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We consider various problems regarding roots and coincidence points for maps into the
Klein bottle K . The root problem where the target is K and the domain is a compact
surface with non-positive Euler characteristic is studied. Results similar to those when
the target is the torus are obtained. The Wecken property for coincidences from K to K
is established, and we also obtain the following 1-parameter result. Families fn,g : K →
K which are coincidence free but any homotopy between fn and fm, n �= m, creates a
coincidence with g. This is done for any pair of maps such that the Nielsen coincidence
number is zero. Finally, we exhibit one such family where g is the constant map and if we
allow for homotopies of g, then we can find a coincidence free pair of homotopies.

Copyright © 2006 D. L. Gonçalves and M. R. Kelly. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Given a pair of maps ( f ,g) : X → Y denote by Coin( f ,g) the set {x ∈ X | f (x) = g(x)}.
Assume X and Y to be compact manifolds of the same dimension, in which case this set is
generically a finite set of points. Now suppose that ( f1,g1), ( f2,g2) are homotopic as a pair
of maps, and that #Coin( f1,g1) = #Coin( f2,g2) = MC[ f1,g1], where MC[ f ,g] denotes
the minimal number of coincidence points occurring among all pairs ( f ,g′) homotopic
to ( f ,g).

A natural question is the following: Is it possible to find a pair of homotopies, H
from f1 to f2 and G from g1 to g2, such that #Coin(H(·, t),G(·, t)) = MC[ f1,g1] for
all t ∈ [0,1]? In this paper we will refer to this as the 1-parameter minimal coincidence
problem and will often shorten this to the minimal coincidence problem. A variation of
the above question is to consider the situation where in one of the two coordinates the
same function appears, and the homotopy between them is constant. We refer to this as
the restricted minimal coincidence problem. If we specialize the restricted problem to the
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case where X = Y , both g1 and g2 are the identity and the homotopy G remains con-
stant this is called the fixed point problem and has been considered in a number of papers
[7, 10, 15, 16]. The last partially generalized to coincidence in [14]. If we specialize to the
case where both g1 and g2 are the constant map and the homotopy G remains constant
this is called the root problem.

In a previous paper the authors studied the coincidence problem when the target Y
is the 2-dimensional torus [13] (and for the most part the domain as well.) The primary
feature used was that because the torus has a multiplication the two coincidence problems
are equivalent and can be reduced to considering a root problem, where computations are
not as difficult.

The purpose of this present paper is to study these minimal problems for the case
where the target is the Klein bottle. Here we are able to take advantage of the multipli-
cation on the torus only after passing to a two-fold cover. As a by-product of our calcu-
lations we obtain the Wecken property for coincidences of self maps of the Klein bottle.
For the fixed point problem this was first established by Brouwer [5].

The results obtained in this paper are organized as follows. In Section 2 we consider the
root problem and show that in the root free case we can always construct an infinite family
of maps no two of which can be joined by a root free homotopy. Here the domain is an
arbitrary surface and this result is analogous to that for the torus in [13]. In Section 4 we
show that the root problem has an affirmative solution when both the domain and target
are the Klein bottle and the end maps are not root free. The result is given in Theorem 4.2.

The main body of this paper is Section 3, which gives a study of coincidence for self
maps of the Klein bottle K . We show that the Wecken property holds (Theorem 3.8)
and we also consider the restricted minimal problem defined above. We establish in
Theorem 3.10 the following: in any homotopy class of pairs of maps which contains a
coincidence free pair the existence of an infinite family of coincidence free pairs each
having the same second map, but each homotopy between two distinct members of the
family which is constant on the second factor must have a coincidence point.

Finally, in Section 5 we consider the relationship between the minimal coincidence
problem and the restricted minimal problem. In particular, we show that the root prob-
lem and the minimal coincidence problem where the second map is the constant map,
are not equivalent. The result is given in Corollary 5.2. The proof relies on the fact that
the second map is the constant map, is the leg which remains unchanged in the restricted
coincidence problem and the pair of maps is root free. In general the relations between
the two problems is not known. For example, we do not know if the minimal coincidence
problem and the fixed point problem for maps in the Klein bottle are equivalent.

Lastly, we point out that no results are given on these coincidence problems for pairs
of maps which have Nielsen coincidence number different from zero. For the torus one
has an affirmative answer [13]. But this seems difficult to extend to the Klein bottle.

2. Root free maps into the Klein bottle

In [12, Theorem 2.2] it was shown that in the setting of orientable surfaces one could
always construct countable families of root free maps for which no two members of the
family can be joined by a root free homotopy. In this section we present an analogous
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result when the target space is the Klein bottle K . For this result the only restriction on
the domain is that the surface have non-positive Euler characteristic.

Let y0 ∈ K be the base point. Let F be the free group on the two generators a, b, and
let B = a2b2, the relation which defines the fundamental group of the Klein bottle. Given
a reduced word w ∈ F and an integer n let w(a,n) be the word obtained by replacing each
a by Bna and each a−1 by a−1B−n.

Lemma 2.1. Consider a cyclically reduced word w ∈ F. If w �= bk for some k, then w(a,n)
and w(a,m) are not conjugate for m,n different positive integers.

Proof. This can be proved in exactly the same manner as was [12, Lemma 2.1]. �

Lemma 2.2. Let U be a word, not necessarily reduced, in F. If U = 1 as a reduced word, then
for any integer n, U(a,n)= 1.

Proof. Just follow the cancellation pattern for U , cancelling B, B−1 pairs along the way.
�

Let S be a closed surface with non-positive Euler characteristic. Let e1, . . . ,ek be gen-
erators for the fundamental group π1(S) with defining relation given by; [e1,e2]×···×
[eh−1,eh]= 1 if F is orientable (here h is even) or by e2

1×···× e2
h = 1 if F is non-orientable

(h≥ 2).

Theorem 2.3. Suppose f0 : S→ K is such that y /∈ f0(S) for some y ∈ K . Then there exist
a countable family of maps fn, each homotopic to f0, such that y /∈ fn(S) and for any two
maps fm, fn in the family with m �= n each homotopy between them has a root at y.

Proof. First identify π1(K − y) with the free group F generated by a and b. Consider the
homomorphism f# : π1(S)→ π1(K) induced by f0 which we express by f#(ei)=wi, where
each wi is a word in F. The defining relation for S implies the equation [w1,w2]×···×
[wh−1,wh]= 1 when S is orientable or w2

1 ×···×w2
h = 1 when S is non-orientable.

In the special case that wi = 1 for each i, and since h≥ 2, we define a family of maps by
fn(e1)= Bn, fn(e2)= B−n and fn(ei)= 1 for each i > 2. These are well defined maps from
S into K − y, and since B = 1 in K , each is homotopic to any other as maps into K . On
the other hand, when n �=m the words Bn and Bm are not conjugate in F. Hence, fn and
fm are not homotopic as maps into K − y.

Now suppose that at least one of the wi’s is non-trivial. Without loss of generality we
can assume that one such word wj is cyclically reduced and is not a power of b. Define a
family of maps by fn(ei)=wi(a,n), which by Lemma 2.2, is a well defined family of maps
into K − y. Since wi(a,n)=wi in K , each is homotopic to any other member as maps into
K . But by [12, Lemma 2.1] if S is orientable, or Lemma 2.1 if S is non-orientable, fn and
fm are not homotopic as maps into K − y when n �=m and both are positive. �

3. Coincidence free maps from the Klein bottle
into the Klein bottle

In this section we consider the situation where the domain and target are the Klein bottle
and the pair of maps ( f ,g) is coincidence free. The purpose of the section is to give two
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results regarding such pairs of maps. In the first section we address the Wecken problem
for coincidence free pairs. To do so we set up the notation and preliminary results needed
for the result, given in Theorem 3.8, that the Wecken property holds for coincidences on
the Klein bottle. In the second section we restrict our attention to those homotopies for
which one of the two factors is kept constant; either the map f at each level or g at each
level. We then consider the restricted 1-parameter problem and obtain the result stated
in Theorem 3.10.

3.1. The Wecken property. Fix generators α,β for π1(K ,1′) so that the relation αβαβ−1 =
1 holds. Let p : T → K be the double cover by the torus, and let a,b generate π1(T ,1),
where p(a) = α and p(b) = β2. As an abuse of notation both a and b will also represent
simple closed curves meeting at the basepoint of the torus.

To prove this result we first recall the homotopy classification of self-maps of the Klein
bottle.

Lemma 3.1. Let f : K → K be given. Then f# has one of two forms. Either Type I: f#(α)= αr

f#(β)= αsβ2q+1 or Type II: f#(α)= 1 f#(β)= αsβ2q.

Proof. The Klein bottle relation αβαβ−1 = 1 viewed as αβ = βα−1 allows for any word to
be converted to a word of the form αaβb. In the process the exponent sum on β remains
the same. As a result, and since K is a K(π,1), all self-maps are represented by a member
of the family given by

α �−→ αrβu, β �−→ αsβt. (3.1)

Apply this map to the Klein bottle relation to get αrβuαsβtαrβuβ−tα−s = 1. When ap-
plying the relation to put this word in normal form we see that the exponent on β is 2u.
Hence, u= 0. Also, if t is even, then βtαr = αrβt. The equation above reduces to α2r = 1,
and so r = 0. �

Remark 3.2. Following classical notation the map f is orientation-true, see [6] or [9],
exactly when it is Type I. In those papers all other maps are classified as either Type II or
III. To simplify notation in this paper we will not use Type III. We simply note that the
only self-map of K that is of Type III is the constant map, which we will consider under
the case of Type II.

As a notation we will index maps as a triple (r,s, t), where r,s are as above and t is the
β exponent of f#(β). When t is even we must have that r = 0. For a given pair ( f1, f2) of
maps there is a formula for the Nielsen coincidence number of the pair.

Theorem 3.3 [8]. Let f1, f2 : K → K be as above, with fi = (ri,si, ti). Then

N
(
f1, f2

)= ∣∣t1− t2
∣
∣max

{∣∣r1
∣
∣,
∣
∣r2
∣
∣}. (3.2)

For various calculations in this paper we will be considering lifts of maps to the torus.
We list here for reference the form of these lifts.
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In the case that f is Type I we can lift the map by lifting both the domain and the range.

Here we get f̃ : T → T , and with the notation above, f̃ (a)= ar , f̃ (b)= b2q+1. Let θ : T →
T denote the deck transformation corresponding to the cover p. Then the associated lift

f̃ ′ = θ f̃ satisfies f̃ ′(a)= a−r , f̃ ′(b) = b2q+1, where a,b in the target mean the translated
loops based at θ(1).

When f is not orientation-true it factors through the torus. So we have a map f : K →
T where f (α) = 1 and f (β) = asbq. In this case the associated lift f ′ is f ′(α) = 1 and

f ′(β)= a−sbq. We can also lift in the domain as well. When we do so we now have that f̃

is given by f̃ (a)= 1 and f̃ (b)= a2sb2q, and that f̃ ′(a)= 1 and f̃ ′(b)= a−2sb2q. As before,

for f̃ and f̃ ′ the loops in the target are based at θ(1).
At this point we digress a moment to compare a result for maps on the torus to its

counterpart for the Klein bottle. A class of spaces called Jiang type spaces, which includes
the torus, has the property that when the Nielsen number of a pair of maps is zero then
the Reidemeister number is infinite, and when the Nielsen number is nonzero the two are
equal (see, e.g., [19].) The next proposition shows that this does not hold for the Klein
bottle, even in the fixed point case.

Proposition 3.4. Let f1, f2 : K → K be as above, with fi = (ri,si, ti). Then the coincidence
Reidemeister number for the pair is infinite exactly when either N( f1, f2)= 0 or |r1| = |r2|.
Proof. This follows directly from the matrices which arise when lifting f1, f2 to maps of
the torus. �

In order to study coincidences of pairs of maps on the Klein bottle we will first lift maps
to the torus and then use a multiplication on the torus to reduce to the root problem for
a deviation map h given by h(x) = f̃1(x) f̃2(x)−1. We now vary h by a homotopy for the

root problem, and then recover equivariant maps on the torus by keeping f̃2 fixed and

obtaining a new f̃1 from this formula.
As an immediate consequence of the definition of h and Theorem 3.3 we have the

following lemma. Its proof is left to the reader.

Lemma 3.5. If N( f1, f2)= 0, then the map h : T → T has the property that a �→ ar1−r2 , where
ri = 0 when fi is of Type II. Furthermore, r1− r2 is non-zero only when both maps are of Type
I and t1 = t2.

As a consequence we see that the Wecken problem for coincidence in the case N( f1, f2)
= 0 and r1 = r2 is now easy to solve. Since the loop a is mapped by h to a single point,
h(θ(a)) must also be a single point. As a result h maps T into a 1-complex determined
by h(b). After a small deformation we arrange that h is a root free map at both 1 and

θ(1). Thus, both pairs of lifts h f̃2, f̃2 and h f̃2,θ f̃2 are coincidence free, and we conclude
that ( f1, f2) can be deformed to a coincidence free pair. Details are given in the proof of
Proposition 3.4.

The case when r1 �= r2 is more subtle. To analyze this case, and also to deal with the 1-
parameter problem, we will need to see how the various lifts, and hence h, act on a certain
1-complex in T . To define this complex let T be the identification of the unit square
[0,1]2 with a = {0}× [0,1] and b = [0,1]×{0}. Let σa = a and σb = [0,1/2]×{0}. Our
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1-complex L is the union of a,b and θ(a). The action of an equivariant map is determined
by the action on σa and on σb.

Given f : K → K which is assumed to be given efficiently in terms of the generators
α,β, a model for a lift of f on σa∪ σb is given by the following lemma

Lemma 3.6. If f is Type I, then f̃ (σa)= ar , f̃ (σb)= asbqσb. If f is Type II, then

f̃
(
σa
)= 1, f̃

(
σb
)= asbq. (3.3)

We now check the action of h : T→T on L by first computing h(θz)= f̃1(θz)( f̃2(θz))−1.
We express points in complex (x, y) coordinates where x measures the b or β direction,
and y the a or α direction, depending on location in T or in K . The action of θ is given
by (x, y) �→ (eπix, ȳ), and multiplication is the product of the coordinates. The inverse is
obtained by complex conjugation in each coordinate.

One feature of multiplication that we exploit is its relation with the deck transforma-
tion θ. Namely, under products we see that

θ(AB)= θ(A)θ(B)
(
eπi,1

)
. (3.4)

Case 1. Both f1, f2 are Type I. (t1, t2 odd.)

Then reduce h(θz) to θ f̃1(z)(θ f̃2(z))−1. This is equal to θ(h(z) f̃2(z))(θ f̃2(z))−1, or

θh(z)θ f̃2(z)(eπi,1)(θ f̃2(z))−1 = θh(z)(eπi,1).

Case 2. Both f1, f2 are Type II. (t1, t2 even.)

Then reduce to f̃1(z)( f̃2(z))−1 = (h(z) f̃2(z))( f̃2(z))−1 = h(z).

Case 3. t1 odd, t2 even.
Reduce to θ(h(z) f̃2(z))( f̃2(z))−1. Which is θh(z)θ f̃2(z)(eπi,1)( f̃2(z))−1.

Using coordinates for f̃2(z)= (ub,ua), this reduces to θh(z)(1,u−2
a ).

Case 4. t1 even, t2 odd.
Reduce to (h(z) f̃2(z))(θ f̃2(z))−1 which is h(z)(eπi,u2

a).
We now revisit these four cases using the given information of h(z) on the loop σa and

the path σb as given in Lemma 3.6.

Case 1. In view of Lemma 3.5 we divide this case into two subcases.

Subcase 1(i). r1 �= r2. Here h(σa)= (1,ar1−r2 ), and since q1 = q2, h(σb)= (1,as1−s2 ).
So we get h(θσa) = θ(1,ar1−r2 )(eπi,1) = (1,ar2−r1 ), and similarly, h(θσb) = θ(1,as1−s2 )

×(eπi,1)= (1,as2−s1 ).
We see from these equations that on the complex L the action of h is by a power

of a. Moreover, consider the loop in L formed by (in order) σa, [0,1/2]× {1},{1/2} ×
[1,0],σ−1

b . (Or equivalently σaσbθ(σa)σ−1
b .) The action of h on this loop is given by the

word h(σa)h(σb)h(θσa)h(σb)−1. But this is (1,ar1−r2 )(1,as1−s2 )(1,ar2−r1 )(1,as2−s1 ) = (1,1).
A similar calculation on the other loop in L shows that the exponents cancel to zero as
well. As a result we can arrange that h(T) is contained in a 1-complex determined by h(σa)
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and so this representative gives us a root free map. Moreover, keeping f̃2 fixed, from the

construction we see that the corresponding f̃1 is an equivariant map. So we have a coin-
cidence free pair.

Subcase 1(ii). r1 = r2. Then σa �→ 1, σb �→ (bq1−q2 ,as1−s2 ) by h. So h(θσa)= θ(1,1)(eπi,1)=
(1,1) and h(θσb)= θ(bq1−q2 ,as1−s2 )(eπi,1)= (bq1−q2 ,as2−s1 ).

Here h as defined on L extends to T by mapping into a 1-complex, this time deter-
mined by h(σb). This will also happen in the remaining three cases.

Case 2. Here a �→ 1, σb �→ (bq1−q2 ,as1−s2 ) h(θσa)= h(σa)(1,1)=(1,1) and h(θσb)=h(σb)(1,
1)= (bq1−q2 ,as1−s2 ).

Case 3. a �→ 1, σb �→ (bq1−q2σb,as1−s2 ) h(θσa)= θ(1,1)(1,u−a 2)= (eπi,1), as (ub,ua)= (1,1)
in this case, and h(θσb)= θ((bq1−q2σb,as1−s2 )(1,a−2s2 )= (eπibq1−q2σb,a−s1−s2 ).

Case 4. a �→ 1, σb �→ (bq1−q2σ−1
b as1−s2 ) h(θσa) = (h(σa)(1,1))(eπi,1) = (eπi,1) and h(θσb)

= (bq1−q2σ−1
b ,as1−s2 )(eπi,a2s2 )= (eπibq1−q2σ−1

b ,as1+s2 ).

Each of the above calculations can be repeated with f̃2 replaced by θ f̃2. For example,
in the Case 1(i) it can be shown that h(σa) = (eπi,ar1+r2 ), h(σb) = (eπi,a−s1+s2 ), h(θσa) =
(eπi,a−r1−r2 ), and h(θσb)= (eπi,as1−s2 ). Similar formulas arise in all the other cases.

As a result, we see that the deviation map h has image in a 1-complex. In particular,
the image could be taken to be in the “lines” in the torus determined by h(b). As a conse-
quence we can now show that the Klein bottle has the Wecken property for coincidences.

Proposition 3.7. Let f1, f2 : K → K be such that N( f1, f2) = 0. Then we can deform the
pair to one that is coincidence free.

Proof. Choose representatives and lifts f̃1, f̃2 as above. Let y be a point on the torus.
Consider the map hy : T → T constructed just as h, but now given on L by the data
σa �→ yh(σa), σb �→ yh(σb). In all cases the image of hy lies in a 1-complex, and for a suit-
able choice of y the image lies in T − (1∪ θ(1)).

Now, keeping f̃2 fixed we construct from hy an equivariant map f̃ ′1 such that each of

the pairs ( f̃ ′1 , f̃2) and ( f̃ ′1 ,θ( f̃2)) is coincidence free. Hence, ( f ′1 , f2) is coincidence free

where f ′1 is the projection of f̃ ′1 . �

Theorem 3.8. Given any pair f1, f2 : K → K we can deform the pair to one that has exactly
N( f1, f2) coincidence points.

Proof. When the Nielsen number is nonzero we show that the “linear” model has exactly
N( f1, f2) coincidence points. This model is obtained by lifting to the torus where we have
a piecewise linear map. We present the case where f1 is of Type I and f2 is of Type II. The
details of the other cases are similar and left to the reader.

By Lemma 3.6 we have that f̃1(σa)= ar1 , f̃1(σb)= as1bq1σb, f̃2(σa)= 1, f̃2(σb)= as2bq2 .

The map f̃2 extends to a linear map of the torus given by (x, y) �→ (2q2x,2s2x)(mod1),

where the x-factor corresponds to the b direction. The map f̃1 can be represented by the
map (x, y) �→ ((2q1 + 1)x,r1y± s1x)(mod1). The choice of ± depends on the value x, +

if 0 < x < 0.5, − if 0.5 < x < 1. Finding coincidence points for the pair ( f̃1, f̃2) reduces
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to solving the equations (2q1 + 1− 2q2)x = 0(mod1) and (r1y± s1x)− 2s2x = 0(mod1).
The first has exactly |(2q1 + 1− 2q2)| solutions and for each of these solutions the second
equation has |r1| solution provided that r1 �= 0.

In the case under consideration the coincidence set for the lifts projects one-to-one
and onto the coincidence set for ( f1, f2) and so by Theorem 3.3 the result is proved. �

3.2. The 1-parameter problem. For the problem of deforming a pair of maps to one that
has the least number of coincidence points it is known, in the setting of closed manifolds,
that it suffices to deform either one of the two maps [2]. For the 1-parameter Wecken
problem this is not known in general, but does hold when the target is a topological
group.

The following proposition shows that when considering the restricted coincidence
problem (where the second factor g is unchanged) the solution does not depend on the
choice of map in the homotopy class.

Proposition 3.9. Let ( f ,g) : M→N be a pair of maps which satisfies Coin( f ,g)=MC( f ,
g) and g1 a map homotopic to g. Then:

(a) the restricted minimal coincidence problem has a positive solution for ( f ,g) if and
only if it has a solution for a pair ( f ′,g), where f ′ is homotopic to f ;

(b) there exists f1 homotopic to f such that coin( f1,g1)=MC( f ,g) and the restricted
minimal coincidence problem has a positive solution for ( f ,g) if and only if it has a
solution for the pair ( f1,g1).

Proof. In both parts (a) and (b) it suffices to assume that the Wecken problem has a
positive solution. For the part (a) we have that the pair ( f ,g) can be connected to the
pair ( f ′,g) by a Wecken homotopy. So given any pair ( f ′′,g) where f ′′ is homotopic to
f ′ (so homotopic to f ) we consider the homotopy which is the Wecken homotopy from
( f ′,g) to ( f ,g) followed by a Wecken homotopy from ( f ,g) to ( f ′′,g), which exists by
hypothesis, and the result follows.

For part (b) consider the fibre pair (N ×N ,N ×N −Δ) → N , by projection on the
second coordinate. We argue as in [11, Proposition 1.5], let H : M× I →N be a homotopy
between g and g′. This homotopy restricted to M ×{0} has a lift given by ( f ,g), which
maps M− coin( f ,g) into N ×N −Δ. Define f1 as the first coordinate function of the map
H̃ restricted to M×{1}, where H̃ is the lifting of H given by the homotopy property of
the pair. So H̃(M− coin( f ,g)×{t})⊂N ×N −Δ for all t ∈ [0,1] and f1,g1 is a minimal
pair. Now let f ′1 be any map homotopic to f1 (so homotopic to f ) such that the pair ( f ′1 ,g)
is minimal. By using the procedure above we can produce a map f ′ which is homotopic
to f and the pair ( f ′,g) is minimal. So by hypothesis there exists a Wecken homotopy
L connecting ( f ,g) to ( f ′,g). Now we use the procedure above to produce a Wecken
homotopy connecting ( f ′1 ,g1) to ( f1,g1). Define L1 : M× I × I → N given by L1(x,s, t) =
H(x,s) where H is the homotopy between g and g′. This map restricted to M ×{0}× I

admits a lift given by L. Define L1 as the first coordinate function of the lift L̃1 of L1

restricted to M×{1}× I . This is a Wecken homotopy connecting ( f1,g1) to ( f ′1 ,g1) and
the result follows. �

The main purpose of this section is to prove the following theorem.
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Theorem 3.10. Let ([ f ],[g]) be a pair of homotopy classes of self-maps of K such that
N( f ,g)= 0. Then given a map g′ ∈ [g] there is a countable family of maps fn, where each
fn ∈ [ f ] and coin( fn,g′)=∅, such that for any two pairs ( fm,g′), ( fn,g′) with m �= n there
is no homotopy H between fm, fn with the property that (H( , t),g′) is coincidence free for all
t ∈ [0,1].

In order to proceed with the proof of this theorem we will first need to construct
a suitable family of maps. In view of Proposition 3.9 we choose g′ as the linear model

determined by the images of σa and σb. For the following proof we will use f̃2 to denote
the lift of g′ to the torus. Families in the homotopy class of [ f ] will constructed for each
case, by first defining the maps on σa∪ σb, and then using the formulas of Cases 1–4 we

define families of deviation maps hl. We set f̃1(x) = hl(x) f̃2(x) keeping in mind that f̃1
represents an arbitrary member of some family of maps. Finally, we project to get families
of maps on K . Choices will be made so that N( f1, f2) = 0, for each possible f1. To get
coincidence free pairs we will need to make a slight perturbation, which will be done on
the torus.

We first consider the situation in Case 1. If a segment of σa ∪ σb is mapped by h to
the loop a, then hθ of the segment is mapped to (θa)(eπi,1). But this is just the loop
a−1. Similarly, if a segment of σa ∪ σb traces out the loop b, then hθ of the segment is
mapped to b. As a result, under the hypothesis of Case 1 we have the following method
of substitution.

Lemma 3.11. Suppose that both f1 and f2 are of Type I. Let W be a word in the letters a,b
and let W be the word obtained by replacing each occurrence of a with a−1 keeping b with
unchanged. If h(σl), l ∈ {a,b}, contains W , then h(θσl) contains W in its place.

We now define families of pairs of maps in a given homotopy class of pairs. We first
make an adjustment so that all maps are coincidence free.

Let ε : T → T be a homeomorphism near the identity and such that ε(a) and ε(b) do
not contain 1. Our deviation maps will be defined on generators a,b and will have images
in ε(a)∪ ε(b), and will extend to the interior of T with image in the same 1-complex.
Clearly, any such map will have no root at 1. By abuse of notation in the following we will
write a, b instead of ε(a), ε(b). For instance, h(a) = ab means the image of a traces out
ε(a) then ε(b).

Let B denote the commutator aba−1b−1 in the free group on generators a,b. Given a
word ω, let Bω = ωBω−1.

Let h be as presented in Case 1. For integers m,x, y we define a family of maps hm,x,y

according to the following:

σa �−→ Bm
axB

m
aya

r1−r2 , σb �−→ as1−s2 . (3.5)

Keeping f̃2 fixed each hm,x,y determines a family of lifts f̃1, where each pair is homoptic
to the original model.

The following gives a condition that ensures our pair is coincidence free.
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Lemma 3.12. If x + y = r1 − r2 + s1 − s2 − 1, then hm,x,y extends to all of T with image in
a∪ b.

Proof. We check the condition for cancellation around the loop σaσb(θσa)σ−1
b . The other

loop in L is the same. Set r = r1− r2 and s= s1− s2. Then this is equivalent to the equation

Bm
axB

m
aya

r = as
(
Bm
axB

m
ayar

)−1
a−s = asarB

−m
a−y B

−m
a−x a

−s = as+rBm
a−1−yBm

a−1−x a−s, (3.6)

due to the fact that B
−1 = Ba−1 . Rewrite the right-hand side as

Bm
ar+s−1−yBm

ar+s−1−x ar+sa−s. (3.7)

Equate with the left-hand side to obtain x + y = r + s− 1 which gives the desired result.
�

Proof of Theorem 3.10

Case 1(i). Suppose two pairs from the construction above which also satisfy the conclu-
sion of Lemma 3.12 are joined by a coincidence free homotopy. Lift the homotopy to the
torus to get a coincidence free homotopy between the corresponding pairs. Choose the
lift so that it produces the deviation map of the form σa �→ ar , σb �→ as.

As a result we have a homotopy ht between two deviation maps h0 = hm1,x1,y1 and h1 =
hm2,x2,y2 with no root at 1 for each level of the homotopy. Hence, h0 and h1 are homotopic
as maps into T − 1 (recall that a,b below are actually ε(a),ε(b).) Since σa is a loop its
image under each level of the homotopy is a loop in T − 1. This implies that there exists
a word φ in the free group such that

Bm1
ax1B

m1
ay1ar = φ

(
Bm2
ax2B

m2
ay2ar

)
φ−1, (3.8)

or

Bm1
ax1B

m1
ay1B

−m2
ay2 B−m2

ax2 = φ
(
Bm2
ax2B

m2
ay2ar

)
φ−1a−r

(
Bm2
ax2B

m2
ay2

)−1
,

Bm1
ax1B

m1
ay1B

−m2
ay2 B−m2

ax2 = [φ,
(
Bm2
ax2B

m2
ay2ar

)]
.

(3.9)

So by [1, Theorem 9.1 part (b)], this equation has no solution if 2|m1−m2| > 4 (with
h = g = 1 and l = 4.) Therefore if we take the sequence of integers of the form 3n we
obtain the result.

Case 1(ii). In order to facilitate computations we take as our base pair ( f1, f2) obtained
from the deviation map given by σa �→ 1 σb �→ X , where X is the path in a∪ b correspond-
ing to the word akbl, where k = s1 − s2 and l = q1 − q2. This pair is homotopic to that
given by the deviation map which sends σb to the path (bq1−q2 ,as1−s2 ). Our family of maps

hn : T → T given by σa �→ 1, σb �→ BnX determine equivariant pairs f̃1, f̃2 as in Case 1(i),
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and thus pairs of maps on the Klein bottle. The construction ensures that hn and hm
determine the same homotopy class of pairs on K . Also, since each maps σa to 1 each hn
maps into T − 1 resulting in coincidence free pairs.

The existence of a coincidence free homotopy between any two pairs lifts and mul-
tiplies to a root free at 1 homotopy between hn and hm. This implies that BnXBnX =
φBmXBmXφ−1. We claim that this only happens when n=m.

Given a word α (in the free group on letters a,b) define the integer t(α) to be the
minimal number of transitions between the letters a± and b± among all words conjugate
to α. For example, t(ab3a−1bab−1a)= 5. Clearly, t() is an invariant of a conjugacy class.

For the words of the form BnX(BnX) the calculation of t() is straightforward. Using
Lemma 3.11 one can show that t(BnX(BnX)) = 8n− c, where c is a constant which de-
pends on k, l and takes values in {−3,1,5}, with one exception. When k = 1, l = 0 we get
t(Bna(Bna))= 0, which is a result of the fact that B = a−1B−1a.

Hence we are finished with the proof except when k = 1, l = 0. Now to handle this one
special case we go back to a different choice.

Of a family of maps. In place of using B = aba−1b−1 we use B̂ = ba−1b−1a. Following
through the exact same proof, and now with this change the value of t() becomes 8n− 1.

Case 2. Is similar and in fact this is the easy case because the action of θ on the devi-
ation map is given by h(θσb) = h(σb). We consider a family of maps hn : T → T just as
in Case 1(ii), determined by σa �→ 1, σb �→ BnX , where X denotes the path (bq1−q2 ,as1−s2 )
deformed into as1−s2bq1−q2 as a path in a∪ b.

A Wecken homotopy between hn and hm reduces to the algebraic conclusion that

BnXBnX = φBmXBmXφ−1. (3.10)

A straightforward calculation of t(BnXBnX) shows that this is impossible when n �=m.

Case 4. In this case we deform (bq1−q2σb,as1−s2 ) into the path Xσb contained in a∪ b,
where X corresponds to the word akbl with k = s1 − s2, l = q1 − q2. We parametrize in
such a way so that X(eπi,a2s2 ) deforms into a∪ b by a Wecken homotopy, producing the
path σ−1

b akbl+1a2s2 . That is when X traces out a letter only the eπi factor acts on the letter.
This action replaces the letter x by σ−1

b xσb and the path σb by σ−1
b b.

Our family of maps will be hn sending σa �→ 1, σb �→ BnX . Then h(θσb) = σ−1
b Bnak

×bl+1a2s2 .
In this case a Wecken homotopy between the pairs corresponding to hn and hm implies

that BnakblBnakbl+1a2s2 and BmakblBmakbl+1a2s2 are conjugate in the free group. The in-
variant t() can be computed to show that this is only possible when n=m.

Case 3. This case is just like Case 4 and the details are left to the reader. �

4. Maps which are not root free

In Section 2 we studied the 1-parameter root problem for root free maps from an arbi-
trary closed surface into K . We now consider this problem in the presence of roots, and
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to do so we will need to restrict the domain to K as well so that we may take advantage of
some known results regarding roots. In this setting being root free (up to homotopy) is
equivalent to having absolute degree equal to zero. To see this, [4, Theorem 2] tells us that
the Nielsen root number is the same as the absolute degree. (See also [3, Theorem A.3].)
By consideration of Theorem 3.3 and Lemma 3.1 in this paper we see that the Nielsen
root number is zero exactly when the loop α is mapped to a point. The reader can check
that such maps can always be deformed to be root free.

The result we obtain below for roots is the same as that for the torus [13]. We first need
the following lemma in the case when the absolute degree is 1.

Lemma 4.1. Let f : K → K be a map of absolute degree 1. Suppose that y1, . . . , yl is a finite
set of points in K such that f −1(yi) is a single point for each i, and further, the local degree of
f at f −1(yi) is independent of i. Then we can deform f relative to f −1(y1), . . . , f −1(yl) to a
homeomorphism f ′ such that the homotopy H between f and f ′ satisfies #H(·, t)−1(yi)= 1
for all t ∈ [0,1] and i= 1, . . . , l.

Proof. For simplicity we assume i= 1 and set y = y1. The proof for i > 1 is identical. Let
N be a small neighborhood of y with N \ y foliated by circles γt, 0 < t ≤ 1. Let M be a
small neighborhood of f −1(y) with M \ f −1(y) foliated by δt. Since f −1(y) is a single
point we can deform f to a map g such that g−1(y)= f −1(y), g(δt)⊂ γt for each t, and
g(K \M)⊂ (K \N). As the local degree at f −1(y) is ±1 we can assume that g is one-to-
one on δ1. Moreover, there is such a homotopy between g and f which has a single point
in the preimage of y at each level.

Since g has absolute degree 1, by excision we see that the relative map g : (K \M,∂M)→
(K \N ,∂N) also has absolute degree 1. It then follows from [18, Theorem 1.1] that this
relative map g is homotopic, rel boundary, to a homeomorphism. Finish by extending to
all of K using the constant homotopy from M to N to obtain the desired f ′. �

Theorem 4.2. Let f1, f2 : K → K be homotopic maps each having absolute degree n, with
n �= 0. If for some y ∈ K , # f −1

i (y) = n for i = 1,2, then there is a homotopy H between f1
and f2 such that #H(·, t)−1(y)= n for all t ∈ [0,1].

Proof. We first note that it follows from [4, Theorem 2] that fi#(π1(K)) is a subgroup
of π1(K) of index n. Let p : K ′ → K be the n-fold covering which corresponds to the

subgroup fi#(π1(K)) and let f̃i : K → K ′ denote the lift of fi. Certainly f̃i# is surjective,
and since K ′ is either the Torus or the Klein bottle it follows again from [4, Theorem 2]

that this map is also injective. Therefore, f̃i is a homotopy equivalence. So K ′ is a Klein

Bottle and f̃i has absolute degree one. Moreover, f̃i is homotopic to a homeomorphism
and is a Type I map of the form α �→ α, β �→ αsβ.

Let y1, . . . , yn be the preimage of the point y of the covering map. Then f̃i# maps the

set f −1
i (y) onto these n points. So, f̃i viewed as a map on the compliment of these points

is also homotopic to a homeomorphism, and we see that the local degree at each point in

f −1
i (y) has the same value in±1. By Lemma 4.1 there are homotopies Fi with ends f̃i and

a homeomorphism hi. Since h1,h2 are homotopic, they are also isotopic. Putting together
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F1,F2 and the isotopy yields a homotopy H̃ between f̃1 and f̃2 such that the composition
p ◦ H̃ provides the required homotopy. �

5. The coincidence free case revisited

In this section we revisit the two stated variations of the 1-parameter coincidence prob-
lem. One being the situation where we allow homotopies of both maps and the other
being the restricted problem where one map is held constant. The later was addressed in
Section 3 of this paper.

The purpose of this section is to show that these two problems are different for coin-
cidences between pairs of maps from the Klein bottle to itself. In general such an analysis
is quite difficult. To facilitate calculation we set one of the maps to be the constant map
at a point c. This will also be the fixed map for the restricted Wecken problem, and as a
result this restricted problem reduces to a root problem.

Denote by e1,e2 ∈ π1(K) generators which satisfy the relation e2
1e

2
2 = 1. Given a pair of

maps f and g which are coincidence free, denote by ( f ,g)# : π1(K)→ π1(K ×K −Δ) the
homomorphism in the fundamental group induced by the map ( f ,g) : K → K ×K −Δ.

Proposition 5.1. Given f1, f2 : K → K − c consider the two homomorphisms ( f1,c)# and
( f2,c)#. The pairs ( f1,c) and ( f2,c) can be connected by a Wecken homotopy if and only if
the two homomorphisms are conjugate.

Proof. Assuming the existence of a Wecken homotopy it is well known that the induced
homomorphisms in the fundamental group are conjugate (the homotopy is not neces-
sarily base point preserving.) Conversely, since the spaces K and K ×K −Δ are K(π,1)’s
it then follows that the pairs ( f1,c) and ( f2,c) can be joined by a coincidence free homo-
topy. �

By abuse of notation let e1,e2 ∈ π1(K − c) denote a basis for the free group where these
elements project into e1,e2 ∈ π1(K) respectively, and let B = e2

1e
2
2.

Corollary 5.2. Let f1, f2 : K → K − c be two maps such that in the fundamental group
they induce the following homomorphisms:

f1#
(
e1
)= e1, f1#

(
e2
)= (e1

)−1
,

f2#
(
e1
)= e1B

−1, f2#
(
e2
)= B

(
e1
)−1

.
(5.1)

Then the pairs ( f1,c) and ( f2,c) can be connected by a Wecken homotopy but f1 can not be
connected to f2 by a homotopy which is root free at c.

Proof. That f1 can not be connected to f2 by a root free at c homotopy follows from the
fact that f1#(e1) and f2#(e1) are not conjugate as elements of π1(K − c). This is straight-
forward in K − c because the words e1 and e1B−1 do not have the same exponent sums
in the free group π1(K − c). To see that ( f1,c) and ( f2,c) can be connected by a Wecken
homotopy, by Proposition 5.1 it suffices to see that the two homomorphisms, ( f1,c)# and
( f2,c)# are conjugate. Using the relations given in the paper of Scott [17] we have that



14 Wecken type problems for self-maps of the Klein bottle

ρ21ρ11ρ
−1
21 = ρ11B−1, and so ρ21ρ

−1
11 ρ

−1
21 = Bρ−1

11 . In this notation we have

(
f1,c
)

#

(
e1
)= ρ11,

(
f1,c
)

#

(
e2
)= (ρ11

)−1
,

(
f2,c
)

#

(
e1
)= ρ11B

−1 (
f2,c
)

#

(
e2
)= B

(
ρ11
)−1

.
(5.2)

This implies that ρ21( f1,c)#ρ
−1
21 = ( f2,c)# and the result follows. �
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D. L. Gonçalves and M. R. Kelly 15

[18] R. Skora, The degree of a map between surfaces, Mathematische Annalen 276 (1987), no. 3, 415–
423.

[19] P. Wong, Coincidences of maps into homogeneous spaces, Manuscripta Mathematica 98 (1999),
no. 2, 243–254.
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