
FIXED POINT SETS OF MAPS HOMOTOPIC TO A GIVEN MAP

CHRISTINA L. SODERLUND

Received 3 December 2004; Revised 20 April 2005; Accepted 24 July 2005

Let f : X → X be a self-map of a compact, connected polyhedron and Φ⊆ X a closed sub-
set. We examine necessary and sufficient conditions for realizing Φ as the fixed point set
of a map homotopic to f . For the case where Φ is a subpolyhedron, two necessary condi-
tions were presented by Schirmer in 1990 and were proven sufficient under appropriate
additional hypotheses. We will show that the same conditions remain sufficient when Φ is
only assumed to be a locally contractible subset of X . The relative form of the realization
problem has also been solved for Φ a subpolyhedron of X . We also extend these results to
the case where Φ is a locally contractible subset.
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der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let f : X → X be a self-map of a compact, connected polyhedron. For any map g, denote
the fixed point set of g as Fixg = {x ∈ X | g(x) = x}. In this paper, we are concerned
with the realization of an arbitrary closed subset Φ⊆ X as the fixed point set of a map g
homotopic to f .

Several necessary conditions for this problem are well known. If Φ = Fixg for some
map g homotopic to f , it is clear that Φ must be closed. Further, by the definition of
a fixed point class (cf. [1, page 86], [7, page 5]), all points in a given component of Φ
must lie in the same fixed point class. Thus, as the Nielsen number (cf. [1, page 87], [7,
page 17]) of any map cannot exceed the number of fixed point classes and as the Nielsen
number is also a homotopy invariant, the set Φ must have at least N( f ) components.
In particular, if N( f ) > 0 then Φ must be nonempty. It is also necessary that f |Φ, the
restriction of f to the set Φ, must be homotopic to the inclusion map i : Φ↩X .

In [12], Strantzalos claimed that the above conditions are sufficient if X is a compact,
connected topological manifold with dimension �= 2, 4, or 5 and ifΦ is a closed nonempty
subset lying in the interior of X with π1(X ,X −Φ)= 0. However, Schirmer disproved this
claim in [10] with a counterexample and presented her own conditions, (C1) and (C2).
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2 Fixed point sets of maps homotopic to a given map

Definition 1.1 [10, page 155]. Let f : X → X be a self-map of a compact, connected poly-
hedron. The map f satisfies conditions (C1) and (C2) for a subset Φ⊆ X if the following
are satisfied (the symbol � denotes homotopy of paths with endpoints fixed and ∗ the
path product):

(C1) there exists a homotopy HΦ : Φ× I → X from f |Φ to the inclusion i : Φ↩X ,
(C2) for every essential fixed point class F of f : X → X there exists a path α : I → X

with α(0)∈ F, α(1)∈Φ, and

{
α(t)

}
�
{
f ◦α(t)

}∗ {HΦ
(
α(1), t

)}
. (1.1)

The latter condition, (C2), reflects Strantzalos’ error. He apparently overlooked the
H-relation of essential fixed point classes of two homotopic maps (cf. [1, pages 87–92],
[7, pages 9, 19]).

Schirmer showed that (C1) and (C2) are both necessary conditions for realizing Φ as
the fixed point set of any map g homotopic to f ([10, Theorem 2.1]). She then invoked
the notion of by-passing ([9, Definition 5.1]) to prove the following sufficiency theorem.
A local cutpoint is any point x ∈ X that has a connected neighborhood U so that U −{x}
is not connected.

Theorem 1.2 [10]. Let f : X → X be a self-map of a compact, connected polyhedron without
a local cutpoint and let Φ be a closed subset of X . Assume that there exists a subpolyhedron
K of X such that Φ⊂ K , every component of K intersects Φ, X −K is not a 2-manifold, and
K can be by-passed. If (C1) and (C2) hold for K , then there exists a map g homotopic to f
with Fixg =Φ.

Observe that Schirmer’s theorem permits Φ to be any type of subset, provided it lies
within an appropriate polyhedron K . However, all the required conditions are placed on
the polyhedron K . If we wish to prove that Φ can be the fixed point set, then we should
require that our conditions be on Φ itself. We can remedy this problem with a statement
equivalent to that of Theorem 1.2.

Theorem 1.3. Let f : X → X be a self-map of a compact connected polyhedron without a
local cutpoint and let Φ be a closed subpolyhedron of X satisfying

(1) X −Φ is not a 2-manifold,
(2) (C1) and (C2) hold for Φ,
(3) Φ can be by-passed.

Then for every closed subset Γ of Φ that has nonempty intersection with every component of
Φ, there exists a map g homotopic to f with Fixg = Γ. In particular, if Φ is connected, then
every closed subset of Φ (including Φ itself) is the fixed point set of a map homotopic to f .

Although Theorem 1.3 requires Φ to be a subpolyhedron, the subset Γ⊆Φ is subject
to few restrictions, thus preserving the broad scope of Schirmer’s original theorem.

In Section 3 we extend Theorem 1.3 to the case where Φ is a closed, locally contractible
subset of X , but not necessarily a polyhedron. The result is given in Theorem 3.5. Since
the class of closed, locally contractible spaces contains the class of compact, connected
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polyhedra, this extension broadens the scope of the sufficiency theorem. Moreover, poly-
hedral structure is a global property, whereas local contractibility is a local property and
thus presumably easier to verify.

We examine a similar question for maps of pairs in Section 4. For any map f : (X ,A)→
(X ,A) of a polyhedral pair, Ng ([8]) presented necessary and sufficient conditions for
realizing a subpolyhedron Φ ⊆ X as the fixed point set of a map homotopic to f via a
homotopy of pairs. Ng’s results solved a problem raised by Schirmer in [11]. Since Ng’s
theory was never published, we include a sketch of his work for the convenience of the
reader. We conclude by extending Ng’s results to the case where Φ is a closed, locally
contractible subset of X (Theorem 5.3).

It is assumed that the reader is familiar with the general definitions and techniques of
Nielsen theory, as in [1, 7].

2. Neighborhood by-passing

LetX be a compact, connected polyhedron andΦ a subset ofX . We sayΦ can be by-passed
in X if every path in X with endpoints in X −Φ is homotopic relative to the endpoints to
a path in X −Φ.

The notion of by-passing plays a key role in relative Nielsen theory and in realizing
fixed point sets. Currently, we wish to extend Theorem 1.3 to the case where Φ is a locally
contractible subset, but not necessarily a polyhedron (Theorem 3.5). To do so, we require
a property that is closely related to by-passing. This property is the subject of the next
definition.

Definition 2.1. A subset Φ of a topological space X can be neighborhood by-passed if there
exists an open set V in X , containing Φ, such that V can be by-passed.

If Φ is chosen to be by-passed, the next theorem suggests that adding the requirement
that Φ also be neighborhood by-passed does not affect our choice of Φ.

Theorem 2.2. If X is a compact, connected polyhedron, Φ ⊆ X is a closed, locally con-
tractible subset, and if Φ can be by-passed, then Φ can be neighborhood by-passed.

Proof [3]. We prove this theorem in two steps. First we show that for any open neighbor-
hoodU ofΦ, there exists a closed neighborhoodN ⊂U ofΦ, withX −N path connected.
We then show that this neighborhood N can be chosen to be by-passed in X .
Step 1. Given an open neighborhood U of Φ, there exists N ⊂ U , a closed neighborhood
of Φ, with X −N path connected. Let U ⊂ X be any open neighborhood of Φ. Choose
a closed neighborhood M of Φ, contained in U . Then X −U can be covered by finitely
many components of X −M. (This follows from compactness since X −U is closed in X
and therefore compact.)

Since Φ can be by-passed in X , we can connect each pair of these components by a
path in X −Φ. In particular, for each pair of components M′

i and M′
j of X −M, choose

points xi ∈M′
i and xj ∈M′

j and choose a path

pi j : I −→ (X −Φ) (2.1)
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with

pi j(0)= xi, pi j(1)= xj (2.2)

(xi and xj can lie either in U or its complement).
Next we find a closed neighborhood K of Φ, contained in M, such that K misses all

the paths pi j . This is possible since

(
X − Int(M)

)∪ ({pi j
})

(2.3)

is compact (where Int(M) denotes the interior of M).
We will prove that there is exactly one path component of the complement of such K

which contains X −U .
First, observe that each component M′

i of X −M must lie in a single component of
X −K . If this was false, then for each component K ′j of X −K which intersects M′

i , we
could write M′

i as a disjoint union of clopen sets,

M′
i =

⊔

j

(
M′

i ∩K ′j
)
, (2.4)

contrary to the connectedness of M′
i .

Now suppose there exist two different components M′
i and M′

j of X −M, lying in
different components of X −K . Then the path pi j , as defined above, lies entirely within
X −K (by definition ofK). But pi j must also intersect the two components ofX −K , thus
contradicting the connectedness of paths. Therefore, M′

i and M′
j (and hence all compo-

nents of X −M) lie in a single component of X −K . This component therefore contains
X −U .

Finally, let W be the path component of X −K containing X −U . We have

X −U ⊂W ⊂ X −K , (2.5)

and hence

Φ⊂ K ⊂ X −W ⊂U. (2.6)

Define N = X −W . Then N ⊂ U is a closed neighborhood of Φ with path connected
complement.
Step 2. We can choose the closed neighborhood N from Step 1 to be a subset that can be
by-passed in X : since X is a compact, connected polyhedron, it has a finitely generated
fundamental group at any basepoint. Choose a basepoint a∈ (X −Φ) and finitely many
generators (loops)

ρ1, . . . ,ρn : I −→ X (2.7)

of π1(X ,a). As Φ can be by-passed, these loops may be homotoped off Φ. Thus without a
loss of generality, we can rename these generators

ρ1, . . . ,ρn : I −→ (X −Φ). (2.8)
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Let

P =
n⋃

i=1

Im
(
ρi
)

(2.9)

be a compact subset of X −Φ, where Im(ρi) denotes the image of the path ρi. Let U be an
open neighborhood of Φ with U ∩P =∅.

Then any loop α in X with basepoint a∈ X −Φ can be expressed as a word consisting
of a finite number of loops in X −U . Thus, α is homotopic to a loop in X −U .

Now as in Step 1, choose N in U having path connected complement. Then by [9,
Theorem 5.2], N may be by-passed. Choosing V = Int(N) completes the proof. �

3. Realizing subsets of ANRs as fixed point sets

Our present goal is to show that if the subset Φ in Theorem 1.3 is chosen to be locally
contractible, but not necessarily polyhedral, the results of this theorem still hold. In par-
ticular, every closed subset of Φ that intersects every component of Φ can be realized as
the fixed point set of a map homotopic to f . We will prove this by constructing a sub-
polyhedron of X that contains such Φ and also satisfies the hypotheses of Theorem 1.3.

Lemma 3.1. If Φ is a closed subset of a compact, connected polyhedron X and X −Φ is
not a 2-manifold, then there exists a closed neighborhood N of Φ such that X −N is not a
2-manifold.

Proof. Since X −Φ is not a 2-manifold, there exists an element x ∈ X −Φ with the prop-
erty that no neighborhood of x is homeomorphic to the 2-disk.

Let d denote distance in X and suppose d(x,Φ) = δ > 0. Then the closed δ/2-
neighborhood N of Φ satisfies the property that X −N is not a 2-manifold. �

Definition 3.2. Let Y be a metric space with distance d and choose a real-valued constant
ε > 0. Given any topological space X , two maps f ,g : X → Y are ε-near if d( f (x),g(x)) < ε
for every x ∈ X . A homotopy H : X × I → Y is called an ε-homotopy if for any x ∈ X ,
diam (H(x× I)) < ε.

Here we assume the usual definition of diameter: given a subsetA⊆ X and the distance
d on X , diam(A)= sup{d(x, y) | x, y ∈ A}. Thus,

diam
(
H(x× I))= sup

{
d
(
H(x, t),H(x, t′)

) | t, t′ ∈ I}. (3.1)

Theorem 3.3 [4, Proposition 3.4, page 121]. If X is a metric ANR and Φ is a closed ANR
subspace of X , then for every ε > 0, there exists an ε-homotopy ht : X → X satisfying

(1) h0 = idX ,
(2) ht(x)= x for all x ∈Φ, t ∈ I ,
(3) there exists an open neighborhood U of Φ in X such that h1(U)=Φ.
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The map ht is called a strong deformation retraction of the space U onto the subspace
Φ. We also say U strong deformation retracts onto Φ.

Lemma 3.4. Let f : X → X be a self-map of a compact, connected polyhedron and let Φ be
a closed subset of X . Assume that there exists a subset B of X such that Φ⊆ B and B strong
deformation retracts onto Φ. If f satisfies (C1) and (C2) for Φ, then f satisfies (C1) and
(C2) for B.

Proof. To verify (C1) for B, let R : B× I → B denote the strong deformation retraction
from B onto Φ, and denote R(b, t) = rt(b) for any b ∈ B, t ∈ I . So r0(b) = b, r1(b) ∈Φ,
and rt|Φ = idΦ. We will construct a homotopy HB : B× I → X from f | B to the inclusion
i : B↩X .

Let H : B× I → X be the composition

H(b, t)=
⎧
⎨

⎩
f ◦ r2t(b) 0≤ t ≤ 1/2,

HΦ
(
r1(b),2t− 1

)
1/2≤ t ≤ 1,

(3.2)

where HΦ is the homotopy given by (C1) on Φ. Then f is homotopic to r1 via H .
Next we can construct a homotopy HB : B× I → X as follows:

HB(b, t)=
⎧
⎨

⎩
H(b,2t) 0≤ t ≤ 1/2,

R(b,2− 2t) 1/2≤ t ≤ 1.
(3.3)

Observe that f |B is homotopic to the identity via HB. Thus, HB gives the desired homo-
topy satisfying (C1) for B.

To prove (C2), choose any essential fixed point class F of f : X → X . As f satisfies (C2)
for Φ, there exists a path α : I → X with α(0)∈ F and α(1)∈Φ⊆ B, whence α(1)∈ B.

We show that the homotopy HB : B× I → X constructed above can be viewed as an
extension of HΦ : Φ× I → X . To see this, note that since R : B× I → B is a strong defor-
mation retraction, for any x ∈Φ,

HB(x, t)=
⎧
⎨

⎩
H(x,2t) 0≤ t ≤ 1/2,

x 1/2≤ t ≤ 1,

H(x, t)=
⎧
⎨

⎩
f ◦ r2t(x)= f (x) 0≤ t ≤ 1/2,

HΦ(x,2t− 1) 1/2≤ t ≤ 1.

(3.4)

Thus for any x ∈Φ,

HB(x, t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x) 0≤ t ≤ 1/4,

HΦ(x,4t− 1) 1/4≤ t ≤ 1/2,

x 1/2≤ t ≤ 1,

(3.5)
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and we sayHB|Φ is a reparametrization ofHΦ. Then by defining a continuous map φ : I →
I by

φ(s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0≤ s≤ 1/4,

4s− 1 1/4≤ s≤ 1/2,

1 1/2≤ s≤ 1,

(3.6)

it is clear that HB|Φ =HΦ ◦ (id×φ), where id denotes the identity map on Φ and

(id×φ)(x,s)= (x,φ(s)
)
, (3.7)

for any x ∈Φ, s∈ I . Therefore, HΦ is homotopic to HB|Φ via the homotopyH : (X × I)×
I → X , defined by

H(x, t,s)=HΦ
(
x,φt(s)

)
, (3.8)

where

φt(s)= (1− t)φ(s) + ts. (3.9)

Finally, since f satisfies (C2) for Φ, we know that for any essential fixed point class F
of f , there exists a path α in X with α(0)∈ F, α(1)∈Φ, and

{
α(t)

}
�
{
f ◦α(t)

}∗ {HΦ
(
α(1), t

)}
. (3.10)

From the above argument, {HΦ(α(1), t)}� {HB(α(1), t)}. Therefore,
{
α(t)

}
�
{
f ◦α(t)

}∗ {HB
(
α(1), t

)}
(3.11)

and f satisfies (C2) for B. �

As a consequence of the above results, we are now able to extend Theorem 1.3 to the
case where Φ is locally contractible.

Theorem 3.5. Let f : X → X be a self-map of a compact connected polyhedron without a
local cutpoint. Let Φ be a closed, locally contractible subspace of X satisfying

(1) X −Φ is not a 2-manifold,
(2) f satisfies (C1) and (C2) for Φ,
(3) Φ can be by-passed.

Then for every closed subset Γ of Φ that has nonempty intersection with every component of
Φ, there exists a map g homotopic to f with Fixg = Γ. In particular, if Φ is connected, then
every closed subset of Φ (including Φ itself) is the fixed point set of a map homotopic to f .

The proof of this theorem requires a polyhedral construction known as the star cover
of a subset. Let K be a triangulation of X . We write X = |K|. Then for any vertex v of K ,
define the star of v, denoted StK (v), to be the union of all closed simplices of which v is a
vertex. Then for any subspace Φ⊆ X , the star cover of Φ is

StK (Φ)=
⋃

v∈Φ
StK (v). (3.12)
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(4, 0) (8, 0) (11, 0)

Figure 3.1. A locally contractible fixed point set.

Proof of Theorem 3.5. We can assume Φ �= ∅ as, otherwise, this theorem reduces to [10,
Lemma 3.1]. Since X is a polyhedron, let K be a triangulation of X = |K|. By [2, Propo-
sition 8.12, page 83], Φ is a finite-dimensional ANR. Thus, Theorem 3.3 gives an open
neighborhoodU of Φ that strong deformation retracts onto Φ. Since Φ can be by-passed,
Theorem 2.2 implies that there exists another open neighborhoodV of Φ such thatV can
be by-passed. The set V may be chosen to lie inside U . Choose a star cover StK ′(Φ) of Φ
with respect to a sufficiently small subdivision K ′ of K such that StK ′(Φ)⊂V . Then (C1)
and (C2) hold for StK ′(Φ) (Lemma 3.4). Further, the subdivision K ′ can be chosen small
enough so that X − StK ′(Φ) is not a 2-manifold (Lemma 3.1).

By the construction of star covers, each component of StK ′(Φ) contains a component
of Φ. If every component of Φ, in turn, intersects a given closed subset Γ⊂Φ, then each
component of the star cover intersects Γ. As star covers are themselves polyhedra, the
result follows from Theorem 1.3. �

We close this section with an example of a self-map f on a compact, connected poly-
hedron X , with a locally contractible subset Φ that is not a finite polyhedron, for which
there exists g homotopic to f with Fixg =Φ.

Example 3.6. Consider the space

X = {(x, y)∈R2 | 4≤ (x− 4)2 + y2 ≤ 49
}

, (3.13)

the annulus in R2 centered at the point (4,0), with outer radius 7 and inner radius 2 (see
Figure 3.1). Let f : X → X be the map flippingX over the x-axis. That is, f (x, y)= (x,−y).

Clearly Fix( f ) lies on the x-axis and f has exactly two fixed point classes,

F1 =
{

(x,0) | −3≤ x ≤ 2
}

, F2 =
{

(x,0) | 6≤ x ≤ 11
}
. (3.14)
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We define Φ=D∪Z∪{(8,0)} where

D = {(x, y) | (x+ 1)2 + y2 ≤ 1
}

,

Z =
∞⋃

k=1

([
0,zk

]∪ [0,z−k
])
.

(3.15)

For each positive integer k, [0,zk] denotes the line segment in R2 from the point (0,0) to
the point (1/k,1/k2), and [0,z−k] is the line segment from (0,0) to (1/k,−1/k2).

First we show that Φ is locally contractible. At the origin, a sufficiently small neigh-
borhood contracts via straight lines. Also for each k, given any point on the line segment
[0,zk], we can find a neighborhood that does not contain any other segment of Φ, and
hence contracts along the segment [0,zk]. Lastly, it is clear that D is itself locally con-
tractible.

The subset Φ is also clearly closed and can be by-passed in X . Thus, it remains to be
shown that f satisfies (C1) and (C2) for Φ.

To verify (C1), observe that Φ is homotopy equivalent to F1 ∪ F2. Let r : Φ→ F1 ∪
F2 and s : F1 ∪ F2 → Φ, where s ◦ r � idΦ and r ◦ s � idF1∪F2 . We have the sequence of
homotopies

f |Φ = f |Φ ◦ idΦ � f |Φ ◦ (s◦ r)= s◦ r � idΦ, (3.16)

where the second equality holds true because f is the identity map on F1∪F2.
To prove (C2), we must find an appropriate path αi for each class Fi (i= 1,2). For F1,

we can choose α1 to be the constant path at the point (−1,0), and for F2 we can choose α2

to be the constant path at the point (8,0). The point at which we define αi is unimportant,
provided that the point lies in the intersection of Φ with the fixed point class. It is clear
that αi(0)∈ Fi and αi(1)∈Φ for i= 1,2. Moreover, the required homotopy holds trivially,
thus proving (C2).

Therefore by Theorem 3.5, Φ is the fixed point set of a map homotopic to f . It is clear
that Φ is not a finite polyhedron, thus showing that there exist interesting sets that satisfy
the hypotheses of Theorem 3.5, but do not satisfy the hypotheses of Theorem 1.3.

4. Polyhedral fixed point sets of maps of pairs

Given a compact polyhedral pair (X ,A), let Z = cl(X −A) denote the closure of X −A.
For any subset Φ ⊆ X , let ΦA = A∩Φ. We call (Φ,ΦA) a subset pair of (X ,A). For any
map f : (X ,A)→ (X ,A), denote the restriction f |A as fA : A→ A. We write f �A g if there
exists a homotopy of pairsH : (X ,A)× I → (X ,A) from f to g where (X ,A)× I denotes the
pair (X × I ,A× I). If f �A g, it follows that fA � gA via the restriction of the homotopy
to A.

In [8], Ng developed the following definition and theorems. As all the proofs can be
found in [8], we provide only a sketch of each proof here. All references to (C1) and (C2)
are to Schirmer’s conditions, as stated in Definition 1.1.

Definition 4.1. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair. The map
f satisfies conditions (C1′) and (C2′) for a subset Φ ⊆ X if the following are satisfied
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(the symbol � denotes the usual homotopy of paths with endpoints fixed and ∗ the path
product):
(C1′) there exists a homotopy H̃ : (Φ,ΦA)× I → (X ,A) from f |Φ to the inclustion i :

Φ↩X and the map fA satisfies (C1) and (C2) for ΦA in A where HΦA = H̃|ΦA×I ,
(C2′) for every essential fixed point class F of f intersecting Z, there exists a path α : I →

Z with α(0)∈ F∩Z, α(1)∈Φ, and

{
α(t)

}
�
{
f ◦α(t)

}∗ {H̃(α(1), t
)}
. (4.1)

Theorem 4.2. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair. If f satisfies
conditions (C1′) and (C2′) for a subset Φ⊆ X , then f satisfies (C1) and (C2) for Φ.

Sketch of proof. First observe that by choosing A to be the empty set, (C1′) implies (C1).
To prove (C2), choose any essential fixed point class F of f . We can write

F= FA∪FZ , (4.2)

where

FA = F∩A, FZ = F− Int(A)= F∩Z. (4.3)

By [5, Theorem 1.1], there exists an integer-valued index indA( f ,FZ) such that

indA
(
f ,FZ

)= ind( f ,F)− ind
(
fA,FA

)
, (4.4)

where “ind” denotes the classical fixed point index.
Suppose indA( f ,FZ) �= 0. Write

FZ = F1∪···∪Fk, (4.5)

where for each i between 1 and k, Fi denotes the intersection of F with a path component
of Z. It follows from [5] that indA( f ,FZ)=∑k

i=1 indA( f ,Fi). Then since indA( f ,FZ) �= 0,
there exists at least one i for which indA( f ,Fi) �= 0. This Fi can be written as a finite union
of fixed point classes of f intersecting Z. At least one of these classes must be an essential
class of f intersecting Z. Denote this class asG. Then by (C2′), there exists a path α : I → Z
with α(0)∈G⊆ F, α(1)∈Φ and

{
α(t)

}
�
{
f ◦α(t)

}∗ {H̃(α(1), t
)}

, (4.6)

thus proving (C2) for this case.
Next suppose that indA( f ,FZ) = 0. Then ind( fA,FA) �= 0, implying that FA is an es-

sential fixed point class of fA. From (C1′) there exists a path α : I → A with α(0) ∈ FA,
α(1)∈ΦA ⊂Φ, and

{
α(t)

}
�
{
fA ◦α(t)

}∗ {HΦ
(
α(1), t

)}

= { f ◦α}∗ {H̃(α(1), t
)}

,
(4.7)

which proves (C2). �
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Corollary 4.3. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair. If f satisfies
conditions (C1′) and (C2′) for a subset Φ ⊆ X , then Φ has at least N( f ) components and
ΦA has at least N( fA) components.

It is worthwhile to observe that in some cases, (C2′) is easy to check. In particular, f
satisfies (C2′) for Φ⊆ X if any of the following is satisfied ([8]):

(1) N( f |Z)= 0,
(2) X is simply connected,
(3) Φ⊆ Fix f ∩Z and Φ intersects every essential fixed point class of f on Z.

Theorem 4.4 (necessity). Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair
and let Φ be a subspace of X . If there exists a map g �A f with Fixg =Φ, then f satisfies
(C1′) and (C2′) for Φ.

Sketch of proof. Let H denote the homotopy of pairs from f to g. It is clear that by letting
H̃ =H|Φ×I and applying [10, Theorem 2.1], f satisfies (C1′).

To prove (C2′), choose any essential fixed point class F of f intersecting Z. It follows
from [13, Theorem 2.7] that there exists an essential fixed point class G of g intersecting
Z, to which F is H-related. Thus, there exists a path α : I → Z with α(0) ∈ F, α(1) ∈Φ,
and

{
α(t)

}
�
{
H
(
α(t), t

)}

�
{
H
(
α(t),0

)}∗ {H(α(1), t
)}

= { f ◦α(t)
}∗ {H̃(α(1), t

)}
.

(4.8)

Therefore f satisfies (C2′) for Φ. �

Theorem 4.5 (Ng’s finiteness theorem). Let f : (X ,A)→ (X ,A) be a map of a compact
polyhedral pair in whichX andA have no local cutpoints. Suppose (Φ,ΦA) is a subpolyhedral
pair such that

(1) A−ΦA is not a 2-manifold,
(2) ΦA can be by-passed in A,
(3) f satisfies (C1′) for Φ.

Then there exists a map g �A f via a homotopyH : (X ,A)× I → (X ,A) that extends H̃ such
that Fixg = Φ∪ Zo, where Zo is a finite subset of X −A and each point of Zo lies in the
interior of a maximal simplex of X .

Sketch of proof. To construct the homotopy H , we will build three homotopies H1, H2,
and H3, and take their composition.

From conditions (1)–(3), we can apply [10, Lemma 3.1] to show that there exists a
map g1,A homotopic to fA with Fixg1,A =ΦA via a homotopy HA : A× I → A that is an
extension of H̃|ΦA×I . Consider the homotopy H1,A : (A∪Φ,A)× I → (X ,A) defined by

H1,A(x, t)=
⎧
⎨

⎩
HA(x, t) (x, t)∈A× I ,
H̃(x, t) (x, t)∈Φ× I. (4.9)
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By the homotopy extension property, there is a homotopy H1 : (X ,A)× I → (X ,A) that is
an extension ofH1,A; let f1(x)=H1(x,1). It is easy to check that Φ⊆ Fix f1, Fix f1|A =ΦA,
and H1 extends H̃ .

To construct H2, choose a strong deformation retraction R : St(A∪Φ)× I → St(A∪
Φ) of a star cover of A∪Φ onto the set A∪Φ. We will abbreviate StA∪Φ for the star cover
St(A∪Φ). We can define H2 : (X ,A)× I → (X ,A) to be an extension of the composition
f1 ◦R : (StA∪Φ,A)× I → (X ,A). Setting f2(x)=H2(x, t), it is easy to check that Fix f2|A =
ΦA and Fix f2 =A∪ (X − StA∪Φ).

By a careful application of the Hopf construction, we can find a map f3 : cl(X − StA∪Φ)
→ X that is ε-homotopic to f2|cl(X−StA∪Φ), where f3 has only a finite number of fixed points,
each lying in the interior of a maximal simplex of X . Let H3,cl : cl(X − StA∪Φ)× I → X
denote the homotopy from f2|cl(X−StA∪Φ) to f3. We construct another homotopy H′

3 :
(∂(StA∪Φ)∪A∪Φ,A)× I → (X ,A) as follows:

H′
3(x, t)=

⎧
⎨

⎩
H3,cl(x, t) (x, t)∈ ∂(StA∪Φ

)
,

f2(x) (x, t)∈ A∪Φ.
(4.10)

Then H′
3 can be extended to a homotopyH3,St : (StA∪Φ,A)× I → (X ,A). Finally, we define

H3 : (X ,A)× I → (X ,A) by

H3(x, t)=
⎧
⎨

⎩
H3,St(x, t) x ∈ StA∪Φ,

H3,cl(x, t) x ∈ cl
(
X − StA∪Φ

)
.

(4.11)

One can check that if we let H be the composition of the homotopies H1, H2, and H3

and define g(x)=H(x,1), we complete the proof. �

Theorem 4.6 (Ng’s sufficiency theorem #1). Let f : (X ,A)→ (X ,A) be a map of a compact
polyhedral pair in whichX andA have no local cutpoints. Suppose (Φ,ΦA) is a subpolyhedral
pair such that

(1) A−ΦA and all components of X − (A∪Φ) are not 2-manifolds,
(2) f satisfies (C1′) and (C2′) for Φ,
(3) ΦA can be by-passed in A, Φ can be by-passed in X−A and ∂A can be by-passed in Z.

Then there exists a map g �A f with Fixg =Φ.

Sketch of proof. From Theorem 4.5, there exists a map g1 �A f via a homotopy H : (X ,
A)× I → (X ,A) that extends H̃ with Fixg1 =Φ∪Zo, where Zo is a finite subset of X −A
and each point of Zo lies in the interior of a maximal simplex of X . To construct the
desired map g, we use a sequence of homotopies relative to A∪Φ.

Using techniques from [6, 9], one can show that the following procedures are possible
in this scenario.

(1) Given any two points x, y ∈ Fixg1∩ (X −A) that lie in the same fixed point class
of g1 intersecting Z, we can delete the point x from Fixg1 by an appropriate ho-
motopy. This requires the assumption that every component of X − (A∪Φ) is
not a 2-manifold.

(2) If x ∈ Fixg1∩ (X −A) and y is any point in Z∩Φ that lies in the same fixed point
class as x, we can delete the point x from Fixg1 by an appropriate homotopy. In
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addition to the first assumption, this requires that ∂A can be by-passed in Z and
Φ can be by-passed in X −A.

(3) Any point x ∈ Fixg1 ∩ (X −A) with ind( f ,x) = 0 can be removed in the usual
way.

After a finite number of applications of the above procedures, we achieve a new map
g �A f . If g is fixed point free on X − (Φ∪A), we are done. If Fixg ∩ (X − (Φ∪A)) �=
∅, then any point x ∈ Fixg ∩ (X − (Φ∪A)) forms an entire essential fixed point class
of g. A slight modification of the proof of [10, Lemma 3.1] shows that this scenario is
impossible. �

In the original statement of Theorem 4.6, Ng required that no component of A−ΦA

be a 2-manifold. However, this assumption is not required for the proof and therefore
omitted.

Theorem 4.7 (Ng’s sufficiency theorem #2). Let f : (X ,A)→ (X ,A) be a map of a compact
polyhedral pair in whichX andA have no local cutpoints. Suppose (Φ,ΦA) is a subpolyhedral
pair such that

(1) A−ΦA and all components of X − (A∪Φ) are not 2-manifolds,
(2) f satisfies (C1′) and (C2′) for Φ,
(3) ΦA can be by-passed inA, Φ can be by-passed in X−A, and ∂A can be by-passed in Z.

Then for every closed subset Γ of Φ that has nonempty intersection with every component of
ΦA and every component of Φ∩Z, there exists a map g �A f with Fixg = Γ.

Sketch of proof. Let K be a triangulation of X = |K|. As in the proof of [10, Theorem 3.2],
we can find a subpolyhedronN in a subdivision K ′ of K such that f |N is a proximity map
with only a finite number of fixed points, all lying in Γ⊆ Int(N). Let α(x, y, t) be defined
as in [1, Lemma 1, page 124]. Define a homotopy HN : (N ,N ∩A)× I → (X ,A) by

HN (x, t)= α(x, f (x), 1− t(1−d(x,Γ)
))

, (4.12)

where d denotes the usual distance function. It is not difficult to check thatHN is a special
homotopy (cf. [6, page 751]) on ∂N × I and that FixHN (x,1) = Γ. Next, we can extend
HN to a new homotopy H : (X ,A)× I → (X ,A) that is special on cl(X −N). If we let
g(x)=H(x,1), then g �A f and Fixg = Γ. �

5. Locally contractible fixed point sets of maps of pairs

We wish to extend Ng’s work (in particular, Theorem 4.7) to the case where Φ is locally
contractible, but not necessarily a polyhedron. To do so, we first prove a useful lemma
and theorem.

Lemma 5.1. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair and let (Φ,ΦA)
be a subset pair in which Φ is closed in X . Assume that there exists a subset B of X such
that Φ⊆ B and the pair (B,B∩A) strong deformation retracts onto (Φ,ΦA) via a retraction
R : (B,B∩A)× I → (B,B∩A). If f satisfies (C1′) and (C2′) for Φ, then f satisfies (C1′)
and (C2′) for B.
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Proof. First observe that since f satisfies (C1′) for Φ, fA satisfies (C1) and (C2) for ΦA

in A. Then Lemma 3.4 shows that fA satisfies (C1) and (C2) for B∩A. This proves the
second statement in (C1′). A simple modification of the proof of Lemma 3.4 proves the
first statement in (C1′) and also proves that f satisfies (C2′) for B. �

Theorem 5.2. Let f : (X ,A) → (X ,A) be a map of a compact polyhedral pair. Suppose
(Φ,ΦA) is a subset pair in which both Φ and ΦA are closed, locally contractible subsets of X .
Then there exists a subset B of X such that Φ⊆ B and the pair (B,B∩A) strong deformation
retracts onto (Φ,ΦA) via a retraction of pairs �t : (B,B∩A)→ (B,B∩A).

Proof. We will construct three homotopies and then take their composition to obtain an
explicit strong deformation retraction of pairs. First, we must establish some terminology.

Since X itself is an ANR embedded in Euclidean space, there exists a neighborhood
V ⊂Rn (n > 0) of X that strong deformation retracts onto X . Let

ρt :V −→ X (5.1)

denote this strong deformation retraction. The subset Φ is also a finite-dimensional ANR
([2, Proposition 8.12, page 83]). Thus, there exists a neighborhood U ⊂ X that strong
deformation retracts onto Φ. Let

ϕt :U −→Φ (5.2)

denote this strong deformation retraction. Define

ε=min
(
d
(
X ,Vc

)
,d
(
Φ,Uc

))
, (5.3)

where Vc and Uc denote the complements of V and U in Rn and X , respectively.
Choose any three positive real numbers ε1, ε2, and ε3 so that

ε1 + ε2 + ε3 < ε. (5.4)

The subsets Φ and ΦA are both finite-dimensional ANR’s. Thus, there exist neighbor-
hoods U1,U2 ⊂ X and strong deformation retractions Rt : U1 →Φ and rt : U2 →Φ that
are ε1- and ε2-homotopies, respectively (Theorem 3.3). In other words, for each x ∈U1,

d
(
Rt(x),Rt′(x)

)
< ε1, for any t, t′ ∈ I (5.5)

and for each x ∈U2,

d
(
rt(x),rt′(x)

)
< ε2, for any t, t′ ∈ I. (5.6)

Notice that although both Rt and ϕt are strong deformation retractions of neighborhoods
of Φ onto itself, we neither require that U1 =U nor that Rt|U1∩U = ϕt|U1∩U .

Next define δ1,δ2 > 0 by

δ1 = d
(
Φ,X −U1

)
, δ2 = d

(
ΦA,X −U2

)
, (5.7)
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and let Δ =min(δ1,δ2). Define B to be a Δ-neighborhood of Φ. Then Φ ⊂ B ⊆ U1 and
ΦA ⊂ B∩A⊆U2. By restricting Rt to B and rt to B∩A, we can view these maps as strong
deformation retractions of B onto Φ and of B∩A onto ΦA, respectively.

Next, since the subset A is a subpolyhedron of X , it must also be a finite-dimensional
ANR. Thus, there exists a neighborhood W ⊂ X containing A and a strong deformation
retraction ψt : W → A that is an ε3-homotopy. For ease of notation, we will let x′ = ψ1(x)
for any x ∈W .

Let us choose Ω= d(cl(B∩A),X −W) and define a set

C = {x ∈ B−B∩A | d(x, cl(B∩A)
)≤Ω

}
. (5.8)

For any x ∈ C, let

d
(
x, cl(B∩A)

)= s≤Ω, d(x,Φ)= q < Δ. (5.9)

Finally, we let β =max(Ω,Δ) > 0, and we define our first homotopy to be the map Ht :
(B,B∩A)→ (B,B∩A) defined by

Ht(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x x ∈ B−C,

ρ1−t

(
〈
ψt(x),x

〉1
β

)

x ∈ C, q = s,

ρ1−t

([〈
ψt(x),x

〉q

β
+ (s− q)x

]
1
s

)

x ∈ C, q < s,

ρ1−t

([
〈
ψt(x),x

〉 s

β
+ (q− s)ψt(x)

]
1
q

)

x ∈ C, q > s,

(5.10)

where 〈ψt(x),x〉 = (β− s)ψt(x) + sx.
We must check that Ht is defined on C. By the definition of C, if x ∈ C then x ∈

B∩W . Thus, ψt(x) is defined. Next, since s≤Ω≤ β, for each t ∈ I the expression 〈ψt(x),
x〉(1/β)= [(β− s)ψt(x) + sx](1/β) represents a point lying on the straight path in Rn be-
tween ψt(x) and x. Since ψt(x) is an ε3-homotopy, the length of this path must be less
than ε3. Moreover,

ε3 < ε =min
(
d
(
X ,Vc

)
,d
(
Φ,Uc

))
(5.11)

and ψt(x), x ∈ X . Thus all points on this straight path must lie in V , whence ρ1−t(〈ψt(x),
x〉(1/β) exists.

To see that Ht(x) is defined for x ∈ C with q < s, observe that for each t ∈ I the expres-
sion

[〈
ψt(x),x

〉q

β
+ (s− q)x

]
1
s
=
[
q
[
(β− s)ψt(x) + sx

]1
β

+ (s− q)x
]

1
s

(5.12)

represents a point lying on the straight path in Rn between x and some point lying be-
tween ψt(x) and x. Thus, the length of the path in (5.12) must be less than or equal to
the length of the straight path between ψt(x) and x. In short, all points in this expression
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must lie in V . Thus, ρ1−t([〈ψt(x),x〉(q/β) + (s− q)x](1/s)) is defined. A similar argument
holds for x ∈ C with q > s. Therefore, Ht(x) is defined for all x ∈ C.

It is straightforward to check that Ht is continuous, H0 = idB, and Ht is a homotopy of
pairs.

We define the second homotopy of pairs in the composition to be Jt : (B,B ∩A) →
(Φ,Φ∩A) such that

Jt(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(x) x ∈ B∩A,

Rt(x) x ∈ (B−B∩A)−C,

ρt

(
〈
rt(x′),Rt(x)

〉1
β

)
x ∈ C, q = s,

ρt

([
〈
rt(x′),Rt(x)

〉q

β
+ (s− q)Rt(x)

]
1
s

)

x ∈ C, q < s,

ρt

([
〈
rt(x′),Rt(x)

〉 s

β
+ (q− s)rt(x′)

]
1
q

)

x ∈ C, q > s.

(5.13)

It is clear that Jt is defined and continuous outside C. However, we must again check
that Jt is defined on C. For any x ∈ C, we have x ∈ B∩W and x′ ∈ B∩A. Thus, Rt(x)
and rt(x′) are defined. Next, since s ≤Ω ≤ β, the expression 〈rt(x′),Rt(x)〉(1/β) = [(β−
s)rt(x′) + sRt(x)](1/β) represents a point lying on the straight path in Rn between rt(x′)
and Rt(x). Now for each t ∈ I the distance from Rt(x) to rt(x′) satisfies the following
inequality:

d
(
Rt(x),rt(x′)

)≤ d(Rt(x),x
)

+d(x,x′) +d
(
x′,rt(x′)

)

= d(Rt(x),R0(x)
)

+d
(
ψ0(x),ψ1(x)

)
+d
(
r0(x′),rt(x′)

)

< ε1 + ε3 + ε2 < ε.

(5.14)

Since ε =min(d(X ,Vc),d(Φ,Uc)) and Rt(x),rt(x′) ∈ X , all points on the straight path
between rt(x′) and Rt(x) must lie in V . Therefore, the expression

ρt

(〈
rt(x′),Rt(x)

〉1
β

)
= ρt

([
(β− s)rt(x′) + sRt(x)

]1
β

)
(5.15)

is defined for x ∈ C. Moreover, as a composition of continuous functions, the expression
is continuous. Therefore, Jt is defined and continuous for x ∈ C with q = s.

For x ∈ C with q < s or q > s, a similar argument to that of the proof above forHt shows
that Jt(x) is defined and continuous. It is straightforward to check that Jt is continuous
on X and that Jt is a homotopy of pairs.
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We denote the third and final homotopy in the construction by Kt : (B,B ∩ A) →
(Φ,ΦA), where

Kt(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(x) x ∈ B∩A,

R1(x) x ∈ (B−B∩A)−C,

ϕt

(
〈
r1(x′),R1(x)

〉1
β

)
x ∈ C, q = s,

ϕt

([
〈
r1(x′),R1(x)

〉q

β
+ (s− q)R1(x)

]
1
s

)
x ∈ C, q < s,

ϕt

([
〈
r1(x′),R1(x)

〉 s

β
+ (q− s)r1(x′)

]
1
q

)
x ∈ C, q > s.

(5.16)

We must again check that our homotopy is defined on C. For x ∈ C, all points in the
expression 〈r1(x′),R1(x)〉(1/β)= [(β− s)r1(x′) + sR1(x)](1/β) lie on the straight path be-
tween r1(x′) and R1(x). From (5.14), the length of this path must be less than ε. Since
ε = min(d(X ,Vc),d(Φ,Uc)) and r1(x′),R1(x) ∈ Φ, all points on this path must lie in
U . Therefore, ϕt(〈r1(x′),R1(x)〉(1/β))= ϕt([(β− s)r1(x′) + sR1(x)](1/β)) is defined. The
proof that Kt(x) is defined for x ∈ C with q < s or q > s is similar to that of Ht and Jt, and
hence omitted. It is straightforward to check that Kt is continuous on X and that Kt is a
homotopy of pairs.

Finally, we define our strong deformation retraction of pairs as �t : (B,B ∩ A) →
(Φ,ΦA), where

�t(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H3t(x) 0≤ t ≤ 1/3,

J3t−1(x) 1/3≤ t ≤ 2/3,

K3t−2(x) 2/3≤ t ≤ 1.

(5.17)

One can check that for all x ∈ B, �1/3(x) = H1(x) = J0(x) and �2/3(x) = J1(x) = K0(x).
It remains to show that �t is indeed a strong deformation retraction of pairs. In other
words, we must check that �0 = idB, �1(B) ⊆ Φ, �1(B ∩A) ⊆ ΦA, and for all t ∈ I ,
�t|Φ = idΦ and �t|ΦA = idΦA . By the construction of �t, it is clear that �0 =H0(x)= idB,
�1(B∩A)⊆ΦA, and �t|ΦA = idΦA .

To see that �1(B) ⊆Φ, observe that �1(x) = J1(x) for all x. It is clear that J1(x) ∈Φ
for all x ∈ B−C. For x ∈ C, the point J1(x) is obtained by evaluating ϕ1 at some point in
U . Since ϕt :U →Φ is a strong deformation retraction, ϕ1(U)⊆Φ. Therefore, J1(x)∈Φ
for all x ∈ C, and hence for all x ∈ B.

Finally, to see that �t|Φ = idΦ, choose any x ∈ Φ. If x ∈ Φ∩ B − C then �t(x) =
Rt(x) = x. If x ∈ C∩Φ, then d(x,Φ) = 0 = q < s, whence Ht(x) = ρ1−t(x) = x, Kt(x) =
ρt(Rt(x)) = x, and Jt(x) = ρt(R1(x)) = x. Therefore, �t|Φ = idΦ, which completes the
proof. �

We now use Ng’s results with Lemma 5.1 and Theorem 5.2 to show that the hypotheses
and results from Theorem 4.7 hold for all locally contractible closed subsets of X .
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Theorem 5.3. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair in which X
and A have no local cutpoints. Suppose (Φ,ΦA) is a subset pair in which Φ, ΦA, and Φ∩Z
are closed, locally contractible subsets of X such that

(1) A−ΦA and all components of X − (A∪Φ) are not 2-manifolds,
(2) f satisfies (C1′) and (C2′) for Φ,
(3) ΦA can be by-passed in A, Φ∩Z can be by-passed in Z, and ∂A can be by-passed in Z.

Then for every closed subset Γ of Φ that has nonempty intersection with every component of
ΦA and every component of Φ∩Z, there exists a map g �A f with Fixg = Γ.

Proof. If Φ=∅, then this theorem reduces to a special case of [10, Lemma 3.1]. Thus, we
may assume Φ �= ∅. Let K be a triangulation of X = |K|. By [2, Proposition 8.12, page
83], both Φ and ΦA are finite-dimensional ANR’s.

From Theorem 5.2, there exists a subset B of X such that Φ⊆ B and the pair (B,B∩A)
strong deformation retracts onto the pair (Φ,ΦA). Lemma 3.1 guarantees that we can find
a star cover StK ′(Φ) of Φ with respect to a sufficiently small subdivision K ′ of K such that
StK ′(Φ) ⊆ B and the sets A− (StK ′(Φ)∩A) and X − (A∪ StK ′(Φ)) are not 2-manifolds.
It follows from Lemma 5.1, by restricting the retraction, that f satisfies (C1′) and (C2′)
for StK ′(Φ).

By assumption, ΦA can be by-passed inA. SinceA is a polyhedron, Theorem 2.2 shows
that ΦA can be neighborhood by-passed in X . Likewise, Φ∩Z can be neighborhood by-
passed in Z. Therefore K ′ may be chosen with mesh small enough so that StK ′(Φ)∩A
can be by-passed in A and StK ′(Φ)∩Z can be by-passed in Z. Then StK ′(Φ)∩ (X −A)
can also be by-passed in Z. Thus any path with endpoints in X −A is homotopic to a path
in Z = cl(X −A). But ∂A can also be by-passed in Z, implying that such a path must be
homotopic to a path in X −A. Therefore StK ′(Φ)∩ (X −A) can be by-passed in X −A.

Now by the construction of star covers, each component of StK ′(Φ) contains a com-
ponent of Φ and every component of Φ is contained in a component of StK ′(Φ). Choose
any closed subset Γ of Φ, having nonempty intersection with every component of ΦA

and every component of Φ∩Z. Then Γ also has nonempty intersection with every com-
ponent of StK ′(Φ)∩A and with every component of StK ′(Φ)∩Z. Finally, since K ′ is a
triangulation of both X and A, the set StK ′(Φ)∩A is a subpolyhedron of A and thus itself
a polyhedron. Therefore, the result follows from Theorem 4.7. �

Corollary 5.4. Let f : (X ,A)→ (X ,A) be a map of a compact polyhedral pair. Suppose
(Φ,ΦA) is a subset pair in which both Φ and ΦA are closed, locally contractible subsets of X
such that

(1) A−ΦA and all components of X − (A∪Φ) are not 2-manifolds,
(2) f satisfies (C1′) and (C2′) for Φ,
(3) ΦA can be by-passed in A, Φ∩Z can be by-passed in Z, and ∂A can be by-passed in Z.

Then there exists a map g �A f with Fixg =Φ.

Notice that in the statement of Theorem 5.3, we require both Φ and ΦA to be locally
contractible. If Φ is locally contractible, it does not necessarily follow that ΦA is locally
contractible. For instance, the intersection of the subset Φ in Example 3.6 with the curve
y = 1/x2 (x ≥ 0) is an infinite sequence of discrete points converging to (0,0) and there-
fore not locally contractible at the origin.
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We conclude this paper with an example of a map f : (X ,A)→ (X ,A) of a polyhedral
pair, having a locally contractible subset pair (Φ,ΦA), for which there exists g �A f with
Fixg =Φ.

Example 5.5. Consider the subset Φ in Example 3.6. Let A=Φ∩R where R denotes the
closed rectangle

R= {(x, y)∈R2 | −2≤ x ≤ 0, −ε ≤ y ≤ ε}, (5.18)

for any positive real number ε < 1/2. Then ΦA = A, vacuously implying that A−ΦA is
not a 2-manifold and that ΦA can be by-passed in A. As we saw in Example 3.6, the only
component ofX − (A∪Φ)= X −Φ is not a 2-manifold. It is also easy to check that Φ∩Z
can be by-passed in Z and that ∂A can be by-passed in Z.

Let f : (X ,A)→ (X ,A) be the map flippingX over the x-axis. That is, f (x, y)= (x,−y),
as in Example 3.6. It remains to show that f satisfies (C1′) and (C2′) for Φ.

To see that f satisfies (C1′), recall from Example 3.6 that Φ is homotopy equivalent to
F1∪F2, the union of the two fixed point classes of f . Likewise,ΦA is homotopy equivalent
to F1. As f (ΦA)⊆ΦA, the homotopyHΦ from (C1) in Example 3.6 also maps ΦA to itself.
In other words, we can write HΦ : Φ× I → X as the homotopy of pairs H̃ : (Φ,ΦA)× I →
(X ,A).

Next we must show that fA satisfies (C1) and (C2) for ΦA. The restriction HΦA =
H̃|ΦA×I provides the necessary homotopy from fA to the inclusion i|A, proving (C1). To
see (C2), observe that fA has only one essential fixed point class F= F1∩A. By choosing
the path α : I → Z to be a constant path at any point in F, we see that fA satisfies (C2) for
ΦA.

Finally, to check that f satisfies (C2′), observe that both essential classes F1 and F2

intersect Z. For F1, choose the path α : I → Z to be the constant path at the origin. As the
origin lies in both Z and Φ, the path α fulfills the requirements of (C2′). Similarly for F2,
we can choose α : I → Z to be the constant path at the point (8,0).

Thus f satisfies all the hypotheses of Theorem 5.3, implying that for every closed sub-
set Γ of Φ that has nonempty intersection with ΦA and with both components of Φ∩Z,
there exists a map g �A f with Fixg = Γ. In particular, there exists a map homotopic to f
via a homotopy of pairs whose fixed point set is Φ itself.
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