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We prove Browder’s type strong convergence theorems for infinite families of nonexpan-
sive mappings. One of our main results is the following: let C be a bounded closed convex
subset of a uniformly smooth Banach space E. Let {Tn : n ∈ N} be an infinite family of
commuting nonexpansive mappings on C. Let {αn} and {tn} be sequences in (0,1/2)
satisfying limn tn = limn αn/t�n = 0 for � ∈ N. Fix u ∈ C and define a sequence {un} in C
by un = (1− αn)((1−∑n

k=1 t
k
n)T1un +

∑n
k=1 t

k
nTk+1un) + αnu for n ∈ N. Then {un} con-

verges strongly to Pu, where P is the unique sunny nonexpansive retraction from C onto
⋂∞

n=1F(Tn).

Copyright © 2006 Tomonari Suzuki. This is an open access article distributed under the
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1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping T on C is called a non-
expansive mapping if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote by F(T) the set of
fixed points of T . We know that F(T) is nonempty in the case that E is uniformly smooth
and C is bounded; see Baillon [1]. When E has the Opial property and C is weakly com-
pact, F(T) is also nonempty; see [11, 13]. See also [4, 5, 10] and others. Fix u∈ C. Then
for each α∈ (0,1), there exists a unique point xα in C satisfying xα = (1−α)Txα +αu be-
cause the mapping x �→ (1−α)Tx+αu is contractive; see [2]. In 1967 Browder [6] proved
the following strong convergence theorem.

Theorem 1.1 (Browder [6]). Let C be a bounded closed convex subset of a Hilbert space E
and let T be a nonexpansive mapping on C. Let {αn} be a sequence in (0,1) converging to 0.
Fix u∈ C and define a sequence {un} in C by

un =
(
1−αn

)
Tun +αnu (1.1)

for n∈N. Then {un} converges strongly to the element of F(T) nearest to u.
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2 Infinite families of nonexpansive mappings

Reich extended this theorem to uniformly smooth Banach spaces in [17]. Using the
notion of Bochner integral and (invariant) mean, Shioji and Takahashi in [18] proved
Browder’s type strong convergence theorems for families of nonexpansive mappings

Very recently, the author proved the following Browder’s type strong convergence the-
orem for one-parameter nonexpansive semigroups. This is a generalization of the results
in [19, 25]. We remark that we do not use the notion of Bochner integral.

Theorem 1.2 [24]. Let C be a weakly compact convex subset of a Banach space E. Assume
that either of the following holds:

(i) E is uniformly convex with uniformly Gâteaux differentiable norm;
(ii) E is uniformly smooth; or

(iii) E is a smooth Banach space with the Opial property and the duality mapping J of E
is weakly sequentially continuous at zero.

Let {T(t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C. Let τ be a nonnegative
real number. Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1, 0 < τ + tn
and tn 	= 0 for n∈N, and limn tn = limn αn/tn = 0. Fix u∈ C and define a sequence {un} in
C by

un =
(
1−αn

)
T
(
τ + tn

)
un +αnu (1.2)

for n ∈N. Then {un} converges strongly to Pu, where P is the unique sunny nonexpansive
retraction from C onto

⋂
t≥0F(T(t)).

Also, very recently, the author proved Krasnoselskii and Mann’s type convergence the-
orems for infinite families of nonexpansive mappings in [21]. See also [20]. In this paper,
using the idea in [21], we prove Browder’s type strong convergence theorems for infinite
families of nonexpansive mappings without assuming the strict convexity of the Banach
space. We remark that if we assume the strict convexity, its proof is very easy because the
set of common fixed points of countable families of nonexpansive mappings is the set of
fixed points of some single nonexpansive mapping; see Bruck [8]. We also remark that
we do not use the notion of (invariant) mean.

2. Preliminaries

Throughout this paper, we denote by N, Z, Q, and R the set of all positive integers, all
integers, all rational numbers, and all real numbers, respectively.

Let {xn} be a sequence in a topological space X . By the axiom of choice, there exist a
directed set (D,≤) and a universal subnet {x f (ν) : ν∈D} of {xn}, that is,

(i) f is a mapping from D into N such that for each n∈N there exists ν0 ∈D such
that ν≥ ν0 implies f (ν)≥ n;

(ii) for each subset A of X , there exists ν0 ∈D such that either {x f (ν) : ν≥ ν0} ⊂A or
{x f (ν) : ν≥ ν0} ⊂ X \A holds.

In this paper, we often use {xν : ν∈D} instead of {x f (ν) : ν∈D}, for short. We know that
if a net {xν} is universal and g is a mapping from X into an arbitrary set Y , then {g(xν)}
is also universal. We also know that if X is compact, then a universal net {xν} always
converges. See [12] for details.
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Let E be a real Banach space. We denote by E∗ the dual of E. E is called uniformly
convex if for each ε > 0, there exists δ > 0 such that ‖x + y‖/2 < 1− δ for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε. E is said to be smooth or said to have a Gâteaux
differentiable norm if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.1)

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1. E is said to have a uniformly Gâteaux differ-
entiable norm if for each y ∈ E with ‖y‖ = 1, the limit is attained uniformly in x ∈ E with
‖x‖ = 1. E is said to be uniformly smooth or said to have a uniformly Fréchet differentiable
norm if the limit is attained uniformly in x, y ∈ E with ‖x‖ = ‖y‖ = 1. E is said to have
the Opial property [14] if for each weakly convergent sequence {xn} in E with weak limit
x0,

liminf
n→∞

∥
∥xn− x0

∥
∥ < liminf

n→∞
∥
∥xn− x

∥
∥ (2.2)

holds for all x ∈ E with x 	= x0. We remark that we may replace “liminf” by “limsup.”
That is, E has the Opial property if and only if for each weakly convergent sequence {xn}
in E with weak limit x0,

limsup
n→∞

∥
∥xn− x0

∥
∥ < limsup

n→∞

∥
∥xn− x

∥
∥ (2.3)

holds for all x ∈ E with x 	= x0.
Let E be a smooth Banach space. The duality mapping J from E into E∗ is defined by

〈
x, J(x)

〉= ‖x‖2 = ∥∥J(x)
∥
∥2

(2.4)

for all x ∈ E. J is said to be weakly sequentially continuous at zero if for every sequence
{xn} in E which converges weakly to 0∈ E, {J(xn)} converges weakly∗ to 0∈ E∗.

A convex subset C of a Banach space E is said to have normal structure [3] if for every
bounded convex subset K of C which contains more than one point, there exists z ∈ K
such that

sup
x∈K

‖x− z‖ < sup
x,y∈K

‖x− y‖. (2.5)

We know that compact convex subsets of any Banach spaces and closed convex subsets
of uniformly convex Banach spaces have normal structure. Turett [27] proved that uni-
formly smooth Banach spaces have normal structure. Also, Gossez and Lami Dozo [11]
proved that every weakly compact convex subset of a Banach space with the Opial prop-
erty has normal structure. We recall that a closed convex subset C of a Banach space E
is said to have the fixed point property for nonexpansive mappings (FPP, for short) if for
every bounded closed convex subset K of C, every nonexpansive mapping on K has a
fixed point. So, by Kirk’s fixed point theorem [13], every weakly compact convex subset
with normal structure has FPP.



4 Infinite families of nonexpansive mappings

Let C and K be subsets of a Banach space E. A mapping P from C into K is called sunny
[7] if

P
(
Px+ t(x−Px)

)= Px (2.6)

for x ∈ C with Px+ t (x−Px)∈ C and t ≥ 0. The following is proved in [15].

Lemma 2.1 (Reich [15]). Let E be a smooth Banach space and let C be a convex subset of
E. Let K be a subset of C and let P be a retraction from C onto K . Then the following are
equivalent:

(i) 〈x−Px, J(Px− y)〉 ≥ 0 for all x ∈ C and y ∈ K ;
(ii) P is both sunny and nonexpansive.

Hence, there is at most one sunny nonexpansive retraction from C onto K .

The following lemma is proved in [24]. However, it is essentially proved in [16]. See
also [26].

Lemma 2.2 (Reich [16]). Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gâteaux differentiable norm. Let {xα : α∈D} be a net in E and let z ∈ C.
Suppose that the limits of {‖xα− y‖} exist for all y ∈ C. Then the following are equivalent:

(i) limα∈D ‖xα− z‖ =miny∈C limα∈D ‖xα− y‖;
(ii) limsupα∈D〈y− z, J(xα− z)〉 ≤ 0 for all y ∈ C;

(iii) liminfα∈D〈y− z, J(xα− z)〉 ≤ 0 for all y ∈ C.

The following lemma is well known.

Lemma 2.3. Let {un} be a sequence in a Banach space E and let z belong to E. Assume
that every subsequence {uni} of {un} has a subsequence converging to z. Then {un} itself
converges to z.

From Lemma 2.3, we obtain the following.

Lemma 2.4. Let {un} be a sequence in a Banach space E. Assume that {un} has at most one
cluster point, and every subsequence of {un} has a cluster point. Then {un} converges.

Proof. Since {un} is a subsequence of {un}, {un} has a cluster point z ∈ E. Let {uni} be
an arbitrary subsequence of {un}. Then by assumption {uni} has a cluster point w ∈ E.
Since w is also a cluster point of {un}, we have w = z. Hence, {uni} has a cluster point
z ∈ E. That is, there exists a subsequence of {uni} converging to z. So, by Lemma 2.3,
{un} converges to z. This completes the proof. �

3. Fixed point theorem

The following theorem is one of the most famous fixed point theorems for families of
nonexpansive mappings.

Theorem 3.1 (Bruck [9]). Suppose a closed convex subset C of a Banach space E has the
fixed point property for nonexpansive mappings, and C is either weakly compact, or bounded
and separable. Then for any commuting family S of nonexpansive mappings on C, the set of
common fixed points of S is a nonempty nonexpansive retract of C.
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Using Theorem 3.1, we prove the following fixed point theorem.

Theorem 3.2. Let C be a closed convex subset of a Banach space E. Let A be a weakly
compact convex subset of C. Assume that A has the fixed point property for nonexpansive
mappings. Let {Tn : n∈N} be an infinite family of commuting nonexpansive mappings on
C such that

T1(A)⊂A, T�+1

(

A∩
( �⋂

k=1

F
(
Tk
)
))

⊂ A (3.1)

for all � ∈N. Then there exists a common fixed point z0 ∈A of {Tn : n∈N}.
Proof. We put B� := A∩ (

⋂�
k=1F(Tk)) for � ∈N. We first show B� is nonempty and there

exists a nonexpansive retraction P� from A onto B� for all � ∈N. From the assumption of
T1(A)⊂ A, there exists a fixed point z1 ∈ A of T1, that is, B1 	=∅. By Theorem 3.1, there
exists a nonexpansive retraction P1 from A onto B1. We assume B� is nonempty and there
exists a nonexpansive retraction P� from A onto B� for some � ∈N. From the assumption
of T�+1(B�) ⊂ A, we have that T�+1 ◦ P� is a nonexpansive mapping on A. We note that
B�+1 = F(T�+1 ◦P�). Indeed, B�+1 ⊂ F(T�+1 ◦P�) is obvious. Conversely, we assume z2 ∈ A
satisfies T�+1 ◦P�z2 = z2. For k ∈N with k ≤ �, we have

Tkz2 = Tk ◦T�+1 ◦P�z2 = T�+1 ◦Tk ◦P�z2 = T�+1 ◦P�z2 = z2, (3.2)

that is, z2 ∈ B� and hence P�z2 = z2. Thus, we also have

T�+1z2 = T�+1 ◦P�z2 = z2. (3.3)

Therefore z2 ∈ B�+1 and hence B�+1 ⊃ F(T�+1 ◦ P�). We have shown B�+1 = F(T�+1 ◦ P�).
Since A has the fixed point property, we have

B�+1 = F
(
T�+1 ◦P�

) 	=∅. (3.4)

By Theorem 3.1 again, there exists a nonexpansive retraction P�+1 from A onto B�+1. So,
by induction, we have shown that B� is nonempty and there exists a nonexpansive retrac-
tion P� from A onto B� for all � ∈ N. Define a sequence {Qn : n ∈ N} of nonexpansive
mappings on A by

Qn := Pn ◦Pn−1 ◦ ··· ◦P2 ◦P1 (3.5)

for n∈N. Since Pmx = Pn ◦Pmx for x ∈A, m,n∈N with m≥ n, we have

Qm ◦Qn = Pmax{m,n} ◦Pmax{m,n}−1 ◦ ··· ◦P2 ◦P1 (3.6)

for all m,n∈N and hence Qm ◦Qn =Qn ◦Qm for all m,n∈N. So, by Theorem 3.1, there
exists a common fixed point z0 ∈A of {Qn : n∈N}. Let us prove that z0 is also a common
fixed point of {Tn : n∈N}. Since

P1z0 =Q1z0 = z0, (3.7)
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we have z0 ∈ B1, that is, T1z0 = z0. We assume

T1z0 = T2z0 = ··· = T�z0 = z0 (3.8)

for some � ∈N. Then

z0 =Q�+1z0 = P�+1 ◦P� ◦ ··· ◦P2 ◦P1z0

= P�+1 ◦P� ◦ ··· ◦P2z0 = ··· = P�+1 ◦P�z0 = P�+1z0

(3.9)

and hence z0 ∈ B�+1, that is, T�+1z0 = z0. So, by induction, z0 is a common fixed point of
{Tn : n∈N}. This completes the proof. �

4. Lemmas

In this section, we prove some lemmas which are used in the proofs of our main results.

Lemma 4.1. Let C be a closed convex subset of a Banach space E. Let {Tn : n ∈ N} be an
infinite family of commuting nonexpansive mappings on C with a common fixed point. Let
{αn} and {tn} be sequences in (0,1/2) satisfying limn tn = limn αn/t�n = 0 for � ∈N. Let {In}
be a sequence of nonempty subsets of N such that In ⊂ In+1 for n∈N, and

⋃∞
n=1 In =N. For

I ⊂N and t ∈ (0,1/2) with I 	=∅, define nonexpansive mappings S(I , t) on C by

S(I , t)x :=
((

1−
∑

k∈I
tk
)

T1x+
∑

k∈I
tkTk+1x

)

(4.1)

for x ∈ C. Fix u∈ C and define a sequence {un} in C by

un = (1−αn)S(In, tn)un +αnu (4.2)

for n∈N. Let {unβ : β ∈D} be a subnet of {un}. Then the following hold.
(i) limsupβ ‖unβ −T1x‖ ≤ limsupβ ‖unβ − x‖ for x ∈ C.

(ii) If x ∈ C satisfies T1x = x, then limsupβ ‖unβ −T2x‖ ≤ limsupβ ‖unβ − x‖.
(iii) If x ∈ C satisfies T1x = T2x = ··· = T�−1x = x for some � ∈ N with � ≥ 3, then

limsupβ ‖unβ −T�x‖ ≤ limsupβ ‖unβ − x‖.

Proof. Let v be a common fixed point of {Tn : n ∈N}. It is obvious that S(I , t)v = v for
all I ⊂N and t ∈ (0,1/2) with I 	=∅. For x ∈ C and k ∈N, we have

∥
∥Tkx

∥
∥≤ ∥∥Tkx− v

∥
∥+‖v‖ = ∥∥Tkx−Tkv

∥
∥+‖v‖ ≤ ‖x− v‖+‖v‖. (4.3)

Hence, {Tkx : k ∈N} is bounded for every x ∈ C. Therefore S(I , t) is well defined for every
I ⊂N and t ∈ (0,1/2) with I 	=∅. It is obvious that S(I , t) is a nonexpansive mapping on
C for every I and t. Since

∥
∥un− v

∥
∥= ∥∥(1−αn

)
S
(
In, tn

)
un +αnu− v

∥
∥

≤ (1−αn
)∥
∥S
(
In, tn

)
un− v

∥
∥+αn‖u− v‖

≤ (1−αn
)∥
∥un− v

∥
∥+αn‖u− v‖,

(4.4)
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we have ‖un− v‖ ≤ ‖u− v‖ for n∈N. Therefore {un} is bounded. Since
∥
∥Tkun

∥
∥≤ ∥∥Tkun− v

∥
∥+‖v‖ ≤ ∥∥un− v

∥
∥+‖v‖ ≤ ∥∥un

∥
∥+ 2‖v‖ (4.5)

for all n,k ∈N, {Tkun : n,k ∈N} is also bounded. We fix x ∈ C and we put

M :=max
{

‖u‖,‖v‖, sup
n∈N

∥
∥un

∥
∥, sup

n,k∈N

∥
∥Tkun

∥
∥,‖x‖, sup

k∈N

∥
∥Tkx

∥
∥
}

<∞. (4.6)

It is obvious that ‖S(I , t)un‖ ≤M and ‖S(I , t)x‖ ≤M for all n∈N, I ⊂N and t ∈ (0,1/2)
with I 	=∅. From the assumption, we have

S
(
In, tn

)
un−un = αn

(
S
(
In, tn

)
un−u

)
(4.7)

for n∈N. We have
∥
∥unβ −T1x

∥
∥≤ ∥∥unβ − S

(
Inβ , tnβ

)
unβ
∥
∥+

∥
∥S
(
Inβ , tnβ

)
unβ − S

(
Inβ , tnβ

)
x
∥
∥+

∥
∥S
(
Inβ , tnβ

)
x−T1x

∥
∥

≤ αnβ
∥
∥S
(
Inβ , tnβ

)
unβ −u

∥
∥+

∥
∥unβ − x

∥
∥+

∥
∥
∥
∥
∥
−
∑

k∈Inβ
tknβT1x+

∑

k∈Inβ
tknβTk+1x

∥
∥
∥
∥
∥

≤ 2Mαnβ +
∥
∥unβ − x

∥
∥+ 2M

∑

k∈Inβ
tknβ ≤ 2Mαnβ +

∥
∥unβ − x

∥
∥+ 2M

tnβ
1− tnβ

(4.8)

for β ∈D and hence

limsup
β∈D

∥
∥unβ −T1x

∥
∥≤ limsup

β∈D

∥
∥unβ − x

∥
∥. (4.9)

This is (i). We next show (ii). We assume that T1x = x. Then T1 ◦T2x = T2 ◦T1x = T2x.
For β ∈D with 1,2∈ Inβ , we have

∥
∥unβ −T2x

∥
∥≤ ∥∥unβ − S

(
Inβ , tnβ

)
unβ
∥
∥+

∥
∥S
(
Inβ , tnβ

)
unβ −T2x‖

≤ αnβ
∥
∥S
(
Inβ , tnβ

)
unβ −u

∥
∥+

(

1−
∑

k∈Inβ
tknβ

)
∥
∥T1unβ −T2x

∥
∥

+ tnβ
∥
∥T2unβ −T2x

∥
∥+

∑

k∈Inβ \{1}
tknβ
∥
∥Tk+1unβ −T2x

∥
∥

≤ 2Mαnβ +
(
1− tnβ

)∥
∥T1unβ −T2x

∥
∥+ tnβ

∥
∥unβ − x

∥
∥+ 2M

∑

k∈Inβ \{1}
tknβ

≤ 2Mαnβ +
(
1− tnβ

)∥
∥T1unβ −T1 ◦T2x

∥
∥+ tnβ

∥
∥unβ − x

∥
∥+ 2M

t2
nβ

1− tnβ

≤ 2Mαnβ +
(
1− tnβ

)∥
∥unβ −T2x

∥
∥+ tnβ

∥
∥unβ − x

∥
∥+ 2M

t2
nβ

1− tnβ
(4.10)
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and hence

∥
∥unβ −T2x

∥
∥≤ 2M

αnβ
tnβ

+
∥
∥unβ − x

∥
∥+ 2M

tnβ
1− tnβ

. (4.11)

Therefore we obtain

limsup
β∈D

∥
∥unβ −T2x

∥
∥≤ limsup

β∈D

∥
∥unβ − x

∥
∥. (4.12)

Let us prove (iii). We assume T1x = T2x = ··· = T�−1x = x for some � ∈ N with � ≥
3. Then Tm ◦ T�x = T� ◦ Tmx = T�x for every m ∈ N with 1 ≤ m < �. For β ∈ D with
1,2, . . . ,�− 1∈ Inβ , we have

∥
∥unβ −T�x

∥
∥≤ ∥∥unβ − S

(
Inβ , tnβ

)
unβ
∥
∥+

∥
∥S
(
Inβ , tnβ

)
unβ −T�x

∥
∥

≤ αnβ
∥
∥S
(
Inβ , tnβ

)
unβ −u

∥
∥+

(

1−
∑

k∈Inβ
tknβ

)
∥
∥T1unβ −T�x

∥
∥

+
�−2∑

m=1

tmnβ
∥
∥Tm+1unβ −T�x

∥
∥+ t�−1

nβ ‖T�unβ −T�x
∥
∥

+
∑

k∈Inβ \{1,2,...,�−1}
tknβ
∥
∥Tk+1unβ −T�x

∥
∥

≤ 2Mαnβ +

(

1−
�−1∑

m=1

tmnβ

)
∥
∥T1unβ −T�x

∥
∥

+
�−2∑

m=1

tmnβ
∥
∥Tm+1unβ −T�x

∥
∥+ t�−1

nβ

∥
∥unβ − x

∥
∥+ 2M

∑

k∈Inβ \{1,2,...,�−1}
tknβ

≤ 2Mαnβ +

(

1−
�−1∑

m=1

tmnβ

)
∥
∥T1unβ −T1 ◦T�x

∥
∥

+
�−2∑

m=1

tmnβ
∥
∥Tm+1unβ −Tm+1 ◦T�x

∥
∥+ t�−1

nβ

∥
∥unβ − x

∥
∥+ 2M

t�nβ
1− tnβ

≤ 2Mαnβ +

(

1−
�−1∑

m=1

tmnβ

)
∥
∥unβ −T�x

∥
∥

+
�−2∑

m=1

tmnβ
∥
∥unβ −T�x

∥
∥+ t�−1

nβ

∥
∥unβ − x

∥
∥+ 2M

t�nβ
1− tnβ

= 2Mαnβ +

(

1− t�−1
nβ

)

‖unβ −T�x‖+ t�−1
nβ

∥
∥unβ − x

∥
∥+ 2M

t�nβ
1− tnβ

(4.13)
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and hence

∥
∥unβ −T�x

∥
∥≤ 2M

αnβ
t�−1
nβ

+
∥
∥unβ − x

∥
∥+ 2M

tnβ
1− tnβ

. (4.14)

Therefore we obtain

limsup
β∈D

∥
∥unβ −T�x

∥
∥≤ limsup

β∈D

∥
∥unβ − x

∥
∥. (4.15)

This completes the proof. �

Remark 4.2. Let g be a strictly increasing mapping onN. Then it is obvious that limn tg(n)

= limn αg(n)/t
�
g(n) = 0 for all � ∈N, Ig(n) ⊂ Ig(n+1) for n∈N, and

⋃∞
n=1 Ig(n) =N. Thus, the

same conclusions of Lemmas 4.3–4.6 also hold for {ug(n)}.
Lemma 4.3. Let E, C, {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Assume that
{un} converges strongly to some point x ∈ C. Then x is a common fixed point of {Tn : n∈N}.
Proof. From Lemma 4.1(i), we have

limsup
n→∞

∥
∥un−T1x

∥
∥≤ lim

n→∞
∥
∥un− x

∥
∥= 0. (4.16)

This means {un} converges to T1x and hence T1x = x. We assume that T1x = ··· =
T�−1x = x for some � ∈N with � ≥ 2. Then from Lemma 4.1(ii) and (iii), we have

limsup
n→∞

∥
∥un−T�x

∥
∥≤ lim

n→∞
∥
∥un− x

∥
∥= 0. (4.17)

This means {un} converges to T�x and hence T�x = x. So, by induction, we obtain Tnx = x
for all n∈N. This completes the proof. �

Lemma 4.4. Let E, C, {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Assume that
E is smooth and z ∈ C is a common fixed point of {Tn : n∈N}. Then

〈
un−u, J

(
un− z

)〉≤ 0 (4.18)

for all n∈N.

Proof. Since αn(un−u)= (1−αn)(S(In, tn)un−un), we have

αn
1−αn

〈
un−u, J

(
un− z

)〉= 〈S(In, tn
)
un−un, J

(
un− z

)〉

= 〈S(In, tn
)
un− z, J

(
un− z

)〉
+
〈
z−un, J

(
un− z

)〉

= 〈S(In, tn
)
un− S

(
In, tn

)
z, J
(
un− z

)〉−∥∥un− z
∥
∥2

≤ ∥∥S(In, tn
)
un− S

(
In, tn

)
z
∥
∥
∥
∥un− z

∥
∥−∥∥un− z

∥
∥2

≤ ∥∥un− z
∥
∥2−∥∥un− z

∥
∥2 = 0.

(4.19)
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Thus we obtain

〈
un−u, J

(
un− z

)〉≤ 0 (4.20)

for all n∈N. �

Lemma 4.5. Let E, C, {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Assume that
E is smooth. Then {un} has at most one cluster point.

Proof. We assume that a subsequence {uni} of {un} converges strongly to x, and that
another subsequence {unj} of {un} converges strongly to y. Applying Lemma 4.3 to the
subsequences {uni} and {unj}, we have that x and y are common fixed points of {Tn : n∈
N}. So, by Lemma 4.4, we have

〈
uni −u, J

(
uni − y

)〉≤ 0 (4.21)

for all i∈N. Therefore we obtain

〈
x−u, J(x− y)

〉≤ 0. (4.22)

Similarly we can prove

〈
y−u, J(y− x)

〉≤ 0. (4.23)

So we obtain

‖x− y‖2 = 〈x− y, J(x− y)
〉

= 〈x−u, J(x− y)
〉

+
〈
u− y, J(x− y)

〉

= 〈x−u, J(x− y)
〉

+
〈
y−u, J(y− x)

〉≤ 0.

(4.24)

This implies x = y. This completes the proof. �

Lemma 4.6. Let E be a reflexive Banach space with uniformly Gâteaux differentiable norm
and let C be a closed convex subset of E with the fixed point property for nonexpansive map-
pings. Let {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Then {un} has a cluster
point which is a common fixed point of {Tn : n∈N}.
Proof. From the proof of Lemma 4.1, we have that {un} is bounded. Take a universal
subnet {uν : ν ∈ D} of {un}. Define a continuous convex function f from C into [0,∞)
by

f (x) := lim
ν∈D

∥
∥uν− x

∥
∥ (4.25)

for all x ∈ C. We note that f is well defined because {‖uν− x‖} is a universal net in some
compact subset of R for each x ∈ C. From the reflexivity of E and lim‖x‖→∞ f (x)=∞, we
can put r :=minx∈C f (x) and define a nonempty weakly compact convex subset A of C
by

A := {x ∈ C : f (x)= r
}
. (4.26)
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We will prove that A satisfies the assumption of Theorem 3.2. For each x ∈ A, by Lemma
4.1(i), we have

r ≤ f
(
T1x

)= lim
ν∈D

∥
∥uν−T1x

∥
∥≤ lim

ν∈D
∥
∥uν− x

∥
∥= f (x)= r (4.27)

and hence T1x ∈ A. This implies A is T1-invariant. Fix x ∈ A with T1x = ··· = T�x for
some � ∈N. Then by Lemma 4.1(ii) and (iii), we have

r ≤ f
(
T�+1x

)= lim
ν∈D

∥
∥uν−T�+1x

∥
∥≤ lim

ν∈D
∥
∥uν− x

∥
∥= f (x)= r (4.28)

and hence T�+1x ∈ A. Thus we obtain T�+1(A∩ (
⋂�

k=1F(Tk))) ⊂ A for all � ∈ N. So, by
Theorem 3.2, there exists a common fixed point z of {Tn : n ∈ N} in A. We next prove
that such z is a cluster point of {un}. By Lemma 4.4, we have

〈
uν−u, J

(
uν− z

)〉≤ 0 (4.29)

for all ν∈D. On the other hand, from z ∈A, we have

lim
ν∈D

〈
u− z, J

(
uν− z

)〉≤ 0 (4.30)

by Lemma 2.2. Hence,

lim
ν∈D

∥
∥uν− z

∥
∥2 = lim

ν∈D
〈
uν− z, J

(
uν− z

)〉

= lim
ν∈D

〈
uν−u, J

(
uν− z

)〉
+ lim

ν∈D
〈
u− z, J

(
uν− z

)〉≤ 0
(4.31)

holds. Therefore

liminf
n→∞

∥
∥un− z

∥
∥≤ lim

ν∈D
∥
∥uν− z

∥
∥= 0, (4.32)

that is, z is a cluster point of {un}. This completes the proof. �

Lemma 4.7. Let E, C, {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Assume that
E is smooth. For each u∈ C, define a sequence {Q(u,n)} in C by

Q(u,n)= (1−αn
)
S
(
In, tn

)
Q(u,n) +αnu (4.33)

for n∈N. Suppose that for every u∈ C, {Q(u,n)} converges strongly. Then

Pu= lim
n→∞Q(u,n) (4.34)

holds for every u ∈ C, where P is the unique sunny nonexpansive retraction from C onto
⋂∞

n=1F(Tn).

Proof. We put F(�) :=⋂∞n=1F(Tn). Define a mapping P on C by Pu := limnQ(u,n) for
u ∈ C. We will prove that such P is the unique sunny nonexpansive retraction from C
onto F(�). By Lemma 4.3, we note that Px ∈ F(�) for all x ∈ C. For z ∈ F(�), since

z = (1−αn
)
S
(
In, tn

)
z+αnz (4.35)
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for all n ∈ N, we have Q(z,n) = z for all n ∈ N. Hence, we obtain Pz = z. Therefore we
have shown that P2 = P, that is, P is a retraction from C onto F(�). Fix x ∈ C and y ∈
F(�). Then, from Lemma 4.4, we have

〈
Q(x,n)− x, J

(
Q(x,n)− y

)〉≤ 0 (4.36)

for all n∈N. Since {Q(x,n)} converges strongly to Px, we obtain

〈
Px− x, J(Px− y)

〉≤ 0. (4.37)

So, by Lemma 2.1, such mapping P is the unique sunny nonexpansive retraction from C
onto F(�). This completes the proof. �

5. Main results

In this section, we prove our main results. We put F(�) :=⋂∞n=1F(Tn).

Theorem 5.1. Let E be a reflexive Banach space with uniformly Gâteaux differentiable
norm and let C be a closed convex subset of E with the fixed point property for nonexpansive
mappings. Let {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Then {un} converges
strongly to Pu, where P is the unique sunny nonexpansive retraction from C onto F(�).

Proof. Applying Lemma 4.6 to a subsequence of {un}, we have that every subsequence
of {un} has a cluster point. So, by Lemmas 2.4 and 4.5, we obtain that {un} converges
strongly. So, by Lemma 4.7, we obtain the desired result. �

Theorem 5.2. Let E be a smooth reflexive Banach space with the Opial property and let C
be a closed convex subset of E. Assume that the duality mapping J of E is weakly sequentially
continuous at zero. Let {Tn}, {αn}, {tn}, {In}, u, and {un} be as in Lemma 4.1. Then {un}
converges strongly to Pu, where P is the unique sunny nonexpansive retraction from C onto
F(�).

Proof. From the proof of Lemma 4.1, we have that {un} is bounded. Let {uni} be an
arbitrary subsequence of {un}. Since E is reflexive, there exists a subsequence {unij } of
{uni} which converges weakly to some point z ∈ C. We put zj := unij for j ∈N. Applying
Lemma 4.1(i) to {zj}, we have

limsup
j→∞

∥
∥zj −T1z

∥
∥≤ limsup

j→∞

∥
∥zj − z

∥
∥. (5.1)

Since E has the Opial property, we obtain T1z = z. We assume that T1z = ··· = T�z = z
for some � ∈N. Then, by Lemma 4.1(ii) and (iii), we have

limsup
j→∞

∥
∥zj −T�+1z

∥
∥≤ limsup

j→∞

∥
∥zj − z

∥
∥. (5.2)
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By the Opial property of E again, we obtain T�+1z = z. Thus, by induction, z is a common
fixed point of {Tn : n∈N}. By using Lemma 4.4, we have

∥
∥zj − z

∥
∥2 = 〈zj − z, J

(
zj − z

)〉

= 〈zj −u, J
(
zj − z

)〉
+
〈
u− z, J

(
zj − z

)〉

≤ 〈u− z, J
(
zj − z

)〉

(5.3)

for all j ∈ N. Since J is weakly sequentially continuous at zero, {zj} converges strongly
to z. Hence, {uni} has a cluster point z. So, by Lemmas 2.4 and 4.5, {un} itself converges
strongly. Thus, by Lemma 4.7, we obtain the desired result. �

Remark 5.3. In Theorems 5.1 and 5.2, from the proofs of Lemma 4.6 and Theorem 5.2,
we may replace the condition of the reflexivity of E by the weaker condition that C is
locally weakly compact.

By Theorems 5.1 and 5.2, we obtain the following.

Theorem 5.4. Let C be a weakly compact convex subset of a Banach space E. Assume that
either of the following holds:

(i) E is uniformly smooth; or
(ii) E is a smooth Banach space with the Opial property and the duality mapping J of E

is weakly sequentially continuous at zero.
Let {Tn : n∈N} be an infinite family of commuting nonexpansive mappings on C. Let {αn}
and {tn} be sequences in (0,1/2) satisfying limn tn = limn αn/t�n = 0 for � ∈N. Let {In} be a
sequence of nonempty subsets ofN such that In ⊂ In+1 for n∈N, and

⋃∞
n=1 In =N. Fix u∈ C

and define a sequence {un} in C by

un =
(
1−αn

)
((

1−
∑

k∈In
tkn

)

T1un +
∑

k∈In
tknTk+1un

)

+αnu (5.4)

for n ∈N. Then {un} converges strongly to Pu, where P is the unique sunny nonexpansive
retraction from C onto F(�).

Remark 5.5. By Theorem 3.1, we know F(�) 	=∅.

Example 5.6. Define sequences {αn} and {tn} by αn := 1/nn and tn := 1/n for n∈N. Then
{αn} and {tn} satisfy limn tn = limn αn/t�n = 0 for � ∈N.

Corollary 5.7. Let E, C, {Tn}, {αn}, {tn}, and P be as in Theorem 5.4. Fix u ∈ C and
define sequences {un} and {vn} in C by

un =
(
1−αn

)
((

1−
n∑

k=1

tkn

)

T1un +
n∑

k=1

tknTk+1un

)

+αnu,

vn = (1−αn)

((

1−
∞∑

k=1

tkn

)

T1vn +
∞∑

k=1

tknTk+1vn

)

+αnu

(5.5)

for n∈N. Then {un} and {vn} converge strongly to Pu.
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From the proofs of lemmas in Section 4, we also obtain the following.

Theorem 5.8. Let E and C be as in Theorem 5.4. Let {Tn : n= 1,2, . . . ,�} be a finite fam-
ily of commuting nonexpansive mappings on C. Let {αn} and {tn} be sequences in (0,1/2)
satisfying limn tn = limn αn/t�−1

n = 0. Fix u∈ C and define a sequence {un} in C by

un =
(
1−αn

)
((

1−
�−1∑

k=1

tkn

)

T1un +
�−1∑

k=1

tknTk+1un

)

+αnu (5.6)

for n ∈N. Then {un} converges strongly to Pu, where P is the unique sunny nonexpansive
retraction from C onto

⋂�
k=1F(Tk).

6. �-parameter nonexpansive semigroups

In this section, we apply Theorem 5.8 to �-parameter nonexpansive semigroups. We recall
that a family of mappings {T(p) : p ∈ [0,∞)�} is said to be an �-parameter nonexpansive
semigroup on a closed convex subset C of a Banach space E if the following are satisfied.

(i) For each p ∈ [0,∞)� , T(p) is a nonexpansive mapping on C.
(ii) T(p+ q)= T(p)◦T(q) for all p,q ∈ [0,∞)� .

(iii) For each x ∈ C, the mapping p �→ T(p)x from [0,∞)� into C is continuous.
The following is proved in [22]. See also [23].

Theorem 6.1 [22]. Let {T(p) : p ∈ [0,∞)�} be an �-parameter nonexpansive semigroup
on a closed convex subset C of a Banach space E. Let p1, p2, . . . , p� ∈ [0,∞)� such that
{p1, p2, . . . , p�} is linearly independent in the usual sense. Let β1,β2, . . . ,β� ∈ R such that
{1,β1,β2, . . . ,β�} is linearly independent overQ, that is,

ν0 + ν1β1 + ν2β2 + ···+ ν�β� = 0 implies ν0 = ν1 = ν2 = ··· = ν� = 0 (6.1)

for ν0,ν1,ν2, . . . ,ν� ∈ Z. Suppose p0 := β1p1 +β2p2 + ···+β� p� ∈ [0,∞)� . Then

⋂

p∈[0,∞)�
F
(
T(p)

)= F
(
T
(
p0
))∩F

(
T
(
p1
))∩F

(
T
(
p2
))∩···∩F

(
T
(
p�
))

(6.2)

holds.

By Theorems 5.8 and 6.1, we obtain the following.

Theorem 6.2. Let E andC be as in Theorem 5.4. Let {T(p)}, {p0, p1, p2, . . . , p�}, {β1,β2, . . . ,
β�} be as in Theorem 6.1. Let {αn} and {tn} be sequences in (0,1/2) satisfying limn tn =
limn αn/t�n = 0. Fix u∈ C and define a sequence {un} in C by

un =
(
1−αn

)
((

1−
�∑

k=1

tkn

)

T
(
p0
)
un +

�∑

k=1

tknT
(
pk
)
un

)

+αnu (6.3)

for n ∈N. Then {un} converges strongly to Pu, where P is the unique sunny nonexpansive
retraction from C onto

⋂
p∈[0,∞)� F(T(p)).
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When � = 1, Theorem 6.2 becomes the following, which differs from Theorem 1.2.

Corollary 6.3. Let E and C be as in Theorem 5.4. Let {T(t) : t ≥ 0} be a one-parameter
nonexpansive semigroup on C. Let {αn} and {tn} be sequences in (0,1/2) satisfying limn tn =
limn αn/tn = 0. Let σ and τ be positive real numbers satisfying σ/τ /∈Q. Fix u∈ C and define
sequences {un} and {vn} in C by

un =
(
1−αn

)((
1− tn

)
T(σ)un + tnT(τ)un

)
+αnu,

vn =
(
1− tn−αn

)
T(σ)vn + tnT(τ)vn +αnu

(6.4)

for n∈N. Then {un} and {vn} converge strongly to Pu, where P is the unique sunny nonex-
pansive retraction from C onto

⋂
t≥0F(T(t)).

Proof. We remark that

vn =
(
1−αn

)
((

1− tn
1−αn

)

T(σ)vn +
tn

1−αn
T(τ)vn

)

+αnu,

lim
n→∞

αn
tn/
(
1−αn

) = lim
n→∞

αn
(
1−αn

)

tn
= 0.

(6.5)

From this thing, we can obtain the desired result. �
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[10] D. Göhde, Zum Prinzip der kontraktiven Abbildung, Mathematische Nachrichten 30 (1965), 251–
258.

[11] J.-P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for
nonexpansive mappings, Pacific Journal of Mathematics 40 (1972), 565–573.

[12] J. L. Kelley, General Topology, Van Nostrand Reinhold, New York, 1955.
[13] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, The American

Mathematical Monthly 72 (1965), 1004–1006.
[14] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive map-

pings, Bulletin of the American Mathematical Society 73 (1967), 591–597.
[15] S. Reich, Asymptotic behavior of contractions in Banach spaces, Journal of Mathematical Analysis

and Applications 44 (1973), no. 1, 57–70.
[16] , Product formulas, nonlinear semigroups, and accretive operators, Journal of Functional

Analysis 36 (1980), no. 2, 147–168.
[17] , Strong convergence theorems for resolvents of accretive operators in Banach spaces, Journal

of Mathematical Analysis and Applications 75 (1980), no. 1, 287–292.
[18] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semi-

groups in Hilbert spaces, Nonlinear Analysis 34 (1998), no. 1, 87–99.
[19] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert

spaces, Proceedings of the American Mathematical Society 131 (2003), no. 7, 2133–2136.
[20] , Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonex-

pansive semigroups without Bochner integrals, Journal of Mathematical Analysis and Applications
305 (2005), no. 1, 227–239.

[21] , Strong convergence theorems for infinite families of nonexpansive mappings in general
Banach spaces, Fixed Point Theory and Applications 2005 (2005), no. 1, 103–123.

[22] , The set of common fixed points of an n-parameter continuous semigroup of mappings,
Nonlinear Analysis 63 (2005), no. 8, 1180–1190.

[23] , The set of common fixed points of a one-parameter continuous semigroup of mappings
is F(T(1))∩ F(T(

√
2)), Proceedings of the American Mathematical Society 134 (2006), no. 3,

673–681.
[24] , Browder’s type convergence theorems for one-parameter semigroups of nonexpansive map-

pings in Banach spaces, to appear in Israel Journal of Mathematics.
[25] , Browder’s type convergence theorems for one-parameter semigroups of nonexpansive map-

pings in Hilbert spaces, to appear in Proceedings of the Fourth International Conference on Non-
linear Analysis and Convex Analysis (W. Takahashi and T. Tanaka, eds.), Yokohama Publishers,
Yokohama.

[26] W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive oper-
ators, Journal of Mathematical Analysis and Applications 104 (1984), no. 2, 546–553.

[27] B. Turett, A dual view of a theorem of Baillon, Nonlinear Analysis and Applications (St. Johns,
Nfld., 1981), Lecture Notes in Pure and Appl. Math., vol. 80, Dekker, New York, 1982, pp. 279–
286.

Tomonari Suzuki: Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata,
Kitakyushu 804-8550, Japan
E-mail address: suzuki-t@mns.kyutech.ac.jp

mailto:suzuki-t@mns.kyutech.ac.jp

	1. Introduction
	2. Preliminaries
	3. Fixed point theorem
	4. Lemmas
	5. Main results
	6. -parameter nonexpansive semigroups
	Acknowledgment
	References

