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1. Introduction

A multimap T : X → 2Y is a function from a set X into the power set 2Y of Y . If H ,T :
X → 2Y , then the coincidence problem for H and T is concerned with conditions which
guarantee that H(x̂)∩ T(x̂) �= ∅ for some x̂ ∈ X . Park [11] established a very general
coincidence theorem in the class Uk

c of admissible functions, which extends and improves
many results of Browder [1, 2], Granas and Liu [6].

On the other hand, Huang together with Chang et al. [3] introduced the S-KKM class
which is much larger than the class Uk

c . A lot of interesting and generalized results about
fixed point theory on locally convex topological vector spaces have been studied in the
setting of S-KKM class in [3]. In this paper, we will at first construct a coincidence theo-
rem in S-KKM class on generalized convex spaces by means of the basic defining property
for multimaps in S-KKM class. And then based on this coincidence theorem, we deduce
some useful corollaries and investigate the fixed point problem on uniform spaces.

2. Preliminaries

Throughout this paper, 〈Y〉 denotes the class of all nonempty finite subsets of a nonempty
set Y . The notation T : X � Y stands for a multimap from a set X into 2Y \ {∅}. For a
multimap T : X → 2Y , the following notations are used:

(a) T(A)=⋃x∈AT(x) for A⊆ X ;
(b) T−(y)= {x ∈ X : y ∈ T(x)} for y ∈ Y ;
(c) T−(B)= {x ∈ X : T(x)∩B �=∅} for B ⊆ Y .
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All topological spaces are supposed to be Hausdorff. Let X and Y be two topological
spaces. A multimap T : X → 2Y is said to be

(a) upper semicontinuous (u.s.c.) if T−(B) is closed in X for each closed subset B of
Y ;

(b) compact if T(X) is contained in a compact subset of Y ;
(c) closed if its graph Gr(T)= {(x, y) : y ∈ T(x), x ∈ X} is a closed subset of X ×Y .

Lemma 2.1 (Lassonde [9, Lemma 1]). Let X and Y be two topological spaces and T : X �
Y .

(a) If Y is regular and T is u.s.c. with closed values, then T is closed. Conversely, if Y is
compact and T is closed, then T is u.s.c. with closed values.

(b) If T is u.s.c. and compact-valued, then T(A) is compact for any compact subset A of
X .

Let X be a subset of a vector space and D a nonempty subset of X . Then (X ,D) is
called a convex space if the convex hull co(A) of any A ∈ 〈D〉 is contained in X and X
has a topology that induces the Euclidean topology on such convex hulls. A subset C of
(X ,D) is said to be D-convex if co(A) ⊆ C for any A ∈ 〈D〉 with A ⊆ C. If X = D, then
X = (X ,X) becomes a convex space in the sense of Lassonde [9]. The concept of convexity
is further generalized under an extra condition by Park and Kim [12]. Later, Lin and Park
[10] give the following definition by removing the extra condition.

Definition 2.2. A generalized convex space or a G-convex space (X ,D;Γ) consists of a
topological space X , a nonempty subset D of X and a map Γ : 〈D〉� X such that for each
A ∈ 〈D〉 with |A| = n+ 1, there exists a continuous function ϕA : Δn → Γ(A) such that
J ∈ 〈A〉 implies ϕA(ΔJ)⊆ Γ(J), where ΔJ denotes the face of Δn corresponding to J ∈ 〈A〉.

A subset K of a G-convex space (X ,D;Γ) is said to be Γ-convex if for any A∈ 〈K ∩D〉,
Γ(A)⊆ K .

In what follows we will express Γ(A) by ΓA, and we just say that (X ,Γ) is a G-convex
space provided that D = X .

The c-space introduced by Horvath [7] is an example of G-convex space.
For topological spaces X and Y , �(X ,Y) denote the class of all continuous (single-

valued) functions from X to Y .
Given a class � of multimaps, �(X ,Y) denotes the set of multimaps T : X → 2Y be-

longing to �, and �c the set of finite composites of multimaps in �. Park and Kim [12]
introduced the class U to be the one satisfying

(a) U contains the class � of (single-valued) continuous functions;
(b) each T ∈Uc is upper semicontinuous and compact-valued; and
(c) for any polytope P, each T ∈Uc(P,P) has a fixed point.

Further, Park defined the following

T ∈Uk
c (X ,Y)⇐⇒ for any compact subset K of X , there is a

Γ∈Uc(X ,Y) such that Γ(x)⊆ T(x) for each x ∈ K.
(2.1)
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A uniformity for a set X is a nonempty family � of subsets of X ×X such that
(a) each member of � contains the diagonal Δ;
(b) if U ∈�, then U−1 ∈�;
(c) if U ∈�, then V ◦V ⊆U for some V in �;
(d) if U and V are members of �, then U ∩V ∈�; and
(e) if U ∈� and U ⊆V ⊆ X ×X , then V ∈�.

If (X ,�) is a uniform space the topology � induced by � is the family of all subsets
W of X such that for each x in W there is U in � such that U[x] ⊆W , where U[x] is
defined as {y ∈ X : (x, y)∈U}. For details of uniform spaces we refer to [8].

3. The results

The concept of S-KKM property of [3] can be extented to G-convex spaces.

Definition 3.1. Let X be a nonempty set, (Y ,D;Γ) a G-convex space and Z a topological
space. If S : X �D, T : Y � Z and F : X � Z are three multimaps satisfying

T
(

ΓS(A)
)⊆ F(A) (3.1)

for any A∈ 〈X〉, then F is called a S-KKM mapping with respect to T . If the multimap T :
Y � Z satisfies that for any S-KKM mapping F with respect to T , the family {F(x) : x ∈
X} has the finite intersection property, then T is said to have the S-KKM property. The
class S-KKM(X ,Y ,Z) is defined to be the set {T : X � Y : T has the S-KKM property}.

When D = Y is a nonempty convex subset of a linear space with ΓB = co(B) for B ∈
〈Y〉, the S-KKM(X ,Y ,Z) is just that as in [3]. In the case that X =D and S is the identity
mapping 1D, S-KKM(X ,Y ,Z) is abbreviated as KKM(Y ,Z), and a 1D-KKM mapping with
respect to T is called a KKM mapping with respect to T , and 1D-KKM property is called
KKM property. Just as [3, Propositions 2.2 and 2.3], for X a nonempty set, (Y ,D;Γ) a
G-convex space, Z a topological space and any S � D, one has T ∈ KKM(Y ,Z) ⊆ S-
KKM(X ,Y ,Z). By the corollary to [13, Theorem 2], we have Uk

c (Y ,Z)⊆ KKM(Y ,Z), and
so Uk

c (Y ,Z)⊆ S-KKM(X ,Y ,Z).
Here we like to give a concrete multimapT having KKM property on aG-convex space.

Let X = [0,1]× [0,1] be endowed with the Euclidean metric. For any A= {x1, . . . ,xn} ∈
〈X〉, define ΓA =

⋃n
i=1[0,xi], where [0,xi] denotes the line segment joining 0 and xi. It

is easy to see that (X ,Γ) is a c-space, and so it is a G-convex space. Let T : X � X be
defined by T(x)= [(0,0),(0,1)]∪ [(0,0),(1,0)]. If F : X � X is any KKM mapping with
respect to T , then for any A= {x1, . . . ,xn} ∈ 〈X〉, since T(ΓA)⊆ F(A) and (0,0)∈ T(0,0),
we infer that (0,0)∈ T(xi) ⊆ F(xi) for any i = 1, . . . ,n, so (0,0) ∈⋂n

i=1F(xi). This shows
that T has the KKM property.

A subset B of a topological space Z is said to be compactly open if for any compact
subset K of Z, K ∩B is open in K . We begin with the following coincidence theorem.

Theorem 3.2. Let X be any nonempty set, (Y ,D;Γ) a G-convex space and Z a topological
space. Suppose s : X → D, W : D → 2Z , H : Y → 2Z and T ∈ s-KKM(X ,Y ,Z) satisfy the
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following conditions:
(3.2.1) T is compact;
(3.2.2) for any y ∈D, W(y)⊆H(y) and W(y) is compactly open in Z;
(3.2.3) for any z ∈ T(Y), M ∈ 〈W−(z)〉 implies that ΓM ⊆H−(z);
(3.2.4) T(Y)⊆⋃x∈XW(s(x)).

Then T and H have a coincidence point.

Proof. We prove the theorem by contradiction. Assume that T(y)∩H(y) = ∅ for any
y ∈ Y . Put K = T(Y). By (3.2.1), K is a compact subset of Z. Define F : X → 2Z by

F(x)= K \W(

s(x)
)

(3.2)

for x ∈ X . Since W(s(x)) is compactly open, F(x) is closed for each x ∈ X . The assump-
tion that T(y)∩H(y) = ∅ for any y ∈ Y implies that T(s(x))∩H(s(x)) = ∅ for any
x ∈ X , so

∅ �= T(s(x))⊆ K \H(s(x)
)

⊆ K \W(

s(x)
)

= F(x).

(3.3)

Hence F is a nonempty and compact-valued multimap. Since
⋂

x∈X
F(x)=

⋂

x∈X

(

K \W(

s(x)
))

= K \
⋃

x∈X
W
(

s(x)
)

⊆ K \K by (3.2.4)

=∅,

(3.4)

F is not a s-KKM mapping with respect to T . Hence there is A= {x1, . . . ,xn} ∈ 〈X〉 such
that

T
(

Γ{s(x1),...,s(xn)}
)

�

n
⋃

i=1

F
(

xi
)

. (3.5)

Choose ŷ ∈ Γ{s(x1),...,s(xn)} and ẑ ∈ T( ŷ) such that ẑ /∈⋃n
i=1F(xi). It follows from

ẑ ∈ K \
n
⋃

i=1

F
(

xi
)

=
n
⋂

i=1

(

K \F(xi
))

⊆
n
⋂

i=1

W
(

s
(

xi
))

⊆
n
⋂

i=1

H
(

s
(

xi
))

(3.6)
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that s(xi) ∈W−(ẑ) ⊆ H−(ẑ) for any i ∈ {1, . . . ,n}. Therefore by (3.2.3), Γ{s(x1),...,s(xn)} ⊆
H−(ẑ). In particular, ŷ ∈H−(ẑ), and so ẑ ∈H( ŷ)∩T( ŷ), a contradiction. This completes
the proof. �

Corollary 3.3. Let (Y ,D) be a convex space and Z a topological space. Suppose H : Y → 2Z

and T ∈ KKM(Y ,Z) satisfy the following conditions:
(3.3.1) T is compact;
(3.3.2) for any z ∈ T(Y), H−(z) is D-convex;
(3.3.3) T(Y)⊆⋃y∈D Int(H(y)).

Then T and H have a coincidence point.

Proof. Putting X =D, s : X →D be the identity mapping 1D and W : D→ 2Z be defined
by W(y)= Int(H(y)) in the above theorem, the result follows immediately. �

Here we like to mention that Corollary 3.3 is an improvement for Theorem 4 of Chang
and Yen [4], where except the conditions (3.3.1)∼ (3.3.3), they require T be closed. For
Uk

c (Y ,Z) instead of KKM(Y ,Z), Corollary 3.3 is due to Park [11]. We now give a concrete
example showing that Corollary 3.3 extends both of [4, Theorem 4] and [11, Theorem 2]
properly. Let X = [0,1] and V be any convex open subset of 0 in R. Define T : X � X
by T(x)= {1} for x ∈ [0,1); and [0,1) for x = 1, and H : X � X by H(x)= (x+V)∩X.
Then we have

(a) T belongs to KKM(X ,X) and is compact;
(b) H−(y) is convex for each y ∈ X , and
(c) each H(x) is open and T(X)⊆⋃x∈X H(x).

Thus, Corollary 3.3 guarantees that T(x̂)∩H(x̂) �=∅ for some x̂ ∈ [0,1]. But, Theorem
4 of Chang and Yen [4] is not applicable in this case because T is not closed. On the
other hand, if T ∈Uk

c (X ,X), then there would exist Γ ∈Uc(X ,X) such that Γ(x)⊆ T(x)
for each x ∈ [0,1]. Since X is a polytope, Γ must have a fixed a point which is impossible
by noting that T has no fixed point. Consequently, T /∈Uk

c (X ,X), and hence we can not
apply Theorem 2 of Park [11] to conclude that T and H have a coincidence point.

Corollary 3.4. LetX be any nonempty set, (Y ,D) a convex space and Z a topological space.
Suppose s : X →D, H : Y → 2Z and T ∈ s-KKM(X ,Y ,Z) satisfy the following conditions:

(3.4.1) T is compact;
(3.4.2) for any z ∈ T(Y), H−(z) is D-convex;
(3.4.3) T(Y)⊆⋃x∈X Int(H(s(x))).

Then T and H have a coincidence point.

Proof. In Theorem 3.2, putting W : D → 2Z be W(y) = Int(H(y)) for each y ∈ Y , the
result follows immediately. �

Lemma 3.5 (Lassonde [9, Lemma 2]). Let Y be a nonempty subset of a topological vector
space E, T : Y → 2E a compact and closed multimap and i : Y → E the inclusion map. Then
for each closed subset B of Y , (T − i)(B) is closed in E.

Corollary 3.6. Let X be any nonempty set and Y , C be two nonempty convex subsets of a
locally convex topological vector space E. Suppose s : X → Y and T ∈ s-KKM(X ,Y ,Y +C)
satisfy the following conditions (3.6.1), (3.6.2) and any one of (3.6.3), (3.6.3)′ and (3.6.3)′′.
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(3.6.1) T is compact and closed.
(3.6.2) T(Y)⊆ s(X) +C.
(3.6.3) Y is closed and C is compact.
(3.6.3)′ Y is compact and C is closed.
(3.6.3)′′ C = {0}.

Then there is ŷ ∈ Y such ( ŷ +C)∩T( ŷ) �=∅.

Proof. Let V be any convex open neighborhood of 0∈ E and K = T(Y). Define H : Y →
2Y+C to be H(y)= (y +C+V)∩K for each y ∈ Y . Each H(y) is open in K and H−(z)=
(z−C−V)∩Y is convex for any z ∈ K . Moreover,

⋃

x∈X
H(s(x))=

⋃

x∈X

((

s(x) +C+V
)∩K

)

= (s(X) +C+V
)∩K

= T(Y) by (3.6.2).

(3.7)

Therefore, it follows from Corollary 3.4 that there are yV ∈ Y and zV ∈ K such that zV ∈
T(yV )∩H(yV ). Then in view of the definition of H , zV − yV ∈ C +V . Up to now, we
have proved the assertion.

(∗) For each convex open neighborhood V of 0 in E, (T − i)(Y)∩ (C + V) �= ∅,
where i : Y → E is the inclusion map.

Now take into account of conditions (3.6.3), (3.6.3)′ and (3.6.3)′′. Suppose (3.6.3) holds.
Since Y is closed, so is (T − i)(Y) by Lemma 3.5, and then the assertion (∗) in conjunc-
tion with the compactness of C and the regularity of E implies that (T − i)(Y)∩C �=∅,
that is, there exists a ŷ ∈ Y such that T( ŷ)∩ ( ŷ +C) �=∅. In case that (3.6.3)′ holds, since
(T − i)(Y) is compact by Lemma 2.1 and since C is closed, the conclusion follows as the
previous case. Finally, assume that (3.6.3)′′ holds. By (∗), for every convex open neigh-
borhood V of 0, there are yV and zV in Y such that zV ∈ T(yV ) and zV − yV ∈ V . Since
T(Y) is compact, we may assume that zV → ŷ for some ŷ ∈ T(Y). Then we also have that
yV → ŷ. The closedness of T implies that ŷ ∈ T( ŷ). This completes the proof. �

The above corollary extends Park [11, Theorem 3], which in turn is a generalization to
Lassonde [9, Theorem 1.6 and Corollary 1.18].

We now turn to investigate the fixed point problem on uniform spaces. At first we
apply Theorem 3.2 to establish a useful lemma.

Lemma 3.7. Let X be any nonempty set, (Y ,D;Γ) be a G-convex space whose topology is
induced by a uniformity �. Suppose s : X →D and T ∈ s-KKM(X ,Y ,Y) satisfy that

(3.7.1) T is compact; and
(3.7.2) T(Y)⊆ s(X).

IfV ∈� is symmetric and satisfies that V[y] is Γ-convex for any y ∈ Y , then there is yV ∈ Y
such that

V[yV ]∩T(yV ) �=∅. (3.8)
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Proof. Define H : Y → 2Y to be H(y) = V[y] for any y ∈ Y . By symmetry of V it is
easy to see that H−(z) = V[z] for any z ∈ Y , and so H−(z) is Γ-convex. Also, it fol-
lows from condition (3.6.2) that for any z ∈ T(Y), there is x0 ∈ s(X) such that z = s(x0).
Then in view of (s(x0),s(x0))∈V we see that z = s(x0)∈V[s(x0)]=H(s(x0)), and hence
z ∈ ⋃x∈X H(s(x)), that is T(Y) ⊆ ⋃x∈X H(s(x)). Finally, noting H is open-valued and
putting W : D→ 2Y to be W(y)=H(y) for any y ∈ D, we see that all the requirements
of Theorem 3.2 are satisfied. Thus there is yV ∈ Y such that H(yV )∩T(yV ) �=∅, that is
V[yV ]∩T(yV ) �=∅. �

Definition 3.8 [14]. A G-convex space (X ,D;Γ) is said to be a locally G-convex uniform
space if the topology of X is induced by a uniformity � which has a base � consisting of
symmetric entourages such that for any V ∈� and x ∈ X , V[x] is Γ-convex.

Recall that the concepts of l.c. space and l.c. metric space in Horvath [7]. If D = X
and Γx = {x} for any x ∈ X , then it is obvious that both of them are examples of locally
G-convex uniform space.

Theorem 3.9. Let X be any nonempty set, (Y ,D;Γ) a locally G-convex space. Suppose s :
X →D and T ∈ s-KKM(X ,Y ,Y) satisfy that

(3.9.1) T is compact and closed;
(3.9.2) T(Y)⊆ s(X).

Then T has a fixed point.

Proof. By Lemma 3.7, for any V ∈ � there is yV ∈ Y such that V[yV ]∩ T(yV ) �= ∅.
Choose zV ∈V[yV ]∩T(yV ). Then (yV ,zV )∈V ∩Gr(T). SinceT is compact, we may as-
sume that {zV}V∈� converges to z0. For any W ∈�, choose U ∈� such that U ◦U ⊆W .
Since {zV}V∈� converges to z0, there is V0 ∈� such that V0 ⊆U and

zV ∈U
[

z0
]

, ∀V ∈� with V ⊆V0, (3.9)

that is,

(

zV ,z0
)∈U , ∀V ∈� with V ⊆V0. (3.10)

Thus, for V ∈� with V ⊆V0, it follows from

(

yV ,zV
)∈V ⊆U ,

(

zV ,z0
)∈U (3.11)

that (yV ,z0)∈U ◦U ⊆W . Hence yV ∈W[z0]. This shows that {yV}V∈� converges to z0.
Since T is closed, we conclude that z0 ∈ T(z0), completing the proof. �

For a topological space X and locally G-convex uniform space (Y ,Γ), define

T ∈�(X ,Y)⇐⇒T : X −→ Y is a Kakutani map, that is,

T is u.s.c. with nonempty compact Γ-convex values.
(3.12)

�c(X ,Y) denotes the set of finite composites of multimaps in � of which ranges are
contained in locally G-convex uniform spaces (Yi,Γi) (i= 0, . . . ,n) for some n.
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Lemma 3.10 (Watson [14]). Let (X ,Γ) be a compact locally G-convex uniform space. Then
any u.s.c. T : X � X with closed Γ-convex values has a fixed point.

By the above lemma, we see that, in the setting of locally G-convex uniform spaces, the
class � is an example of the Park’s class U. Therefore, for any locally G-convex uniform
space (X ,Γ), �c(X ,X)⊆ KKM(X ,X), and so we have the following theorem.

Theorem 3.11. Suppose (X ,Γ) is a locally G-convex uniform space. If T ∈�c(X ,X) is com-
pact, then it has a fixed point.

Proof. Since X is regular by Kelley [8, Corollary 6.17 on page 188] and T ∈�c(X ,X), it is
u.s.c. and compact-valued, and so it is closed. Now due to that �c(X ,X)⊆ KKM(X ,X),
we have T ∈ KKM(X ,X). Since T is compact and closed, it follows from Theorem 3.9
that T has a fixed point. �

Since any metric space is regular, we infer that for any l.c. metric space (X ,d) satisfying
that Γx = {x}, if T ∈�c(X ,X) is compact, then T has a fixed point. This generalizes the
famous Fan-Glicksberg fixed point theorem [5].
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