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1. Introduction

This paper is concerned with the existence of integral solutions and extremal integral so-
lutions defined on a compact real interval for first-order semilinear differential equations.
In Section 3, we consider the following class of semilinear differential equations:

y′(t)−Ay(t)= f
(
t, yt

)
+ g
(
t, yt

)
, t ∈ J := [0,T], (1.1)

y(t)= φ(t), t ∈ [−r,0], (1.2)

where f ,g : J ×C([−r,0],E)→ E are given functions, A : D(A) ⊂ E→ E is a nondensely
defined closed linear operator on E, φ : [−r,0] → E a given continuous function, and
(E,| · |) a real Banach space.

For any function y defined on [−r,T] and any t ∈ J , we denote by yt the element of
C([−r,0],E) defined by

yt(θ)= y(t+ θ), θ ∈ [−r,0]. (1.3)

Here yt(·) represents the history of the state from time t− r, up to the present time t.
There has been extensive study of semilinear functional differential equations, where

the operator A generates a C0 semigroup, or equivalently, when a closed linear operator
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2 Perturbed functional differential equations

A satisfies
(i) D(A)= E,

(ii) the Hille-Yosida condition, that is, there exist M ≥ 0 and τ ∈R such that

(τ,∞)⊂ ρ(A), sup
{

(λI − τ)n
∣
∣(λI −A)−n

∣
∣ : λ > τ, n∈N}≤M, (1.4)

where ρ(A) is the resolvent set of A and I is the identity operator. Existence and unique-
ness, among other things, are derived. See, for example, the books of Heikkila and Lak-
shmikantham [9], Kamenskii et al. [10] and the references therein, and the paper by
Byszewski and Akca [4].

However, as indicated in [5], we sometimes need to deal with nondensely defined op-
erators. For example, when we look at a one-dimensional heat equation with Dirichlet
conditions on [0,1] and consider A= ∂2/∂x2 in C([0,1],R) in order to measure the solu-
tions in the sup-norm, then the domain

D(A)= {φ ∈ C2([0,1],R
)

: φ(0)= φ(1)= 0
}

(1.5)

is not dense in C([0,1],R) with the sup-norm. See [5] for more examples and remarks
concerning nondensely defined operators. Recently, evolution functional differential
equations with nondensely defined linear operators have received much attention (see,
e.g., the papers by Adimy and Ezzinbi [1], Ezzinbi and Liu [7]). Our main results extend
similar problems considered in the above-listed papers to nondensely defined operators
and where a perturbation term g is considered. Our approach is based on a new fixed
point theorem of Burton and Kirk [3]. In Section 4, we will prove the existence of ex-
tremal integral solutions of the problem (1.1)-(1.2), and our approach here is based on
the concept of upper and lower solutions combined with a fixed point theorem on or-
dered Banach spaces established recently by Dhage and Henderson [6]. Finally, Section 5
is devoted to an example illustrating the abstract theory considered in the previous sec-
tions.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. C(J ,E) is the Banach space of all continuous functions from J into
E with the norm

‖y‖∞ = sup
{∣∣y(t)

∣
∣ : t ∈ J}, (2.1)

and C([−r,0],E) is the Banach space of all continuous functions from [−r,0] into E
endowed with the norm ‖ · ‖ defined by

‖φ‖ = sup
{∣∣φ(θ)

∣
∣ :−r ≤ θ ≤ 0

}
. (2.2)

Also B(E) denotes the Banach space of bounded linear operators from E into E with the
norm

‖N‖B(E) = sup
{∣∣N(y)

∣
∣ :
∣
∣y
∣
∣= 1

}
. (2.3)
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L1(J ,E) denotes the Banach space of measurable functions y : J → E which are Bochner
integrable normed by

‖y‖L1 =
∫ T

0

∣
∣y(t)

∣
∣dt. (2.4)

Definition 2.1 [2]. Let E be a Banach space. An integrated semigroup is a family of oper-
ators (S(t))t≥0 of bounded linear operators S(t) on E with the following properties:

(i) S(0)= 0;
(ii) t→ S(t) is strongly continuous;

(iii) S(s)S(t)= ∫ s0(S(t+ r)− S(r))dr for all t,s≥ 0.

Definition 2.2. An integrated semigroup (S(t))t≥0 is called exponential bounded, if there
exist constants M ≥ 0 and ω ∈R such that

∣
∣S(t)

∣
∣≤Meωt, for t ≥ 0. (2.5)

Moreover, (S(t))t≥0 is called nondegenerate if S(t)x = 0, for all t ≥ 0, implies x = 0.

Definition 2.3. An operator A is called a generator of an integrated semigroup, if there
exists ω ∈ R such that (ω,+∞) ⊂ ρ(A), and there exists a strongly continuous expo-
nentially bounded family (S(t))t≥0 of linear bounded operators such that S(0) = 0 and
(λI −A)−1 = λ∫∞0 e−λt S(t)dt for all λ > ω.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally Lipschitz,
then from [2], S(·)x is continuously differentiable if and only if x ∈D(A). In particular,
S′(t)x := (d/dt)S(t)x defines a bounded operator on the set E1 := {x ∈ E : t → S(t)x is
continously differentiable on [0,∞)} and (S′(t))t≥0 is a C0 semigroup on D(A). Here and
hereafter, we assume that A satisfies the Hille-Yosida condition, that is, there exist M ≥ 0
and ω ∈R such that (ω,∞)⊂ ρ(A), sup {(λI −ω)n|(λI −A)−n| : λ > ω, n∈N} ≤M.

Let (S(t))t≥0 be the integrated semigroup generated byA. We note that, sinceA satisfies
the Hille-Yosida condition, ‖S′(t)‖B(E) ≤Meωt, t ≥ 0, where M and ω are the constants
considered in the Hille-Yosida condition (see [11]).

In the sequel, we give some results for the existence of solutions of the following prob-
lem:

y′(t)=Ay(t) + g(t), t ≥ 0, (2.6)

y(0)= a∈ E, (2.7)

where A satisfies the Hille-Yosida condition, without being densely defined.

Theorem 2.4 [11]. Let g : [0,b]→ E be a continuous function. Then for a ∈ D(A), there
exists a unique continuous function y : [0,b]→ E such that

(i)
∫ t

0 y(s)ds∈D(A) for t ∈ [0,b],
(ii) y(t)= a+A

∫ t
0 y(s)ds+

∫ t
0 g(s)ds, t ∈ [0,b],

(iii) |y(t)| ≤Meωt(|a|+
∫ t

0 e
−ωs|g(s)|ds), t ∈ [0,b].
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Moreover, y is given by the following variation of constants formula:

y(t)= S′(t)a+
d

dt

∫ t

0
S(t− s)g(s)ds, t ≥ 0. (2.8)

Let Bλ = λR(λ,A) := λ(λI −A)−1. Then (see [11]), for all x ∈D(A), Bλx→ x as λ→∞.
Also from the Hille-Yosida condition (with n = 1), it is easy to see that limλ→∞ |Bλx| ≤
M|x|, since

∣
∣Bλ

∣
∣= ∣∣λ(λI −A)−1

∣
∣≤ Mλ

λ−ω . (2.9)

Thus limλ→∞ |Bλ| ≤M. Also if y is given by (2.8), then

y(t)= S′(t)a+ lim
λ→∞

∫ t

0
S′(t− s)Bλg(s)ds, t ≥ 0. (2.10)

Definition 2.5. The map f : J ×C([−r,0],E)→ E is said to be L1-Carathéodory if
(i) t 
→ f (t,u) is measurable for each u∈ C([−r,0],E);

(ii) u 
→ f (t,u) is continuous for almost all t ∈ J ;
(iii) for each q > 0, there exists ϕq ∈ L1(J ,R+) such that

∣
∣ f (t,u)

∣
∣≤ ϕq(t) ∀‖u‖ ≤ q and for a.e. t ∈ J. (2.11)

3. Existence of integral solutions

Now, we are able to state and prove our main theorem for the initial value problem (1.1)-
(1.2). Before starting and proving this one, we give the definition of its integral solution.

Definition 3.1. Say that y : [−r,T]→ E is an integral solution of (1.1)-(1.2) if
(i) y(t)= φ(0) +A

∫ t
0 y(s)ds+

∫ t
0 f (s, ys)ds+

∫ t
0 g(s, ys)ds, t ∈ J ;

(ii)
∫ t

0 y(s)ds∈D(A) for t ∈ J , and y(t)= φ(t), t ∈ [−r,0].

From the definition, it follows that y(t) ∈ D(A), for all t ≥ 0, in particular φ(0) ∈
D(A). Moreover, y satisfies the following variation of constants formula:

y(t)= S′(t)φ(0) +
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds+

d

dt

∫ t

0
S(t− s)g(s, ys

)
ds, t ≥ 0. (3.1)

We notice also that, if y satisfies (3.1), then

y(t)= S′(t)φ(0) + lim
λ→∞

∫ t

0
S′(t− s)Bλ

[
f
(
s, ys

)
+ g
(
s, ys

)]
ds, t ≥ 0. (3.2)

Our main result in this section is based upon the following fixed point theorem due to
Burton and Kirk [3].
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Theorem 3.2. Let X be a Banach space, and A, B two operators satisfying
(i) A is a contraction, and

(ii) B is completely continuous.
Then either

(a) the operator equation y = A(y) +B(y) has a solution, or
(b) the set �= {u∈ X : λA

(
u/λ) + λB(u)= u} is unbounded for λ∈ (0,1).

Our main result reads.

Theorem 3.3. Assume that
(H1) A satisfies Hille-Yosida condition;
(H2) the function f : J ×C([−r,0],E)→ E is L1-Carathéodory;
(H3) the operator S′(t) is compact in D(A) whenever t > 0;
(H4) there exists a function k(t)∈ L1(J ,R+) such that

∣
∣g(t,u)− g(t,u)

∣
∣≤ k(t)‖u−u‖, for a.e. t ∈ J , u,u∈ C([−r,0],E), (3.3)

with

MeωT
∫ T

0
e−ωsk(s)ds < 1; (3.4)

(H5) there exists a function p ∈ L1(J ,R+) and a continuous nondecreasing function ψ :
[0,∞)→ [0,∞) such that

∣
∣ f (t,u)

∣
∣≤ p(t)ψ(‖u‖), for a.e. t ∈ J , and each u∈ C([−r,0],E

)
(3.5)

with

∫∞

c

ds

s+ψ(s)
> ‖m‖L1 , (3.6)

where

c =M‖φ‖+M
∫ T

0
e−ωs

∣
∣g(s,0)

∣
∣ds,

m(t)=max
{
ω∗ +Mk(t),Mp(t)

}
,

(3.7)

and ω∗ = ω if ω > 0 and ω∗ = 0 if ω < 0.
Then, if φ(0) ∈ D(A), the initial value problem (IVP for short) (1.1)-(1.2) has at least

one integral solution on [−r,T].

Proof. Transform the IVP (1.1)-(1.2) into a fixed point problem. Consider the two oper-
ators

F,G : C
(
[−r,T],E

)−→ C
(
[−r,T],E

)
(3.8)
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defined by

F(y)(t)=

⎧
⎪⎪⎨

⎪⎪⎩

φ(t), t ∈ [−r,0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds, t ∈ J ,

(3.9)

G(y)(t)=

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ [−r,0],

d

dt

∫ t

0
S(t− s)g(s, ys

)
ds, t ∈ J.

(3.10)

Then the problem of finding the solution of IVP (1.1)-(1.2) is reduced to finding the
solution of the operator equation F(y)(t) +G(y)(t) = y(t), t ∈ [−r,T]. We will show
that the operators F and G satisfy all conditions of Theorem 3.2. The proof will be given
in several steps.

Step 1. F is continuous.
Let {yn} be a sequence such that yn→ y in C([−r,T],E). Then for ω > 0 (if ω < 0 it is

eωt < 1),

∣
∣F
(
yn
)
(t)−F(y)(t)

∣
∣=

∣
∣
∣
∣
d

dt

∫ t

0
S(t− s)[ f (s, yns

)− f
(
s, ys

)]
ds
∣
∣
∣
∣

≤MeωT
∫ T

0
e−ωs

∣
∣ f
(
s, yns

)− f
(
s, ys

)∣∣ds.

(3.11)

Since f (s,·) is continuous, we have by the Lebesgue dominated convergence theorem

∥
∥F
(
yn
)
(t)−F(y)(t)

∥
∥∞ ≤MeωT

∥
∥ f
(·, yn·

)− f
(·, y·

)∥∥
L1 −→ 0, as n−→∞. (3.12)

Thus F is continuous.

Step 2. F maps bounded sets into bounded sets in C([−r,T],E).
It is enough to show that for any q > 0 there exists a positive constant l such that for

each y ∈ Bq = {y ∈ C([−r,T],E) : ‖y‖∞ ≤ q} we have F(y)∈ Bl.
Then we have for each t ∈ J ,

∣
∣F(y)(t)

∣
∣=

∣
∣
∣
∣S
′(t)φ(0) +

d

dt

∫ t

0
S(t− s) f (s, ys

)
ds
∣
∣
∣
∣

≤MeωT
∣
∣φ(0)

∣
∣+MeωT

∫ T

0
e−ωsϕq(s)ds;

(3.13)

here ϕq is chosen as in Definition 2.5. Then we have

∥
∥F(y)(t)

∥
∥∞ ≤MeωT‖φ‖+MeωT

∫ T

0
e−ωsϕq(s)ds := l. (3.14)

Step 3. F maps bounded sets into equicontinuous sets of C([−r,T],E).

We consider Bq as in Step 2 and let ε > 0 be given. Now let τ1,τ2 ∈ [−r,T] with τ2 > τ1.
We consider two cases: τ1 > ε and τ1 ≤ ε.
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Case 1. If τ1 > ε, then

∣
∣F(y)

(
τ2
)−F(y)

(
τ1
)∣∣≤ ∣∣S′(τ2

)
φ(0)− S′(τ1

)
φ(0)

∣
∣

+
∣
∣
∣
∣ lim
λ−→∞

∫ τ1−ε

0

[
S′
(
τ2− s

)− S′(τ1− s
)]
Bλ f

(
s, ys

)
ds
∣
∣
∣
∣

+
∣
∣
∣
∣ lim
λ−→∞

∫ τ1

τ1−ε

[
S′
(
τ2− s

)− S′(τ1− s
)]
Bλ f

(
s, ys

)
ds
∣
∣
∣
∣

+
∣
∣
∣
∣ lim
λ−→∞

∫ τ2

τ1

S′
(
τ2− s

)
Bλ f

(
s, ys

)
ds
∣
∣
∣
∣

≤ ∣∣S′(τ2
)
φ(0)− S′(τ1

)
φ(0)

∣
∣

+M∗∥∥S′
(
τ2− τ1 + ε

)− S′(ε)
∥
∥
B(E)

∫ τ1−ε

0
e−ωsϕq(s)ds

+ 2M∗
∫ τ1

τ1−ε
e−ωsϕq(s)ds+M∗

∫ τ2

τ1

e−ωsϕq(s)ds;

(3.15)

here M∗ =Mmax{eωT ,1}.
Case 2. Let τ1 ≤ ε. For τ2− τ1 < ε, we get

∣
∣F(y)

(
τ2
)−F(y)

(
τ1
)∣∣

≤ |S′(τ2
)
φ(0)− S′(τ1

)
φ(0)

∣
∣+M∗

∫ 2ε

0
e−ωsϕq(s)ds+M∗

∫ ε

0
e−ωsϕq(s)ds.

(3.16)

Note that equicontinuity follows since (i) S′(t), t ≥ 0, is a strongly continuous semigroup
and (ii) S′(t) is compact for t > 0 (so S′(t) is continuous in the uniform operator topology
for t > 0).

Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bq, we
define

Fε(y)(t)= S′(t)φ(0) + lim
λ−→∞

∫ t−ε

0
S′(t− s)Bλ f

(
s, ys

)
ds

= S′(t)φ(0) + S′(ε) lim
λ−→∞

∫ t−ε

0
S′(t− s− ε)Bλ f

(
s, ys

)
ds.

(3.17)

Note that

{
lim
λ−→∞

∫ t−ε

0
S′(t− s− ε)Bλ f

(
s, ys

)
ds : y ∈ Bq

}
(3.18)

is a bounded set since

∣
∣
∣
∣ lim
λ−→∞

∫ t−ε

0
S′(t− s− ε)Bλ f

(
s, ys

)
ds
∣
∣
∣
∣≤M∗

∫ t−ε

0
e−ωsϕq(s)ds (3.19)
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and now since S′(t) is a compact operator for t > 0, the set Yε(t)= {Fε(y)(t) : y ∈ Bq} is
relatively compact in E for every ε, 0 < ε < t. Moreover,

∣
∣F(y)(t)−Fε(y)(t)

∣
∣≤M∗

∫ t

t−ε
e−ωsϕq(s)ds. (3.20)

Therefore, the set Y(t) = {F(y)(t) : y ∈ Bq} is totally bounded. Hence Y(t) is relatively
compact in E.

As a consequence of Steps 2 and 3 and the Arzelá-Ascoli theorem, we can conclude
that F : C([−r,T],E)→ C([−r,T],E) is a completely continuous operator.

Step 4. G is a contraction.
Let x, y ∈ C([−r,T],E). Then

∣
∣G(x)(t)−G(y)(t)

∣
∣=

∣
∣
∣
∣
d

dt

∫ t

0
S(t− s)[g(s,xs

)− g(s, ys
)]
ds
∣
∣
∣
∣

≤MeωT
∫ T

0
e−ωs

∣
∣g
(
s,xs

)− g(s, ys
)∣∣ds

≤MeωT
∫ T

0
e−ωsk(s)

∥
∥xs− ys

∥
∥ds.

(3.21)

Then

∥
∥G(x)−G(y)

∥
∥∞ ≤

(
MeωT

∫ T

0
e−ωsk(s)ds

)
‖x− y‖∞, (3.22)

which is a contraction, since MeωT
∫ T

0 e
−ωsk(s)ds < 1, by condition (3.4).

Step 5. A priori bounds.
Now it remains to show that the set

�=
{
y ∈ C([−r,T],E

)
: y = λF(y) + λG

(
y

λ

)
for some 0 < λ < 1

}
(3.23)

is bounded.
Let y ∈�. Then y = λF(y) + λG

(
y/λ
)

for some 0 < λ < 1. Thus, for each t ∈ J ,

y(t)= λS′(t)φ(0) + λ
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds+ λ

d

dt

∫ t

0
S(t− s)g

(
s,
ys
λ

)
ds. (3.24)

This implies by (H5) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣≤ λMeωt

∣
∣φ(0)

∣
∣+ λMeωt

∫ t

0
e−ωs p(s)ψ

(∥∥ys
∥
∥)ds

+ λMeωt
∫ t

0
e−ωs

∣
∣
∣
∣g
(
s,
ys
λ

)
− g(s,0)

∣
∣
∣
∣ds+ λMeωt

∫ t

0
e−ωs

∣
∣g
(
s,0
)∣∣ds

≤Meωt‖φ‖+Meωt
∫ t

0
e−ωs p(s)ψ

(∥∥ys
∥
∥)ds

+Meωt
∫ t

0
e−ωsk(s)

∥
∥ys
∥
∥ds+Meωt

∫ t

0
e−ωs

∣
∣g
(
s,0
)∣∣ds.

(3.25)
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We consider the function μ defined by

μ(t)= sup
{∣∣y(s)

∣
∣ :−r ≤ s≤ t}, 0≤ t ≤ T. (3.26)

Consider the case ω > 0; the case ω < 0 is more easy, since eωt < 1. Let t∗ ∈ [−r, t] be such
that μ(t)= |y(t∗)|. If t∗ ∈ [0,T], by the previous inequality, we have for t ∈ [0,T] (note
that t∗ ≤ t),

e−ωtμ(t)≤M‖φ‖+M
∫ t

0
e−ωs p(s)ψ

(
μ(s)

)
ds+M

∫ t

0
e−ωsk(s)μ(s)ds+M

∫ T

0
e−ωs

∣
∣g(s,0)

∣
∣ds.

(3.27)

If t∗ ∈ [−r,0], then μ(t)≤ ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of (3.27) as v(t). Then we have

μ(t)≤ eωtv(t) ∀t ∈ J ,

v(0)=M‖φ‖+M
∫ T

0
e−ωs

∣
∣g(s,0)

∣
∣ds,

v′(t)=Me−ωt p(t)ψ
(
μ(t)

)
+Mk(t)e−ωtμ(t), a.e. t ∈ J.

(3.28)

Using the nondecreasing character of ψ, we get

v′(t)≤Me−ωt p(t)ψ
(
eωtv(t)

)
+Mk(t)v(t), a.e. t ∈ J. (3.29)

Then for a.e. t ∈ J , we have

(
eωtv(t)

)′ = ωeωtv(t) + v′(t)eωt

≤ ωeωtv(t) +Mp(t)ψ
(
eωtv(t)

)
+Mk(t)eωtv(t)

≤m(t)
[
eωtv(t) +ψ

(
eωtv(t)

)]
.

(3.30)

Thus

∫ eωtv(t)

v(0)

du

u+ψ(u)
≤
∫ T

0
m(s)ds= ‖m‖L1 <

∫∞

c

du

u+ψ(u)
. (3.31)

Consequently, by condition (3.6), there exists a constant d such that eωtv(t) ≤ d, t ∈ J ,
and hence ‖y‖∞ ≤ d where d depends only on the constants M,ω and the functions
p,k, and ψ. This shows that the set � is bounded. As a consequence of Theorem 3.2,
we deduce that F(y) +G(y) has a fixed point which is an integral solution of problem
(1.1)-(1.2). �

4. Existence of extremal integral solutions

In this section, we will prove the existence of maximal and minimal integral solutions
of IVP (1.1)-(1.2) under suitable monotonicity conditions on the functions involved
in it.
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Definition 4.1. A nonempty closed subset C of a Banach space X is said to be a cone if
(i) C+C ⊂ C,

(ii) λC ⊂ C for λ > 0, and
(iii) {−C}∩{C} = {0}.

A cone C is called normal if the norm ‖ · ‖ is semimonotone on C, that is, there exists
a constant N > 0 such that ‖x‖ ≤N‖y‖, whenever x ≤ y. We equip the space X = C(J ,E)
with the order relation ≤ induced by a cone C in E, that is, for all y, y ∈ X : y ≤ y if
and only if y(t)− y(t) ∈ C, for all t ∈ J . In what follows, will assume that the cone C is
normal. Cones and their properties are detailed in [8, 9]. Let a,b ∈ X be such that a≤ b.
Then, by an order interval [a,b], we mean a set of points in X given by

[a,b]= {x ∈ X | a≤ x ≤ b}. (4.1)

Definition 4.2. Let X be an ordered Banach space. A mapping T : X → X is called iso-
tone increasing if T(x) ≤ T(y) for any x, y ∈ X with x < y. Similarly, T is called isotone
decreasing if T(x)≥ T(y), whenever x < y.

Definition 4.3 [9]. Say that x ∈ X is the least fixed point of G in X if x = Gx and x ≤ y,
whenever y ∈ X and y = Gy. The greatest fixed point of G in X is defined similarly by
reversing the inequality. If both least and greatest fixed points of G in X exist, call them
extremal fixed points of G in X .

The following fixed point theorem is due to Heikkila and Lakshmikantham.

Theorem 4.4 [9]. Let [a,b] be an order interval in an order Banach space X and let
Q : [a,b] → [a,b] be a nondecreasing mapping. If each sequence (Qxn) ⊂ Q([a,b]) con-
verges, whenever (xn) is a monotone sequence in [a,b], then the sequence of Q-iteration of
a converges to the least fixed point x∗ of Q and the sequence of Q-iteration of b converges to
the greatest fixed point x∗ of Q. Moreover,

x∗ =min
{
y ∈ [a,b], y ≥Qy}, x∗ =max

{
y ∈ [a,b], y ≤Qy}. (4.2)

As a consequence, Dhage, Henderson have proved the following.

Theorem 4.5 [6]. Let K be a cone in a Banach space X , let [a,b] be an order interval in a
Banach space, and let B1,B2 : [a,b]→ X be two functions satisfying

(a) B1 is a contraction,
(b) B2 is completely continuous,
(c) B1 and B2 are strictly monotone increasing, and
(d) B1(x) +B2(x)∈ [a,b], for all x ∈ [a,b].

Further, if the cone K in X is normal, then the equation x = B1(x) + B2(x) has a least
fixed point x∗ and a greatest fixed point x∗ ∈ [a,b]. Moreover, x∗ = limn→∞ xn and x∗ =
limn→∞ yn, where {xn} and {yn} are the sequences in [a,b] defined by

xn+1 = B1
(
xn
)

+B2
(
xn
)
, x0 = a, yn+1 = B1

(
yn
)

+B2
(
yn
)
, y0 = b. (4.3)
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We need the following definitions in the sequel.

Definition 4.6. A function v ∈ C([−r,T],E) is called a lower integral solution of IVP
(1.1)-(1.2) if v(t) ≤ φ(t), t ∈ [−r,0] and v(t) ≤ φ(0) + A

∫ t
0 v(s)ds +

∫ t
0 f (s,vs)ds +

∫ t
0 g(s,vs), a.e. t ∈ J . Similarly, an upper integral solution w of IVP (1.1)-(1.2) is defined

by reversing the order of the above inequalities.

Definition 4.7. An integral solution xM of IVP (1.1)-(1.2) is said to be maximal if for any
other integral solution x of IVP (1.1)-(1.2) on J , one has that x(t)≤ xM(t) for each t ∈ J .
Similarly, a minimal integral solution of IVP (1.1)-(1.2) is defined by reversing the order
of the inequalities.

Definition 4.8. A function f (t,x) is called strictly monotone increasing in x a.e. for t ∈ J ,
if f (t,x) ≤ f (t, y) a.e. t ∈ J for all x, y ∈ X with x < y. Similarly, f (t,x) is called strictly
monotone decreasing in x a.e. for t ∈ J , if f (t,x)≥ f (t, y) a.e. t ∈ J for all x, y ∈ X with
x < y.

We consider the following assumptions in the sequel.
(H6) The functions f (t, y) and g(t, y) are strictly monotone increasing in y for almost

each t ∈ J .
(H7) S′(t) is order-preserving, that is, S′(t)(v)≥ 0, whenever v ≥ 0.
(H8) The IVP (1.1)-(1.2) has a lower integral solution v and an upper integral solution

w with v ≤w.

Theorem 4.9. Assume that assumptions (H1)–(H8) hold. Then IVP (1.1)-(1.2) has a min-
imal and a maximal integral solutions on [−r,T].

Proof. It can be shown, as in the proof of Theorem 3.3, that F is completely continuous
and G is a contraction on [v,w]. We will show that F and G are isotone increasing on
[v,w]. Let y, y ∈ [a,b] be such that y ≤ y, y �= y. Then by (H6) and (H7), we have for
each t ∈ J ,

F(y)(t)= S′(t)φ(0) +
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds

≤ S′(t)φ(0) +
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds

= F(y)(t).

(4.4)

Similarly, G(y) ≤ G(y). Therefore, F and G are isotone increasing on [v,w]. Finally, let
x ∈ [v,w] be any element. By (H8), we deduce that

v ≤ F(v) +G(v)≤ F(x) +G(x)≤ F(w) +G(w)≤w, (4.5)

which shows that F(x) +G(x)∈ [v,w] for all x ∈ [v,w]. Thus, the functions F and G sat-
isfy all conditions of Theorem 4.5, and hence IVP (1.1)-(1.2) has a maximal and minimal
integral solutions on [−r,T]. This completes the proof. �
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5. An example

Consider the system

∂

∂t
u(t,x)=− ∂

∂x
u(t,x) +F

(
ut(·,x)

)
+G

(
ut(·,x)

)
, t ∈ [0,T], (5.1)

u(t,0)= 0, t ∈ [0,T], (5.2)

u(θ,x)= φ(θ,x), θ ∈ [−r,0], x ∈ [0, l], (5.3)

where l > 0, r > 0, φ ∈ C([−r,0],X), and F and G are continuous functions from
C([−r,0],X) into R.

To write (5.1)–(5.3) in the form (1.1)–(1.2), we choose

X = C([0, l],R
)
, y(t)= u(t,·), f

(
t, yt

)= F(yt(·,x)
)
, g

(
t, yt

)=G(yt(·,x)
)
,

(5.4)

and denote by Ay :=−y′ with domain

D(A)= {u∈ C1([0, l],R
)

: u(0)= 0
}
. (5.5)

We have

D(A)= {u∈ C([0, l],R
)

: u(0)= 0
} �= X. (5.6)

It is well known (see [5]) that A satisfies the following properties:
(i) (0,∞)⊂ ρ(A);

(ii) ‖(λI −A)−1‖ ≤ 1/λ, λ > 0.
This implies that the operator A satisfies the Hille-Yosida condition (with M = 1 and
ω = 0). Then problem (5.1)–(5.3) can be written as

u′(t)= Au(t) + f
(
t,ut

)
+ g
(
t,ut

)
, t ∈ [0,T],

u(t)= φ(t), t ∈ [−r,0].
(5.7)

Thus, under appropriate conditions on the functions F and G as those in (H1)–(H8), the
problem (5.1)–(5.3) has an integral solution as well as extremal integral solutions.
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