȳs

)
ds+ γ−φ(0)−

∫ b

0
G
(
s, ȳs

)
ds.

(2.16)

Since ȳ(0)= φ(0), we obtain ȳ(b)= γ, and so (1.1) is controllable on the interval J with
u∈U . This completes the proof. �
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3. Examples and remarks

In this section, we give several examples to illustrate how to apply Theorem 2.3 to some
specific equations and systems. Our emphasis will be on obtaining a priori bounds. The
examples are shown in simple forms for illustrative purposes, and they can easily be gen-
eralized.

Example 3.1. Consider the control problem

x′(t)= Ax(t) +
∫ t

−∞
E
(
t,s,x(s)

)
ds+u(t), a.e. t ∈ J , (3.1)

where A = (ai j)n×n is an n× n matrix, E : Ω×Rn → Rn is measurable with Ω = {(t,s) ∈
R2 : t ≥ s}, and u(t) is an arbitrary control (to be determined later).

It is well known that

e−At = ω1(t)I +ω2(t)A+ ···+ωn(t)An−1, (3.2)

where ωi : R→ R (i = 1,2, . . . ,n) are continuous and linearly independent (see Godunov
[7, page 32]). Denote the space of linear span of functions w1, w2, . . . , wn by

span
{
ω1,ω2, . . . ,ωn

}
. (3.3)

Let c ∈ Rn be fixed. We define U as

U = {u= u∗c | u∗ ∈ span
{
ω1,ω2, . . . ,ωn

}}
, (3.4)

and view (U ,| · |U), | · |U = | · |2, as a complete subspace of (L2(J),| · |2).
Introduce a transformation y(t)= e−Atx(t) to write (3.1) as

y′(t)=G
(
t, yt

)
+ e−Atu(t), a.e. t ∈ J , (3.5)

where

G
(
t, yt

)=
∫ t

0
e−AtE

(
t,s,eAs y(s)

)
ds+

∫ 0

−∞
e−AtE

(
t,s,φ(s)

)
ds. (3.6)

We assume that
∫ 0

−∞
E
(
t,s,φ(s)

)
ds is integrable on J with respect to t (3.7)

for each φ ∈ C. It is clear that (3.1) is controllable if and only if (3.5) is controllable.
We now write

(Bu)(t)= e−Atu(t) (3.8)

and show that the linear operator T : U → Rn defined by

T(u)=
∫

J
(Bu)(s)ds=

∫

J
e−Asu(s)ds (3.9)
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is invertible. To this end, we assume

span
{
c,Ac,A2c, . . . ,An−1c

}= Rn. (3.10)

Let α ∈ Rn. We will find a unique u ∈ U such that T(u) = α. By (3.10), there exists a
unique a= (a1,a2, . . . ,an)T ∈ Rn satisfying

α= a1c+ a2Ac+ ···+ anA
n−1c. (3.11)

Since ω1, ω2, . . . , ωn are linearly independent, we have


=: det
[(〈

ωi,ωj
〉)

n×n
] �= 0, (3.12)

where 〈ωi,ωj〉 =
∫
J wi(s)wj(s)ds is the inner product in L2(J). Thus, the system of equa-

tions

〈
ω1,ωj

〉
k1 +

〈
ω2,ωj

〉
k2 + ···+

〈
ωn,ωj

〉
kn = aj (3.13)

( j = 1,2, . . . ,n) has a unique solution (k1,k2, . . . ,kn). We now define

u∗(t)= ω1(t)k1 +ω2(t)k2 + ···+ωn(t)kn. (3.14)

Multiply (3.14) by e−Asc and integrate on J to obtain

∫

J
e−Asu(s)ds=

∫

J
e−Ascu∗(s)ds=

∫

J

[ n∑

j=1

ωj(s)Aj−1c

][ n∑

i=1

ωi(s)ki

]

ds

=
n∑

i=1

〈
ωi,ω1

〉
kic+ ···+

n∑

i=1

〈
ωi,ωn

〉
kiA

n−1c

= a1c+ a2Ac+ a3A
2c+ ···+ anA

n−1c = α.

(3.15)

This implies that T is invertible.
By Cramer’s rule, we write kj in (3.13) as kj = 
 j(a)/
 where 
 j(a) is the n× n

determinant obtained by replacing the jth column of
 by a= (a1,a2, . . . ,an)T defined in
(3.11). Thus

∣
∣u∗(t)

∣
∣≤

n∑

j=1

∣
∣
 j(a)

∣
∣

|
|
∣
∣wj(t)

∣
∣. (3.16)

Since


 j(a)= a1C1 j + a2C2 j + ···+ anCnj , (3.17)
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where Cij is the cofactor of 〈wi,wj〉 in the matrix (〈wi,wj〉)n×n, and 
1|α| ≤ |a| ≤ 
2|α|
for some positive constants 
1 and 
2, we have

∣
∣
 j(a)

∣
∣≤ |a|

√
√
√
√

n∑

i=1

∣
∣Cij

∣
∣2 ≤ 
2|α|

√
√
√
√

n∑

i=1

∣
∣Cij

∣
∣2

, (3.18)

∫ b

0

∣
∣e−Atu(t)

∣
∣dt ≤ |c|

n∑

j=1


2

|
|

√
√
√
√

n∑

i=1

∣
∣Cij

∣
∣2
∫ b

0
e‖A‖t

∣
∣wj(t)

∣
∣dt|α| =: K|α|. (3.19)

This implies that

∫

J

∣
∣e−Atuα(t)

∣
∣dt ≤ K|α|. (3.20)

Theorem 3.2. Suppose that (3.7), (3.10), and the following conditions hold.
(i) There exist a positive constant M and a measurable function q : Ω0 → R+, Ω0 =

{(t,s)∈ Rn : 0≤ s≤ t ≤ b} such that

∣
∣E(t,s,x)

∣
∣≤ q(t,s)

(|x|+M
)
. (3.21)

(ii) For any μ > 0, there exists kμ : Ω0 → R+ with
∫
J

∫ t
0 kμ(t,s)dsdt <∞ such that

∣
∣E(t,s,x)−E(t,s, y)

∣
∣≤ kμ(t,s)|x− y| (3.22)

for all t,s∈Ω0, |x| ≤ μ, and |y| ≤ μ.
(iii)

(K + 1)
∫ b

0

∫ t

0
e‖A‖(t+s)q(t,s)dsdt =: r < 1, (3.23)

where K is defined in (3.19).
Then (3.1) is controllable.

Proof. It suffices to show that (3.5) is controllable; that is, for any φ ∈ C and γ1 ∈ Rn, there
exists a control u∈U such that the solution y(t)= y(t,φ) of (3.5) satisfies y(b)= γ1. We
have shown that (H1) holds. For φ ∈ C and y ∈ C0(μ), it is clear thatG(t, ȳt) is measurable
in t. For φ∈ C and y ∈ C0(μ), we also have

∣
∣G
(
t, ȳt

)∣∣=
∣
∣
∣
∣

∫ t

0
e−AtE

(
t,s,eAs

(
y(s) +φ(0)

))
ds+

∫ 0

−∞
e−AtE

(
t,s,φ(s)

)
ds
∣
∣
∣
∣

≤
∫ t

0
e‖A‖tq(t,s)

[
e‖A‖s

(∣∣y(s)
∣
∣+

∣
∣φ(0)

∣
∣)+M

]
ds+ e‖A‖b

∣
∣
∣
∣

∫ 0

−∞
E
(
t,s,φ(s)

)
ds
∣
∣
∣
∣

≤ (μ+
∣
∣φ(0)

∣
∣+M

)
∫ t

0
e‖A‖(t+s)q(t,s)ds+ e‖A‖b

∣
∣
∣
∣

∫ 0

−∞
E
(
t,s,φ(s)

)
ds
∣
∣
∣
∣

=: Mμ(t).
(3.24)
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Thus, (H2) holds. Next, let μ1 > 0 and x, y ∈ C0(μ1). By (ii), there exists kμ(t,s), μ= (μ1 +
|φ(0)|)e‖A‖b, such that

∣
∣E
(
t,s,eAs

(
x(s) +φ(0)

))−E(t,s,eAs(y(s) +φ(0)
))∣∣≤e‖A‖bkμ(t,s)

∣
∣x(s)− y(s)

∣
∣ (3.25)

for all (t,s)∈Ω0. This yields

∫ b

0

∣
∣G
(
t, x̄t

)−G
(
t, ȳt

)∣∣dt

=
∫ b

0

∣
∣
∣
∣

∫ t

0
e−AtE

(
t,s,eAs

(
x(s) +φ(0)

))
ds−

∫ t

0
e−AtE

(
t,s,eAs

(
y(s) +φ(0)

))
ds
∣
∣
∣
∣dt

≤ e2‖A‖b
∫

J

∫ t

0
kμ(t,s)dsdt|x− y|C0

(3.26)

for all x, y ∈ C0(μ1), and hence (H3) is satisfied.
We now show that (H4) holds. Let y = y(t,φ) be a solution of

y′(t)= λ
[
G
(
t, yt

)
+ e−Atu(t)

]
, a.e. t ∈ J (3.2λ)

with λ∈ (0,1), y0 = φ, and
∫

J
e−Asu(s)ds= γ1−φ(0)−

∫

J
G
(
s, ys

)
ds. (3.27)

Integrate (3.2λ) from 0 to t to obtain

y(t)= φ(0) + λ
∫ t

0
G
(
τ, yτ

)
dτ + λ

∫ t

0
e−Aτu(τ)dτ. (3.28)

Thus,

∣
∣y(t)

∣
∣≤ ∣∣φ(0)

∣
∣+

∫ b

0

∣
∣G
(
τ, yτ

)∣∣ds+
∫ b

0

∣
∣e−Aτu(τ)

∣
∣dτ. (3.29)

It follows from (3.20) that

∫ b

0

∣
∣e−Aτu(τ)

∣
∣dτ ≤ K

[∣∣γ1
∣
∣+

∣
∣φ(0)

∣
∣+

∫ b

0

∣
∣G
(
τ, yτ

)∣∣dτ
]
. (3.30)

Substituting (3.30) into (3.29), we arrive at

∣
∣y(t)

∣
∣≤ K

∣
∣γ1
∣
∣+ (1 +K)

∣
∣φ(0)

∣
∣+ (1 +K)

∫ b

0

∣
∣G
(
τ, yτ

)∣∣dτ

≤ K
∣
∣γ1
∣
∣+ (1 +K)

∣
∣φ(0)

∣
∣+ (1 +K)

∫ b

0

∣
∣
∣
∣

∫ 0

−∞
e−AτE

(
τ,s,φ(s)

)
ds
∣
∣
∣
∣dτ

+ (1 +K)
∫ b

0

∫ τ

0

∣
∣e−AτE

(
τ,s,eAs y(s)

)∣∣dsdτ
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≤ K
∣
∣γ1
∣
∣+ (1 +K)

∣
∣φ(0)

∣
∣+ (1 +K)

∫ b

0

∣
∣
∣
∣

∫ 0

−∞
e−AτE

(
τ,s,φ(s)

)
ds
∣
∣
∣
∣dτ

+ (1 +K)
∫ b

0

∫ τ

0
e‖A‖tq(τ,s)

[
e‖A‖s

∣
∣y(s)

∣
∣+M

]
dsdτ

=: (1 +K)
∫ b

0

∫ τ

0
e‖A‖(t+s)q(τ,s)

∣
∣y(s)

∣
∣dsdτ +M∗

≤ r|y|C0 +M∗.

(3.31)

This yields |y|C0 ≤M∗/(1− r), and hence (H4) holds. By Theorem 2.3, system (3.5) is
controllable. The proof is complete. �

Remark 3.3. A more general expression can be introduced in the control term in (3.1)
such as B(t)u(t) where B(t) is an n×m matrix function and u(t)∈ Rm. When E(t,s,x)≡
0, (3.1) is reduced to

x′(t)= Ax+u∗(t)c. (3.32)

A classical result states that (3.32) is controllable if and only if (3.10) holds (see Godunov
[7, page 211] and Conti [5, page 98]).

Example 3.4. Consider the scalar Volterra equation

x′(t)=−
∫ t

−∞
a(t− s)q

(
x(s)

)
ds+u(t), a.e. t ∈ J , (3.33)

where a : R→ R, q : R×R are continuous, and u∈U . For a fixed ξ : J → R+ with |ξ|2 = 1,
we define

U = {u∈ L2(J) : u= kξ, k ∈ R
}

(3.34)

with |u|U = |u|2 = |k||ξ|2 = |k|. Therefore,U is a Banach space (dimension 1) with | · |U .
Observe that (3.33) can be written in the form of (1.1) with

G
(
t,xt

)=−
∫ t

−∞
a(t− s)q

(
x(s)

)
ds (3.35)

and B : U → L2(J) being the identity operator (‖B‖ = 1). Define T : U → R by

T(u)=
∫

J
Bu(s)ds=

∫

J
u(s)ds. (3.36)

Notice that
∫
J ξ(s)ds �= 0 since ξ(s)≥ 0 and |ξ|2 = 1. For each α∈ R, if there are u1,u2 ∈U

with u1 = k1ξ, u2 = k2ξ such that T(u1)= T(u2)= α, then k1
∫
J ξ(s)ds= k2

∫
J ξ(s)ds, which

yields k1 = k2. Thus, T is invertible.
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Theorem 3.5. Suppose the following conditions hold.
(ĩ )
∫ 0
−∞ a(t− s)q(φ(s))ds is integrable on J with respect to t for each φ∈ C.

(ĩi) a∈ C(R,R) with a(t)≥ 0, a′(t)≤ 0, a′′(t)≥ 0 for all t ≥ 0.
(ĩii) There are positive constants α and K such that Q(x) +K > 0 and

∣
∣q(x)

∣
∣≤ α

√
Q(x) +K ∀x ∈ R with lim

|x|→∞
Q(x)=∞, (3.37)

where Q(x)= ∫ x0 q(s)ds.
(ĩv)

(
α2

2

)∫

J

∫ t

0
a(s)dsdt =: η < 1. (3.38)

Then (3.33) is controllable.

Proof. We verify that conditions (H2)–(H4) hold. For each φ ∈ C and x ∈ C0(μ), we have

∣
∣G
(
t, x̄t

)∣∣=
∣
∣
∣
∣

∫ 0

−∞
a(t− s)q

(
φ(s)

)
ds+

∫ t

0
a(t− s)q

(
x(s) +φ(0)

)
ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 0

−∞
a(t− s)q

(
φ(s)

)
ds
∣
∣
∣
∣+

∫ t

0
a(t− s)

∣
∣q
(
x(s) +φ(0)

)∣∣ds

≤
∣
∣
∣
∣

∫ 0

−∞
a(t− s)q

(
φ(s)

)
ds
∣
∣
∣
∣+

∫ t

0
a(s)ds qμ =: Mμ(t),

(3.39)

where qμ = sup{|q(z)| : |z| ≤ μ+ |φ(0)|}. Thus, (H2) is satisfied.
Now let μ > 0 and x, y ∈ C0(μ). Since q is uniformly continuous on [−(μ+ |φ(0)|),μ+

|φ(0)|], for any ε > 0, there exists a δ > 0 such that |x− y|C0 < δ implies

∣
∣q
(
x(s) +φ(0)

)− q
(
y(s) +φ(0)

)∣∣ < ε (3.40)

for all s∈ J , and so
∫

J

∣
∣G
(
s, x̄s

)−G
(
s, ȳs

)∣∣ds=
∫

J

∣
∣
∣
∣

∫ t

0
a(t− s)

[
q
(
x(s) +φ(0)

)− q
(
y(s) +φ(0)

)]
ds
∣
∣
∣
∣dt

≤
∫

J

∫ t

0
a(s)dsdt ε≤ 2ε

α2
.

(3.41)

This shows (H3) holds.
Let x(t)= x(t,φ) be a solution of

x′(t)= λ
[
−
∫ t

−∞
a(t− s)q

(
x(s)

)
ds+u(t)

]
, a.e. t ∈ J , (3.42)

where λ∈ (0,1), x0 = φ, and
∫

J
u(s)ds= γ−φ(0) +

∫

J

∫ τ

−∞
a(τ − s)q

(
x(s)

)
dsdτ. (3.43)
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We apply Liapunov’s direct method to derive a priori bounds on x. Define

E(t)=Q
(
x(t)

)
+K +

1
2
λa(t)

[∫ t

0
q
(
x(s)

)
ds
]2

− 1
2
λ
∫ t

0
a′(t− s)

[∫ t

s
q
(
x(ν)

)
dν
]2

ds (3.44)

for all t ≥ 0 and set V(t)= √E(t). Then

V ′(t)= 1
2
√
E(t)

{[
q(x)λ

(
−
∫ t

−∞
a(t− s)q

(
x(s)

)
ds+u(t)

)]

+
1
2
λa′(t)

[∫ t

0
q
(
x(s)

)
ds
]2

+ λa(t)
[∫ t

0
q
(
x(s)

)
ds
]
q
(
x(t)

)

− 1
2
λ
∫ t

0
a′′(t− s)

[∫ t

s
q
(
x(ν)

)
dν
]2

ds

− λ
∫ t

0
a′(t− s)

[∫ t

s
q
(
x(ν)

)
dν
]
ds q

(
x(t)

)
}
.

(3.45)

Integrating by parts in the last term, we get

− λ
∫ t

0
a′(t− s)

[∫ t

s
q
(
x(ν)

)
dν
]
ds

= λa(t− s)
∫ t

s
q
(
x(ν)

)
dν |t0 +λ

∫ t

0
a(t− s)q

(
x(s)

)
ds

=−λa(t)
∫ t

0
q
(
x(ν)

)
dν + λ

∫ t

0
a(t− s)q

(
x(s)

)
ds.

(3.46)

Substitute (3.46) into (3.45) and apply condition (ĩii) to obtain

V ′(t)= 1
2
√
E(t)

{
λq
(
x(t)

)
u(t)− λq

(
x(t)

)
∫ 0

−∞
a(t− s)q

(
φ(s)

)
ds

+
1
2
λa′(t)

[∫ t

0
q
(
x(s)

)
ds
]2

− 1
2
λ
∫ t

0
a′′(t− s)

[∫ t

s
q
(
x(ν)

)
dν
]2

ds
}

≤ 1
2
√
Q(x) +K

{∣
∣q
(
x(t)

)∣∣
(∣
∣u(t)

∣
∣+

∫∞

0
a(ν)dν sup

t∈R−
∣
∣q
(
φ(s)

)∣∣
)}

≤ α

2

(∣
∣u(t)

∣
∣+

∫∞

0
a(ν)dν sup

s∈R−
∣
∣q
(
φ(s)

)∣∣
)
=:

α

2

∣
∣u(t)

∣
∣+Γ1.

(3.47)
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Integrating V ′(t) from 0 to t and using (3.43), we find

V(t)≤V(0) +
α

2

∫ b

0

∣
∣u(s)

∣
∣ds+ bΓ1 =

√
Q
(
x(0)

)
+K +

α

2

∣
∣
∣
∣

∫ b

0
u(s)ds

∣
∣
∣
∣+ bΓ1

=
√
Q
(
φ(0)

)
+K + bΓ1 +

α

2

∣
∣
∣
∣γ−φ(0) +

∫

J

∫ τ

−∞
a(τ − s)q

(
x(s)

)
dsdτ

∣
∣
∣
∣

≤ α

2

∫

J

∫ τ

0
a(τ − s)

∣
∣q
(
x(s)

)∣∣dsdτ +
√
Q
(
φ(0)

)
+K + bΓ1

+
α

2

(
|γ|+

∣
∣φ(0)

∣
∣+

∫

J

∣
∣
∣
∣

∫ 0

−∞
a(τ − s)q

(
φ(s)

)
ds
∣
∣
∣
∣dt
)

=:
α

2

∫

J

∫ τ

0
a(τ− s)

∣
∣q
(
x(s)

)∣∣dsdτ +Γ2.

(3.48)

Observe

√
Q
(
x(t)

)
+K ≤V(t)≤ α

2

∫

J

∫ τ

0
a(τ− s)

∣
∣q
(
x(s)

)∣∣dsdτ +Γ2

≤
(

sup
s∈J

√
Q
(
x(s)

)
+K

)
α2

2

∫

J

∫ τ

0
a(ν)dν +Γ2

≤ η sup
s∈J

√
Q
(
x(s)

)
+K +Γ2.

(3.49)

This implies

sup
s∈J

√
Q
(
x(s)

)
+K ≤ Γ2

(1−η)
. (3.50)

Since Q(x)→∞ as |x| →∞, there exists a positive constant L= L(Γ2,η) such that |x(t)| <
L for all t ∈ J . Therefore, (H4) holds. By Theorem 2.3, we conclude that (3.33) is control-
lable. �

Remark 3.6. Equations such as (3.33) have been the center of much interest for a long
time in connection with a problem of reactor dynamics (Levin and Nohel [11]). The
Liapunov function here, having its root in the work of Levin [10], continues to play an
important role in the investigation of Volterra equations. It is also well-known that under
xq(x) > 0 for x �= 0 with Q(x)→∞ as |x| → ∞, condition (ĩi) with small modifications
guarantees that the zero solution of the unperturbed equation

x′(t)=
∫ t

−∞
a(t− s)q

(
x(s)

)
ds (3.51)

is asymptotically stable (Hale [9]).
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